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Abstract - In this paper, we introduce a new data type of Star-matrices and we define a simple basis Star-Jacobian vector that
enables the representation of Star-Jacobian matrices (directly, indirectly) composed of the solution of a Star-System with o
coefficient. The resolution of Star-Systems is laid in a basis of the known Gauss’ method (method of exception of unknown
values) for solution of system of linear equations. When we solve a linear Star-System, we will place the 5 Star-Vectors that
are the solution (linearly independent) in the columns of a matrix. The so-called fundamental matrix of the Star-System (5x5).
Thereafter, we start with two examples with detailed solutions are presented. This can, in particular, be exploited to obtain
arithmetic properties for classes of Star-Matrices. According to a number of different studies, we also note that there is a
constant coefficient matrix C,* if we multiply that matrix by M** (Star-Matrix directly). Then you will get the matrix M*
(Star-Matix indirectly). C,* is an orthogonal matrix (*C,* = (C,*)™*). On the other hand, we study the relationship between two
Star-Jacobian matrices of Star with a coefficient, a relationship refers to the correspondence between two Star-Matrices. The
results of calculations show that the products between two Star- Jacobian Matices of two Star-System (a1, »oz) with o and
o coefficient (directly-indirectly) or (directly-directly) or (indirectly-indirectly) are diagonalizable.

Keywords - Coefficient star-matrix, algebra matrix, algebra linear equations matrix, Star-Jacobian matrix, Star.

I. INTRODUCTION
A star with a coefficient is composed of five numbers outside a, b, ¢, d, e and five numbers inside T, T,, T3, T4, Ts, These
last five numbers are written in the form of 5-tuple (T, T2, T3, Ts, Ts) [1].
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(Fig 1)

In addition to having the sum o in each line.

The scalars a are called the star coefficient if o is a solution of equation: o = T1(ct)+T2(0)+T3(e))+Ta(a)+Ts(cr) (Noted by a*),
a vector (T, T, T3, T4, Ts) is called a solution vector of this Star-System with coefficient a in five unknowns.

We will use the convention here that the star %, has a positive or a negative (Figure 2) orientation besides orientation of a
star %,. Another way to think of a positive orientation is that as we traverse the path following the positive orientation the star
%, must always be on the left (that is, one may also speak of orientation of a 5x5 matrix, polynomial of degree 5, etc.). It is
therefore possible to orient a star with a coefficient %, in two different ways, directly different ways, directly and indirectly

[2]:
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(Fig 2)
The present paper is organized as follows:
In Section 2, we present some preliminary results and notations that will be useful in the sequel. In Section 3, we study the
relationship between two star-Jacobian matrix directly and star-Jacobian matrix indirectly of star-system. Finally, in section 4,
we study the relationship between two star-matrix (directly, indirectly) of two star-system with coefficient (o, o).

I1. SOME BASIC DEFINITIONS AND NOTATIONS
In this section, we introduce some notations and star-system with a coefficient defined [1, 2].

1. A star-system with a coefficient:

Definition 1. Let a, b, ¢, d, e and o be real numbers, and let T, T2, T3, T4, Ts be unknowns (also called variables or
indeterminates). Then a system of the form

(T1+T2=a—a—c
T2+ T3 =a—b—d
4T3+T4=a—c—e
[T4+T5=a—a—d
kT5+T1=(x—b—e

is called a star-system with o coefficient in five unknowns. We have also noted %[a; b; c; d; e; a] = a. The scalars a, b, ¢, d, e
are called the coefficients of the unknowns, and a is called the constant "Chaff" of the star-system in five unknowns.

A vector (T, T2, T3, Ta, Ts) in R3 is called a star-solution vector of this star-system if and only if *[a; b; ¢; d; €; a] = .

The solution of a Star-system is the set of values for T, T, T3, T4 and Ts that satisfies five equations simultaneously.

2. A star-element

A star-element is a term of the five-tuple (Ti, T2, T3, T4, Ts) solution of a star-system % [a; b; c; d; e; o] = a,, wher (T, Ty, T3,
T4, Ts) in R5. There are many methods to calculate for solution in [9-13].

3. Star-Coefficient or Constant ""Chaff"’
The star-Coefficient or Constant "Chaff" [1] is also noted by o* and is a solution of equation:
o=T(a)+T2(a)+T3(a)+Ts(a)+Ts(ar),
wher (T, T2, T3, T4, Ts) is solution of a star-system: %[a; b; c; d; e; a] = a.
4. Star-Matrix

The star-system with o coefficient [1] can be written in matrix form M*T = Cq
Where
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F_l 0 0(\
01 1 0 O
M*=lo 0 1 1 0],
000 1 1/
1 0 0 0 1
vector T = (T1; Tz; T3; T4; Ts)
a—a—c
/a—b—d
andCa=| a—c—e |.
a—a—d
a—b-—e

M™* or Msuris called the star-Matrix of the star-system with o coefficient (%[a; b; c; d; e; o] = ).
M* a matrix is said to be of dimension 5x5. A value called the determinant of M*, that we denote by [M*| or [Mstari,
corresponds to square matrix M [3, 4]. Consequently, the determinant of M* is | M*| = 2.

5. Set-Star

The set-star is constructed from the solution set of linear star-system with o coefficient (%[a; b; c; d; e; o] = o). The Set-star
will be noted by S*.

6. Star-System equivalent

Equivalent Star-Systems [1] are those systems having exactly same solution, i.e. Two star-systems are equivalent if solution
of on star-system is the solution of other, and vice-versa.

7. Orientation of a Star with a coefficient

In [2], we choose two directions of travel on this Star with a coefficient can be classified as negatively oriented (clock-wise),
positively oriented ( counterclockwise).
Where % is a star oriented countreclockwise (positively oriented):

In the first case, one obtains a new matrix noted M**.
Called the star-matrix directly.
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/b a e d c \

T1 T5 T4 T3 T2

M*=|T5 T4 T3 T2 T1|.
e d c b a

T4 T3 T2 T1 T5

We note % is a star oriented clockwise (negatively oriented):

(Fig 4)
In the second case, one obtains a new matrix noted M*™ Called the star-matrix indirectly.

/b c d e a
T2 T3 T4 T5 T1
M*=|T3 T4 75 T1 T2 |
e d c b a
T4 T5 T1 T2 T3

8. Parametrized Curves

A parametrized differentiable curve is simply a specific subset of R® with which certain aspects of differntial calculus can be
applied.

Definition 2. A parametrized differentiable curve is a differentiable map a: I 2R> of an open interval I = (a; b) of the real
line R in to R°.

9. Regular Curves

A parametrized differentiable curve a: I 2R3, We call any point that satisfies o’(t) = 0 a singular point and we will ristrict
our study to curves without singular points.

Definition 3. A parametrized differentiable curve is a differentiable a: I 2R’ is said to be regular if a’(t) # 0 for all t € I
(see [7,8]).

10. Parametric Arclength: Generalized, a parametric arclength starts with a parametric curve in R>. This is given by some
parametric equations Ti(t); Ta(t); Ts(t); Ta(t); Ts(t), where the parameter t ranges over some given interval. The following
formula computes the length of the arc between two points a, b.

Lemma 1: Consider a parametric curve (Ti(t); Ta(t); T3(t); Ta(t); Ts(t)), where t € (a; b). The length of the arc traced by the
curve (see [5, 6]), as t ranges overt (a; b) is

L=[; 1) + (T2(0)? + (T'3()” + (T4(0)” + (T'5(0))?dt
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10. Orthogonal Matrices:
M 5x5 matrix is orthogonal if M'M=Is .
Recall the basic property of the transpose (for any M 5x5 matrix): Va,b€R’, Ma-b=a-M 'b.
It implies that requiring M to have the property: Va,beER® Ma-Mv = a-b,.
Is the same as requiring: (see [15, 16]).
Va,beR’, a-M'Mb =a-b,

Thereafter we start with several examples with detailed solutions are presented.

III. RELATIONSHIP BETWEEN TWO STAR-JACOBIAN MATRIX JM**DIRECTLY AND JM*" INDIRECTLY OF
STARWITH o COEFFICIENT

In this section, we study the relationship between two star-Jacobian matrix JM** directly and JM*- indirectly of star-system
*[a; b;c;d;e; a] =a.

1. Star-Jacobian matrix of star-system:
% [nt, (n+1)t, (n+2)t, (n+3)t, (n+4)t; ou] = o

We consider two star-matrix My** directly and M;*- indirectly of star-system: s i[nt, (n+1)t, (n+2)t, (n+3)t, (n+4)t; 0] = as,

where the star-Coefficient o, * = Z2 t

% [nt, (n+1)t, (n+2)t, (n+3)t, (n+4)t; au] = o is a star oriented countre-clockwise (positively oriented):

y —0—@Ds
2 \ : J/L
4
(Fig 5)
In the first case, one obtains a star matrix directly noted M;**.
nt (n+4)t (n+3)t (n+2)t (n+ Dt

@+t @n+7t @n-5)t @n+13)t @n+ Dt
M*=l2@n+7)t @n-5t @n+13)t sQ@u+Dt @n+4t
(n+3)t (n+2)t (n+ 1Dt nt (n+4)t
S(@n-5)t z@n+13)t @n+Dt Qn+ 4t §(2n+7)t/

In the second case, %[nt, (n+1)t, (n+2)t, (n+3)t, (n+4)t; ou] = oy is a star oriented clockwise:
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(Fig 6)
one obtains a star matrix indirectly noted M;*".
nt (n+ Dt (n+2)t (n+3)t (n+4)t
| §(2n + 1)t %(Zn +13)t %(Zn —5)t %(Zn + 7t §(2n +4)t
Ml*'=i §(2n+13)t %(Zn—S)t §(2n+7)t %(2n+4)t %(2n+1)t
(n+2)t (n+3)t (n+4)t nt (n+ Dt
\;(Zn—S)t %(2n+7)t %(2n+4)t %(2n+ 1t %(2n+ 13)t

N

n+2

det(M1*+) = det(M1*_) == 1250t

M **(n,t)x Car*(n,t) = M *"(n,t),

we get the Chaff-matrix

|
w

U1|NU1|NU1|NU1|NU1|
\______/

[SERN)

|
w

=]
S
"
u1INu1|Nu1|Nu1|
aivalva|laivaln
aival|laivaivars
mld’mlmmlmmlmmlm

Theorem 1. For all (n; t) € RxR-{0},

1) There exists a constant matrix « Ca;*» that is wholly independent of (n; t), check for equality: M;**(n,t) x Coy* = M;*"
(n,1).

2) Det(Cay ™) = | Cou*| = 1.

3) 'Coy*= (Coy ™).

4) M*(nt) x ' Cou* = M **(n,).

Definition 4. Suppose /*: R = R’ is a function such that each of its first-order partial derivatives exist on R. This function
takes a point t € R as input and produces the vector f*(t) € R’ as output. Then the Star-Jacobian vector of /* is defined to be an
5x1 vector, denoted by J f*, whose (i, 1)th entry is J f* = ( o on on on on ). (see [17])

ot' at' at' at' ot
On the other hand
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fi*(t)= (§ (2n + 4)t, § (2n + 1, §(2n +13)t, % (2n - 5)t, §(2n +7)t)

f1*(t)is solution of a star-system % [nt, (n+1)t, (n+2)t, (n+3)t, (n+4)t; ou] = o1,
We obtain the Star-Jacobian vector of f;*(t):

IR* ()= (§(2n +4), §(2n +1), §(2n +13),
§(2n— 5),§(2n+ 7)

Definition 5. Suppose M*: R = R3xR® is a Matrix function such that each of its first-order partial derivatives exist on R.
This Matrix function takes a point t € R as input and produces the Matrix M*() € RxR? as output.
Then the Star-Jacobian Matrix of M* is defined to be an 5x5 Matrix, denoted by JM*, whose (i; j)th entry is

/aMill OM*12 O0M%*13 0M*14 6M'*15\

at at at at ot
OM*21 OM%22 OM%23 OM%24 OM%25
at at at at ot I
JM*—l OM%31 OM%32 OM%33 OM%34 OM%35 |
at at at at ot |
| OM%41 OM%42 OM%43 OM%44 OM%45 |
at at ot ot ot
OM%51 OM%52 OM%53 OM%54 OM%55
at at ot ot ot

Here is an example of star-matrix:

nt (n+ 4t (n+3)t (n+2)t (n+ Dt
/§(2n+4)t S@n+7t  @n-5)t @n+13)t Qn+ Dt
M1*+=| S@n+7t z@n-5)t (@n+13)t @n+Dt Qn+4t
(n+3)t (n+2)t (n+ 1Dt nt (n+4)t
\§(2n—5)t §(2n+13)t %(2n+ Dt §(2n+4)t §(2n+7)t

\.
)

And
nt (n+ Dt (n+2)t (n+3)t (n+4)t
S@n+1t @n+13)t Qn-5)t Qn+7t @n+4at
S@n+13)t @n-5)t @n+7t z@n+at @n+Dt
(n+2)t (n+3)t (n+4)t nt (n+ Dt
s@n-5)t @n+7Nt @n+at z@n+ Dt @n+13)t

M * =

\.
)

T

So, the Star-Jacobian Matrix of M;** is given by :
/ n (n+4) (n+3) (n+2) n+1)
“@n+4) 1Qn+7) §(2n—5) §(2n+13) §(2n+1)
M*=l>@n+7) I@2n-5) §(2n +13) §(2n +1) g(zn +4)
(n+3) (n+2) n+1) n (n+4)
\§ (2n—5) @2n+13) @2n+1) @n+4) @n+7)

and the Star-Jacobian Matrix of My * is given by :
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(n+1) (n+2) (n+3) n+4)
I/§(2n+1) §(2n+13) %(Zn—S) %(2n+7) %(2n+4)
i§(2n+13) §(2n—5) %(2n+7) %(2n+4) %(2n+1)

|
(n+2) (n+3) n+4) n n+1) !
\;(211—5) ~@2n+7) @n+4) sQ2n+1) %(2n+13)/

By means of elementary calculation, it is easy to deduce the following results.

For alln € R we have,

1) det(JM,;**) = det(JM;*)

2) There exists a constant matrix « Coy*» that is wholly independent of (n; t), check for equality :
M1*+(/7,U>< C(Xl*: JMJ*_(/?,U.

3) det(Co*) = | Cay*| = 1.

4) ‘Coy* = (C(Xl*)_1.

5) IM; *-(ﬂ,l‘)x tCoy*=IM; *+(H,U.

. Star-Jacobian matrix of star-system:
Jo[t, 2, 5, 14, £ on] = o,
Next, we study the relationship between two star-Jacobian matrix JM>** directly and JM>*" indirectly of star-system
¥*o[t, 2 )t £ 0a] = an.
In this case op = g(t + 2+ 8+t + t°) (see[1])
For all t € R, the star-system :

Koty £, €, 1 65 SEPHHHE)] = 2+ 2+ 6 + 14 6)
has a unique solution f,*

The star-function f>*: R = R’ defined by :

X = Ctime= 2020225~ Zelea o 2eade 2 2p 420 20— 2 = 2 e 2ot e, 2= e 20 — 24 2p),
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

We obtain the Star-Jacobian vector of />* ().

+2 t—2t2 L 10
3 3

—+2t+t2 3+
3 3
4

| |
Jfg*(z‘):I - —gt +2 42 t3—13—°t4 I
| |

(

W

[}

t4

3
—IHSt- 4l
4

———t+4t2 N E T
3 3 3

Here is an example two of star-matrix:
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(Fig 7)

Also known as second Star-system,
KTt 2, 8, 15 0] = @ = 2(t+ 4 £t 4 1),

This is a star oriented countreclockwise (positively oriented):

We obtains a star matrix directly noted M>**

I, Ts T, T; T,
M*=|Ts T, T3 T, Ty
A A o S N
I, T, T, T, Ts

t2 t t° t* t3\
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Where

%t+%tz—§t3+§t4—§t5
—§t+§t2+%t3—§t4+§t5
9 gt —;tz +%t3 +%t4—§t5
—§t+gt2—§t3+%t4+§t5
%t—gtz +§t3 —%t“ +%t5

In the other case, also known as second Star-system,

Kt 2, 8t 65 ] = ar =2t + £+ B+t )

is a star oriented clockwise:

We get a star matrix indirectly noted My*"

Where
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We have

det( Ma**(t) y=det( Ma*"(t) )—);(285 - 8820+ 1215 - 8110 + 5),

A4§*%(Z)X Co*= A4}*u(tl

we obtains the Chaff-matrix

/ t3 + ¢t2 tt +t3 —t3—t2—t t+1
. t2+t t3 +¢t2 t* +¢3 —t3—t2—t
Co* V= | t+1 t2 +t t3 + t2 t* 4¢3
\—t3—t2—t t+1 t2+t t3 + t?
t* +¢3 —t3—t?2—t t+1 t2+t
where
/ t3 + 2 tt 4¢3 —t3—t2—t t+1 t2+t \
t2+t t3 +¢2 t* +¢3 —t3—t?2—t t+1
det| t+1 t2 4+t t3 +t2 t* 4¢3 —t3—¢2—¢ |
—t3—t?2—t t+1 t2+t t3 + ¢t? t* +¢3
t*+¢3 —t3—t?2—t t+1 t2+t t3 +¢t?

=t*+t3+tP+t+1
For all t € R — {0} we have the following results,
1) M2**(t) x Caz*(t) = M2*(¢).
2) det(Caz*(t)) = | Ca2*(t)| = 1.
3) '(Cox* ()= (Co*(0))".
4) My* (1) x ' Cop ™ (t) = Mo ™ (1).
So, the Star-Jacobian Matrix of M>**(t) is give by:

2t 1 5t* 4¢3 3¢?
o, 9Ts 0T, 9Ty

6T2

at at at at ot
0Ty

ot

|
*p=| T T I 0Ty
M, (t)_i at ot ot ot i
5¢* 4t3 3t 2t 1/
or, 013 9, 0T 9Ty
at at at at t
Where
o, 1 2 10
— =+t 2t2 4t ——t*
ot 3+3 +3 3
aT, 2 2 20
—=—c4ct+ti—ct3+—tt
at 33ttt T3ty
aT. 4 4
<_3— — ——t t2 _t3__t4
63 3 703 3
aT, 2 8
—=—c+ot—2t24+t3+ o t?
ot 373 HENE
aTs 1 4 5
— = -—=t +4t? — =t + ottt
ot 3737 "3

95
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and the Star-Jacobian Matrix of M>*"(?) is give by :

2t 3t? 4¢3 5t* 1
9T, 9T3 9Ty O0Ts 0Ty

at at ot ot ot
| 05 om 9Ty 9Ty 0T

| at at at at at
4¢3 5t* 1 2t 3t?
T, 9Ts 4T, 0T, 0Ts
ot at at at ot

JM2*+(t) =

We get det( JM** (1)) = det( IM>*"(1)).

IV. RELATIONSHIP BETWEEN TWO STAR-JACOBIAN MATRIX JM**DIRECTLY AND JM* INDIRECTLY OF
TWO STAR-SYSTEM WITH a1 AND a: COEFFICIENT.

In this section, we study the relationship between two star-matrix M** directly and M** indirectly of two star-system %[a;
b; ¢; d; e; ou] = o and %k2[a; b; ¢; d; e; az] = . For a 5x5 star-matrix M* the inverse is (M*)! [14]. By means of elementary
calculation, it is easy to deduce the following results.

Theorem 2. For all (n; t) € RxR\{0}, we have

1) (M2*(0)" x My (n,t) = (M () * M ™ (n,1)).

2) Matrix (M2**(t))" x M;**(n,t) is diagonalizable.

3) (M2 ()" x My (n,t) = (M2* (1)) x Mi " (n,).

4) Matrix (M2**(t))"! x M;*(n,t) is diagonalizable.

5) (IM2 (1) *xIM* (= (IM2 (1) xIM *(n,1)

6) Matrix (JM>**(t))'xJM;**(n,t) is diagonalizable.

7) (IM2* () > IM ()= (M2 (0) ' *IMy *(n,1))

8) Matrix (JM>**(t))'xJM;*(n,t) is diagonalizable.

Proof
We have
-2 0 1 1 3
/ to-t to—t  tS+tA+t3+24t to-t \
2t-1 -1 1 -2
| 0 5 5 5 |
| té—t t5-1 t5-1 t5-1 |
*i )1 | 2t+1 -1 -3 1 -1
M (1) = L
( 270 | 2t6-2t 2t6-2t 2t6-2t 2t6-2t t6—t |
| —t+2 t—2 3t-2 -1 1 |
2t6-2t 2t6-2t 2t6-2t 2t5-2 tS+tA+e3+t2+t+1
-1 1 1 -1 1
t5-1 t5-1 t5-1 t6—t t5-1
M *+ -1y M *+ =C"
M2 () 1 (n,t) = C(n,t)
Where
—n+nt+3t-4 —-n+nt+2t-3 —n+nt+t-2 —-n+nt-1 —n+nt+4t
t5-1 t5-1 t5-1 t5-1 t5-1
—n+nt+4t —-n+nt+3t-4 —-n+nt+2t-3 —n+nt+t—2 —n+nt-—1
t5-1 t5-1 t5-1 t5-1 t5-1
CH(H t)_ -n+nt+t-1 —n+nt+4t —n+nt+3t-4 —n+nt+2t-3  —n+nt+t-2
> t5-1 t5-1 t5-1 t5-1 t5-1
—n+nt+t—1 —n+nt-1 —n+nt+4t —n+nt+3t—-4 —n+nt+2t-3
t5-1 t5-1 t5-1 t5-1 t5-1
—n+nt+2t-3 —n+nt+t-2 —n+nt-1 —n+nt+4t —n+nt+3t—4
t5-1 t5-1 t5-1 t5-1 t5-1
And
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—2t+1 2t—1 2t-3 1 1
/2t6—2t 2t6-2t 2t6-2t 2t6-2t t5+t4+t3+t2+t\
1 -1 -1 1 -1
| t6—t t6—t t6—t t5-1 t6—t |
(M) =| = o = —_ = |
| -1 t5-1  tS+t4+t3424t to—t |
| t—2 0 1 -1 2 |
t6—t to6—t to6—t to6—t
-t-2 1 3 -1 1
2t6 -2t 2t5-2 2t5-2 2t5-2 t5-1

We obtain (M2*"(t))" x My *"(n,t) = C"(n,t) = (C*(n.t))
And (M2 (1)) x M ™ (n,t) = C*(n,t)

Where
—n+nt+2t-1 —-n+nt+3t-2 —n+nt+4t-3 —n+nt—4 —n+nt+t
/ t5-1 t5-1 t5-1 t5-1 t5-1 \
—n+nt+t —-n+nt+2t-1 —-n+nt+3t-2 —n+nt+4t-3 —n+nt—4
| t5-1 t5-1 t5-1 t5-1 t5-1 |
C+_( t) I —n+nt—4 —n+nt+t —n+nt+2t-1 —n+nt+3t-2 —n+nt+4t-3 I
n -
? [ t5-1 t5-1 t5-1 t5-1 t5-1 |
| —n+nt+4t-3 —-n+nt—4 —n+nt+t —-n+nt+2t-1 —n+nt+3t-2 |
t5-1 t5-1 t5-1 t5-1 t5-1
—n+nt+3t-2 —-n+nt+4t-3 —n+nt—4 —n+nt+t —n+nt+2t-1
t5-1 t5-1 t5-1 t5-1 t5-1

We get (Ma* (1)) x M *(n,t) = C*(n,t) = {(C"(n,t))

The results obtained show:

1) (M* (1)) x M ™ (n,t) = C™(n,t).

2) (M2 (1)) x My *(n,t) = C~(n,t) = {(C ™ (n,t)).

3) (M* (1)) x M *(n,t) = CT(n,t).

4) (M (1)) x M ™ (n,t) = C(n,t) = (C(n,1)).

Example. We consider two star-matrix Ms;**(n,t) directly and M3*"(n,t) indirectly of star-system:

*;[n+t, (n+1)+H, (n+2)+, (n+3)+, (n+4)+t; 03] = 0.

where the star-Coefficient (xg*:?(t+n+2)

and %3 [n+t, (n+1)+t, (n+2)+t, (n+3)+t, (n+4)+t; 03] = a3 is a star oriented countreclockwise (positively oriented):

*

.

Y.
f".F*’/

(Fig 10)
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In the first case, we obtain a star matrix directly noted M3**(n,t):
n+t (n+4)+t (n+3)+t (n+2)+t (n+1)+t
g(t+n+2) §(2t+2n+7) %(2t+2n—5) %(2t+2n+13) %(2t+2n+1)
M**=|>@Qt+2n+7) tQt+2n-5) tQt+2n+13) Qt+2n+1) (t+n+2)
(n+3)+¢t (n+2)+t (n+1)+¢t n+t (n+4)+t
S(t+2n-5) Qt+2n+13) QRt+2n+1)  (t+n+2)  QRt+2n+7)

\.
)

In the second case, %3 [n+t, (n+1)+t, (n+2)+t, (n+3)+t, (n+4)+t; a3] = a3 is a star oriented clockwise:

(Fig 11)

We get a star matrix indirectly noted Ms*-(n,t):

n+t n+1)+t n+2)+t n+3)+t n+4)+t
§(2t+2n+1) §(2t+2n+13) §(2t+2n—5) §(2t+2n+7) g(t+n+2)
Mg*-=|§(2t+2n+13) S(2t+2n—5) Qt+2m+7) (t+n+2) Z@Qt+2n+1)
n+2)+t n+3)+t n+4)+t n+t n+1)+t
§(2t+2n—5) §(2t+2n+7) z(t+n+2) %(2t+2n+1) §(2t+2n+13)

\.
)

- n+t+2
det( M3**(n,t) )=det( M3*"(n,t) )=, —*1250.
Consequently:
10n+3t+20 3 3 3 0
/10nt+20t 10n+20  10n+20 10n+20 \
1 5n+t+10 1 1 0
I 5n+10 5nt+10t  5n+10 5n+10 I
i i a1 1 1 5n+t+10 1
M5 (n,t)x(M1” (n,t))'= 0
(Ms™ (0,0)(Mi ™ (n,1)) | 5n+10 5n+10 5nt+10t 5n+10 |
| 3 3 3 1on+3t+20 |
10n+20 10n+20  10n+20  10nt+20t
1 1 1 1 1
5n+10 5n+10 5n+10 5n+10 t

The characteristic polynomial of a square matrix (Mz**(n,t))x(M;**(n,t))"".
For all (n; t) € RxR\{0} and A € R:
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10n+3t+20 3 3 3
/ 10nt+20t 10n+20 10n+20 10n+20
5n+t+10 1 1
I 5n+10 5nt+10t 5n+10 5n+10
1 1 5n+t+10 1
M;3**(n,1))x(M;*"(n, 1)) - AI| = det -
(M5 (0, 8)(Mi ™ (n,)) | =de | 5n+10 5n+10 5nt+10t 5n+10
3 3 3 10n+3t+20
10n+20 10n+20 10n+20 10nt+20t
1 1 1 1
5n+10 5n+10 5n+10 5n+10
_ )5 4 Sntr10y, 10n+4tr20,3 10n+6t+20, 5 5n+4t+10 n+t+2
nt+2t nt’+2t? nt3+2t3 nt*+2¢4 nt5+2¢5
nt?+2t? n+t+2
= A=) (AN -—).
t5+2t5( ) x( nt+2t)
. .- . 1 n+t+2
Eigenvalues of the characteristic polynomial: A = T and A= e
We find the eigenvectors associated with each of the eigenvalues.
1
Case 1: A= -
-1 -1 -1 -1
1 0 0 0
vi=| 0 [[va=l 1 Lvs=| 0o |, va=| 0 |
0 0 0 1
1
+t+2 1
n
Case 2: A= ,V5=| 1.

nt+2t
1

So, we have the passage matrix P™*

/—1—1—1—11\
1 0 0 0 1
=l 0 1 0o o0 1]
\00101/
o 0 o0 1 1
-1 4 -1 -1 -t
/55555\
R R
|55555|
1l -1 -1 -1 4 -1
PY=15 5 5 5 3|
i =
\55555/
4 2111
5 5 5 5 5
and
%0000
) 100 0 0
0 ;00 0 (0100 o\l
DnH=|0 0o 2 o o |=[0 0 1 0 0
o tfo 0 0 1 0
\00020/00001+$
n+t+2
0000nt+2t

(M:**(n,0)x(M* (n1))" = P x D(n,t) x (PT)".
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Theorem 3. For all (n; t) € RxR\{0}, we have

1) (M5 (0,0) <My (n,)=((Ms™ (n,)) M *(n,1))

2) Matrix (Ms**(n,t))"! x M;**(n,t) is a symmetric matrix.

3) (M5™" (n,0)) XM (0, )= ((Ms™*(n,)) XM, *(n,1)).

4) Matrix (M3**(n,t))"" x M;*"(n,t) is diagonalizable.

5) det(JM;*"(n,t))= det(JM;**(n,t))= det(M;**(n,1))= det(M,**(n, 1))
6) (M *"(n,t)) ' xM5™(n,t)=(JM; **(t)) ' xM5**(n,t)

7) Matrix (JM;*(t))'xM;*(n,t) is a symmetric matrix.

8) (IMy (1)) XM ™ (n, )= (IM,*(1)) ' xM5™(n,1))

9) Matrix (JM,*(t))'xM;**(n,t) is diagonalizable.

Proof
Let (n; t) € RXR\{0}, we have
1) (Ms* () <M (0,0 = (M* () x M (n,)=

4t2 4+ 5nt + 10t —t? —t? —t? —t?
5n+ 5t + 10 5n+ 5t + 10 5n+ 5t + 10 5n+ 5t + 10 5n+ 5t + 10
—t? 4t? 4+ 5nt + 10t —t? —t? —t?
5n+ 5t + 10 5n+ 5t + 10 5n+5t+ 10 5n+5t+ 10 5n+ 5t + 10
—t? —t? 4t 4+ 5nt + 10t —t? —t?
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10
—t? —t? —t? 4t 4+ 5nt + 10t —t?
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10
—t? —t? —t? —t? 4t 4+ 5nt + 10t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10
=(Ms™"(n,t))" x (M **(n,t))
2) (M3**(n, 1)) x (M **(n,1)) is a symmetric matrix.
3) (Ms**(n, 1) "xM1* (n,H="(Ms*(n,1)) "xM+**(n,1))
4)
t? + 2nt + 4t t? + 2nt + 4t t? + 2nt + 4t t2 +2nt+ 4t  —4t? — 3nt — 6t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10
—4t%2 —3nt—6t  t?+ 2nt+ 4t t? + 2nt + 4t t? + 2nt + 4t t? + 2nt + 4t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10
t2+2nt+4t —4t> —3nt—6t t% + 2nt + 4t t? + 2nt + 4t t? + 2nt + 4t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10 5n+ 5t+ 10
t? + 2nt + 4t t2+2nt+4t —4t> —3nt—6t t? + 2nt + 4t t? + 2nt + 4t
5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10 5n+ 5t+ 10 5n+ 5t+ 10
t? + 2nt + 4t t? + 2nt + 4t t2+2nt+4t —4t>—3nt—6t %+ 2nt+ 4t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10
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(Ms*"(n8) " xM1**(n,1)=

t?+2nt+4t —4t2—3nt—6t t? + 2nt + 4t t2 + 2nt + 4t t2 + 2nt + 4t
5n+5t+ 10 S5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10 5n+ 5t+ 10
t + 2nt + 4t t? +2nt+4t —4t2 —3nt—6t t*+2nt+ 4t t + 2nt + 4t
5n+ 5t + 10 5n + 5t + 10 5n + 5t + 10 5n + 5t + 10 5n + 5t + 10
t? + 2nt + 4t t? + 2nt + 4t t?>+2nt+4t —4t>—3nt—6t t2+ 2nt+ 4t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+ 5t+ 10
t + 2nt + 4t t? + 2nt + 4t t? + 2nt + 4t t* + 2nt+ 4t  —4t> —3nt— 6t
5n + 5t + 10 5n + 5t + 10 5n + 5t + 10 5n + 5t + 10 5n + 5t + 10
—4t2 —3nt—6t  t? 4+ 2nt+ 4t t? + 2nt + 4t t2 + 2nt + 4t t2 + 2nt + 4t
5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10 5n+5t+ 10
(Ms**(n,)) " xM1*(n, ) ="(M3*"(n,1)) "xM1**(n,1)).
5) (M3*"(n,t))"" xM; **(n,t) is diagonalizable.
6) det(IM; * (n.t))= det(JM;**(n,0)= det(M;*(n,1))= det(M;**(n, 1))= ===,
7) We have
5n+t+10 t t t t
/ 5n+10 5n+10 5n+10 5n+10 5n+10 \
t 5n+t+10 t t t
I 5n+10 5n+10 5n+10 5n+10 5n+10 I
*. 1 *. . t t 5n+t+10 t t
MO M™M= | 5575 Soeto smeto smeto smrio |
| t t t 5n+t+10 t |
\ 5n+10 5n+10 5n+10 5n+10 5n+10 /
t t t t 5n+t+10
5n+10 5n+10 5n+10 5n+10 5n+10
8) Matrix (JM¢**(1)) 'xM3*(n,t) is a symmetric matrix.
9) UM *" (1)) xMs**(n,H) =" (UM ** (1) "xM3*"(n,1))=
2n+t+4 —-3n+t—6 2n+t+4 2n+t+4 2n+t+4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
2n+t+4 2n+t+4 -3n+t—6 2n+t+4 2n+t+4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
2n+t+4 2n+t+ 4 2n+t+4 -3n+t—6 2n+t+4
5n+ 10 5n+ 10 5n+ 10 5n+10 5n+ 10
2n+t+4 2n+t+ 4 2n+t+4 2n+t+4 -3n+t—6
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
—3n+t—6 2n+t+4 2n+t+4 2n+t+4 2n+t+ 4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
IMI™ (1) M5 ™ (n,t)=
2n+t+4 2n+t+ 4 2n+t+4 2n+t+4 -3n+t—6
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
—3n+t—6 2n+t+4 2n+t+4 2n+t+4 2n+t+ 4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
2n+t+4 —3n+t—6 2n+t+4 2n+t+4 2n+t+ 4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
2n+t+4 2n+t+ 4 —3n+t—6 2n+t+4 2n+t+ 4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
2n+t+4 2n+t+ 4 2n+t+4 —3n+t—6 2n+t+4
5n+ 10 5n+ 10 5n+ 10 5n+ 10 5n+ 10
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V. CONCLUSIONS

Now it is easy to identify the Star-Jacobian matrix directly JIM** (choice of positive direction) per definition (orientation of a
Star with o coefficient) by solving the Star system with o coefficient %[ T1, To, T3 T4, Ts; a] = o, similarly the Star-Jacobian
matrix indirectly JM*- (choice of negative direction) of which can be obtained to using the same technique. Based on the above
analysis it is concluded some properties of Star-Jacobian matrix (dirctly, indirectly) multiplication. In particular, our analysis
confirms that :

i)
i)

ii)

[1]
[2]
[3]
[4]
[5]
[6]
[7]
(8]
(0]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

Determinant of square (5x5) Star-matrix directly (M**) is equal to determinant of Star-matrix indirectly (M*).

It's the same as what we found of the Star-Matrix : Determinant of square (5x5) Star- Jacobian matrix directly
(IM**) is equal to determinant of Star- Jacobian matrix indirectly (JM*).

There is a constant coefficient matrix Co* such that if we multiply that matrix by M** (Star-Matrix directly),
Then you will get the matrix M*- (Star-Matix indirectly). Ca* is an orthogonal matrix (! Ca* = (Ca*)™).

The products between two Star- Jacobian Matices of two Star-System (%, %oz) with a; and a coefficient
directly-indirectly (JM**,JM*) or directly-directly (JM*"JM*") or indirectly-indirectly (JM*,JM*) are
diagonalizable.
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