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Abstract - Senlin and Zaiming (2016) [21] studied the equilibrium strategies for the fully unobservable and almost 

unobservable single-server queues with breakdowns and delayed repairs.  The present paper aims to study the customers 

behavior of the system in markovian single server queue with presence of redundant server. Redundant server is an extra 

server which is used in our model so that the system provides a reliable working facility to the customer. In unobservable case 

an arriving customer does not know length of queue. The model under consideration can be observed as an M / M /1 queue in 
a casual environment. Equilibrium balking  strategies in single server markovian queue with redundant server are calculated 

for the almost unobservable and fully unobservable queues. Finally, we demonstrate the effect of several system parameters on 

the equilibrium behavior. 
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I. INTRODUCTION 

During the last decades, in economic point of view there are an emerging tendency to study queueing systems. In a queueing 

system, the analysis of strategic behavior of customer is based on some reward-cost structure which is compulsory on the 

system and reflects the customers’ desire for service and their unwillingness to wait. An every arriving customer wants to 

maximize their expected  benefit, considering that the other customers have the same objective so this situation can be seen as a 

game among them. In this type of studies, the fundamental problem is to identify individual and social optimal strategies. 

 

In the queueing literature most of papers assume that the server is always available, although this assumption is not a realistic. 

Actually, perfectly reliable servers are virtually nonexistent. In Senlin, Zaiming, Wu [21] we studied the equilibrium strategies 
for the almost unobservable and fully unobservable m/m/1 queues with server breakdowns and delayed repairs. In this paper 

we consider equilibrium strategy of customer in unobservable markovian single server queue with redundant (extra) server. In 

many realistic situations, due to non-availability of the repair facility, the repair process may not be started immediately. This 

work compensates the game theoretic analysis in [8] by studying the corresponding unobservable cases. 

 

In our paper we consider equilibrium strategy of customer in unobservable markovian single server queue with redundant 

(extra) server. In our model we minimize the waiting time of customer with help of the redundant server in M/M/1. If main 

server goes in breakdown state then working process is not affected because of the redundant server. Customers moves the 

redundant server and customer is served without any delay. In the case, when each server fails, service facility stops and 

system enters in repair state. Since repair process also takes some time, it also constitutes some delay. In this situation 

customers face delay in service. But with the help of redundant server overall reliability of the system increases so customers 
do not balk from the system. Redundant server is an extra server used in our model so that the system provides a reliable 

working facility to the customer. 

 

II. BRIEF REVIEW 

There are many researches works for economic analysis of customer behavior on the performance of a queueing system. 

Burnetas and Economou [1] first described the theory of  several Markovian queues with setup times and four precision levels 

of system information and analyzed the customers’ equilibrium strategies. Economou and Kanta [2] studied the equilibrium 

balking strategies in the observable M / M /1 queueing system with an unreliable server and repairs. There are some research 

works to described the server vacation policies, such as Guo and Hassin [17] and Sun et al. [22]. Moreover, there are many 
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papers in which described  the economic analysis of the balking behavior of customers  of the M / M /1 queue in variations. in 

[3], Economou and Manou discussed a Markovian clearing queueing system that operates in an alternating environment. 

 Liu , Yu [24] studied  an M / M / C queueing system in a random environment.  there are some differences between vacations 

and breakdowns. A vacation must occur after completing the service of the customers in the system, but the break- downs can 

occur at the any point of time no matter the server is busy or idle.  The economic analysis of customer behavior on the 
performance of queueing systems has been described  by several authors. In the M / M /1 queueing system with an unreliable 

server and repairs, the equilibrium strategies under various levels of information have been studied by Economou, Li and 

Jagannathan.  Li[12]  studied the equilibrium analysis of a single-server Markovian queueing system with working 

breakdowns. In the case of working breakdown, when  the system is defective, instead of stopping service completely, the 

service continues at a slower rate then normal woking rate .  

 

In this paper, we provide supplement to the investigation in Senlin, Zaiming, Wu [21] by discussing the corresponding 

unobservable cases with redundant server in which the queue length is unknown to arriving customers.  Due to the redundant 

server, the balking behavior of customers under unobservable case should be considered to obtain a reliable representation   of   

the system.  From a operational point of view, the almost unobservable case is interesting to study.  The model under 

consideration is viewed as an M / M /1 queue with redundant server in a random environment and thus we can    interpretate of 

the stability condition.  
This type of  model has wide applications in many fields, as argued in [2],[9],[8],[12].  For example, due to failures of 

machines or job-related problems , the machine may break down at any state .  Such systems that require repairs after server’s 

break- downs are very common in practice. But if there are redundant machine already present in the system then after 

breakdown redundant machine serve customers without any delay. If all machines fail at the same time or redundant machine 

breakdown before repair of main machine. Then customer faces delay. The repair delay time is introduced as the time interval 

between the epoch of server breakdown and the beginning of repair process to reflect the fact that the service may delay due to 

the repair process.  

 

The un- observable case with redundant server in real-life situation can be illustrated by the decision making of customers in 

the ITES service provider working in government or private sector for providing support/services in such cases generally two 

data centers are created. One of which works at time and other work as backup in case of natural disasters/ accidents. Backup 
server provide services If main server fails. In this case backup server becomes main server and main server goes in repair 

process and when that server is repaired then it acts as backup server. the servers does not provide any information related to  

the number of customers just waiting in the system prior to the customer’s arrival. In the wireless communication technology 

field , assume there is only one channel which is unreliable.  Once the channel is  breakdown , it goes a delayed time before 

recovery.   In order to make full use of this channel, we should design some admission control policies and with redundant 

channel to allow an arriving customer to reliable service 

 

The rest of this paper is organized as follows.  In Section III, we describe the dynamics of the model and the reward- cost 

structure.  In Section IV, we consider the equilibrium mixed strategies for the almost unobservable case.  Section V is devoted 

to studying the fully unobservable case.   Some conclusion and future research.  

 

III. MODAL DESCRIPTION 
We investigate the same model discussed in Wang and Zhang [8] but there is some difference in our model here we use 

redundant sever.  We consider the M / M /1 queueing system with an infinite waiting queue in which customers arrive 

according to a Poisson process with intensity λ and customers are served at a rate of μ.  The server has an exponential lifetime 

with failure rate 2ξ when he is working.  Once the server fails it will not experience an exponential delayed time to activate the 

repair process. Because all customers load of system is transfer on the   redundant server. Working process is continuing. In 

this situation fail server is going to repair process. But in this interval of time redundant server fails. Then   delayed time is 

exponentially distributed with parameter δ.   In  the delay state, the server doesn’t   provide any type of  service to arriving 

customers and to begin the repair process ,server waits for repair facility.  The repair time is  exponentially distributed with 

repair rate  θ.  In other words, when the server fails, then  the repair process doesn’t  start immediately due to non-availability 

of the repair facility.  The repair delayed time is define  as the time interval between the period of server breakdown and the 

beginning of repair process. We realize that the repair delayed  time has two stages and hence it is not memoryless. We 
describe the state of the system at time t by a pair (L (t), I (t)), where L (t) records the number of customers in the system and I 

(t) denotes the state of the server (3: working state 2:   working state (redundant server); 1:  delayed period; 0:  under repair).  

The stochastic process {(L (t), I (t)), t ≥ 0} is a two-dimensional continuous-time Markov chain 

 

                                                                       𝑞(𝑛,𝑖)(𝑛+1,𝑖) = 𝜆        , 𝑛 ≥ 0  ; 𝑖 = 0, 1, 2, 3;- 
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𝑞(𝑛,𝑖)(𝑛−1,𝑖) = 𝜇        , 𝑛 ≥ 1  ; 𝑖 =  2, 3; 

                                                                𝑞(𝑛,𝑖)(𝑛+1,𝑖) = 𝜆         , 𝑛 ≥ 0  ; 𝑖 = 0, 1, 2, 3; 

𝑞(𝑛,3)(𝑛,2) = 2𝜉                          𝑛 ≥ 0; 

𝑞(𝑛,2)(𝑛,1) = 𝜉                        , 𝑛 ≥ 0 ; 

                                                                          𝑞(𝑛,1)(𝑛,0) = 𝛿                  , 𝑛 ≥ 0 ; 

𝑞(𝑛,0)(𝑛,3) = 𝜃                    , 𝑛 ≥ 0    ; 

 

 
Fig.1.transition rate diagram for equilibrium strategy in unobservable queue with redundant server with breakdown 

and delayed repair 

 
In fact, the model under consideration can be viewed as an M / M /1 queueing system in a random environment. More 

specifically, the external environment is an irreducible continuous-time Markov chain on a finite state space {3, 2, 1, 0}. That 

is, when the external environment I (t) is in state I, I = 0, 1, 2 ,3, the system behaves as an M (λ)/ M (𝜇)/1 queue with arrival 

intensity λ and service rate 𝜇𝑖, where 𝜇0 = 𝜇1 = 0 and 𝜇2 = 𝜇3 = μ. The infinitesimal generator (i.e., q -matrix) of the external 

environment I(t) is given by 
                

Q= (

−2𝜉 2𝜉 0 0
0 −𝜉 𝜉 0
0 0 −𝛿 𝛿
𝜃 0 0 −𝜃

) 

Let ( 𝜋3,  𝜋2, 𝜋1 , 𝜋0) be the stationary distribution of the external environment, by solving ( 𝜋3,  𝜋2, 𝜋1 , 𝜋0) Q = 0,  

 we have Let  𝜋3 =
𝛿𝜃

3𝜃𝛿+2𝜃𝜉+3𝜉𝛿
  ,  𝜋2 =

2𝛿𝜃

3𝜃𝛿+2𝜃𝜉+3𝜉𝛿  
  ,   𝜋1 =

2𝜉𝜃

3𝜃𝛿+2𝜃𝜉+3𝜉𝛿
    ,   𝜋0 =

2𝜉𝛿

3𝜃𝛿+2𝜃𝜉+3𝜉𝛿
 

The system is said to be in state (n, I) if there are n customers in the system and the server is found at state I. Let p (n, I) be the 
limiting probability of the system in state (n, I). That is, p (n, I) = lime t→∞ P (L (t) = n, I(t) = I), n ≥0, if I= 0, 1, 2,3.  

 

Theorem 1. For the M / M /1 queue with redundant server with breakdowns and delayed repairs, the stability holds if and only 

if 

 μ (𝜋3,  𝜋2) > λ, i.e., μ(3δθ)> λ (3δθ+ 2ξθ+ 2ξδ).                                                                                                        (1) 

  

Proof. The steady-state balance equations are given below,   

 

(λ+ θ) p (0, 0) = μ p (0, 1),                                                                                                                                           (2) 

(λ+ θ) p (n, 0) = λ p (n −1, 0) + δ p (n, 1), n ≥1,                                                                                                          (3) 
(λ+ δ) p (0, 1) = ξp (0, 2),                                                                                                                                             (4)  

(λ+ δ) p(n, 1) =  λ p(n −1 , 1) + ξ p(n, 2) , n ≥1 ,                                                                                                          (5) 

(λ+ ξ) p(0 , 2) = μ p(1 , 2) + 2𝜉p(0 , 3) ,                                                                                                                       (6) 

(λ+ μ+ ξ) p(n, 2) = λ p(n −1 , 2) + μ p(n + 1 , 2) + 2ξp(n, 3) , n ≥1 .                                                                           (7) 
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(λ+ 2ξ) p(0 , 3) = μ p(1 , 3) + 𝜃p(0 , 0) ,                                                                                                                      (8) 

(λ+ μ+2 ξ) p(n, 3) = λ p(n −1 , 3) + μ p(n + 1 , 3) + 𝜃p(n, 0) , n ≥1 .                                                                           (9) 

 

Starting with n = 0 and summing each of these balance equations over i, i = 0, 1, 2 ,3, Then   
μ p (n + 1, 3) + μ p (n + 1, 2) = λ p (n, 3) + λ p (n, 2) + λ p (n, 1) + λ p (n, 0), n ≥0.                                                  (10)                                                                                                              

 

Clearly, ∑ p(n, i ) ∞
𝑛=0  = 𝜋𝑖, i = 0, 1, 2. By summing (10) overall n, we arrive at 

μ (𝜋2 −p (0, 2)) + μ (𝜋3 −p (0, 3)) = λ (𝜋3+𝜋2 + 𝜋1+𝜋0 ) = λ, that is,  

μ (p (0, 2) + p (0, 3)) = μ (𝜋2+𝜋3) −λ.                                                                                                                         (11)     

 

Since all states are communicating, from the theory of recurrent events it can be deduced that the probabilities p (n, i) (n ≥0, i = 

0, 1, 3) are either all positive or, alternatively, all equal to zero. This property is crucial for our analysis. 

 
If the Markov chain {(L (t), I (t)), t ≥0} is ergodic (positive recurrent), then all the probabilities p (n, i) (n ≥0, i = 0, 1, 3) are 

positive.  

Thus p (0, 2) > 0 and p (0, 3) > 0 we have μ (𝜋2+𝜋3)  > λ from (11). 

Conversely, if μ (𝜋2+𝜋3)  > λ, then p (0, 2) > 0 and p (0, 3) > 0 from (11).  

 

We can conclude that all the probabilities p (n, i) (n ≥0, i = 0, 1, 2 ,3) are positive from the ergodicity theory for continuous-

time Markov chains. Thus, the stochastic process {(L (t), I (t)), t ≥0} is stable.  

In a word, for the stochastic process {(L (t), I (t)), t ≥0}, the steady-state regime exists if and only if p (0, 2) > 0 and p (0, 3) > 

0. The necessary and sufficient condition for its existence is μ (𝜋2+𝜋3)  > λ.  
 

The intuitive interpretation of the theorem is straightforward: note that μ (𝜋2+𝜋3)   is the average capacity of the system to 

render service and λ is the arrival intensity. For steady-state conditions, the average service capacity of the system must exceed 

the arrival rate. The customers are allowed to decide whether to join or balk the system at their arrival instants.  Every customer 

receives a reward of R units in the system after completing their service . This may reflect his satisfaction or the added value of 

being served. On the other hand, customers have a  waiting cost of C units per time when they  remain in the system including 

the  waiting time in queue and being served. Every Customer want to  maximize their expected net benefit of service. Their 

decisions are unchangeable that retrials of balking customers and reneging of entering customers are not allowed. Each arriving  

customer can observe the number of customers. We distinguish two cases depending on the information available to the 

customers at their arrival instants: (1) almost unobservable case: customers observe the server state I (t), but not the queue 

length L (t); (2) fully unobservable case: customers are not informed about the queue length L (t) or the server state I (t). 

 

IV. THE ALMOST UNOBSERVABLE QUEUE 

We now proceed to the almost unobservable case with redundant server where the arriving customers observe the state of the 

server upon arrival, but not the queue size. From a methodological point of view, the almost unobservable case is interesting. 

There are eight pure strategies for the customers. In the almost unobservable case, a mixed strategy is specified by a vector of 

joining probabilities ( 𝑞0 , 𝑞1 , 𝑞2 ,𝑞3), q 𝑞𝑖 ∈ [0, 1], where q i denotes the joining probability of a customer if the server is 

found at state i upon arrival, i = 0, 1, 2 ,3. 

Clearly, the new queue is equivalent to the original queue except that the arrival intensity   λ should be replaced by λ𝑞𝑖 when 

the server is found at state i. The mixed strategy has the form ‘while arriving at time t, observe I (t), enter with probability 𝑞𝑖 
when I(t) = i’.  

Suppose that all customers follow the same strategy and enter the system with probability 𝑞𝑖 when the server is found at state i, 

the steady-state equations governing the almost unobservable queue are similar with  

Eqs. (2) – (10). 

 

Define the partial generating functions as 𝐺0  (z) =  ∑ p(n, i ) ∞
𝑛=0 𝑧𝑛  , | z | ≤1, i = 0, 1, 2 ,3. 

 For Eqs. (2) – (5) and (8), multiplying both sides by 𝑧𝑛  and summing overall n for state i, note that λ should be replaced by 

λ𝑞𝑖 for state i, then 

 (λ𝑞0 + θ)  𝐺0 (z) = δ𝐺1  (z) + λ𝑞0 z𝐺0  (z),                                                                                                                  (12) 

 (λ𝑞1 + δ) 𝐺1  (z) = ξ𝐺2  (z) + λ𝑞1 z𝐺1  (z),                                                                                                                   (13) 

For Eqs. (9) and (10), multiplying both sides by 𝑧𝑛+1  and summing overall n for state i, note that λ should be replaced by λ𝑞𝑖 
for state i, then 

 (λ𝑞3 +2ξ + µ) 𝐺3  (z) = 
𝜇

𝑧
𝐺3 (z) + λ𝑞3 z𝐺3  (z) + 𝜃𝐺0 (z) +  µ(1- 

1

𝑧
)P(0,3)                                                                  (14) 
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μ (𝐺2  (z) −p (0, 2)) + μ (𝐺3  (z) −p (0, 3)) = λ𝑞3 z 𝐺3 (z) + λ𝑞2 z 𝐺2  (z) + λ𝑞1 z𝐺1  (z) + λ𝑞0 z𝐺0  (z).                       (15)                                                                

 

Clearly,  𝐺𝑖 (1) = 𝜋𝑖 ∑ p(n, i ) ∞
𝑛=0  , i = 0, 1, 2,3. 

By differentiating (12) – (15) and substituting z = 1, we find  

θ𝐺0
′ (1) = δ𝐺1

′(1) + λ𝑞0𝜋0 , 
𝛿𝐺1

′(1) = 𝜉𝐺2
′ (1) + λ𝑞1𝜋1 , 

2𝜉𝐺3
′(1) = 𝜃𝐺0

′(1) - µ𝜋3  + λ𝑞3𝜋3+ µP(0,3) , 

𝜇(𝐺2
′ (1) + 𝐺3

′ (1)) = λ𝑞0𝜋0 + λ𝑞1𝜋1 + λ𝑞2𝜋2+ λ𝑞3𝜋3 + 𝜆𝑞0𝐺0
′(1) + 𝜆𝑞1𝐺1

′(1) + λ𝑞2𝐺2
′(1) +𝜆𝑞3𝐺3

′(1)  

It immediately follows that 

 

𝐺0
′ (1) = 

(2𝜉+2𝜇)𝜆𝑞0𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞1𝜋1𝛿𝜃+2𝜆𝑞2𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞3𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿+2𝜆

2𝑞3
2𝜋3𝜃𝛿−2𝜆

2𝑞1𝑞2𝜋1𝜃𝛿

−2𝜆2𝑞0𝑞1𝜋0𝜃𝜉−2𝜆
2𝑞0𝑞3𝜋0𝜃𝛿+(𝜆𝑞3−μ )μ δθP(0,3)

𝜃(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                         (16) 

                                                                                                                                                               

                                              

𝐺1
′(1) = 

(2𝜉−𝜇)𝜆𝑞0𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞1𝜋1𝛿𝜃+2𝜆𝑞2𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞3𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿−2𝜆

2𝑞1𝑞2𝜋1𝜃𝛿+2𝜆
2𝑞3

2𝜋3𝜃𝛿

+2𝜆2𝑞0
2𝜋0𝜉𝛿+𝜆

2𝑞0𝑞3𝜋0𝜃𝛿+(𝜆𝑞3−μ )μ δθP(0,3)

𝛿(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                            (17)                               

                                                                                                                                                

 

𝐺2
′ (1) = 

(2𝜉−𝜇)𝜆𝑞0𝜋0𝜃𝛿+(2𝜉−𝜇)𝜆𝑞1𝜋1𝛿𝜃+2𝜆𝑞2𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞3𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿+𝜆

2𝑞1𝑞3𝜋1𝜃𝛿+2𝜆
2𝑞0𝑞1𝜋1𝛿𝜉+   

2𝜆2𝑞3
2𝜋3𝜃𝛿+2𝜆

2𝑞0
2𝜋0𝜉𝛿+2𝜆

2𝑞1
2𝜋1𝜉𝜃+𝜆

2𝑞0𝑞3𝜋0𝜃𝛿+(𝜆𝑞3−μ )μ δθP(0,3)

𝜉(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                           (18) 

                                                                                                                                               

𝐺3
′ (1) = 

(2𝜉+2𝜇)𝜆𝑞0𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞1𝜋1𝛿𝜃+2𝜆𝑞2𝜋2𝜉𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞3𝜋3𝜃𝛿−2𝜇
2𝜋3𝜃𝛿+𝜆

2𝑞3
2𝜋3𝜃𝛿−2𝜆

2𝑞1𝑞2𝜋1𝜃𝛿

−2𝜆2𝑞0𝑞1𝜋0𝜃𝜉−2𝜆
2𝑞0𝑞3𝜋0𝛿𝜃−2𝜆

2𝑞0𝑞3𝜋3𝜉𝛿−2𝜆
2𝑞1𝑞3𝜋3𝜉𝜃−2𝜆

2𝑞2𝑞3𝜋3𝜃𝛿+2𝜆𝜇𝑞0𝜋3𝜉𝛿+2𝜆𝜇𝑞1𝜋3𝜉𝜃+2𝜆𝜇𝑞2𝜋3𝜃𝛿

+{(𝜆𝑞3−μ )δθ+2ξ}μP(0,3)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                  (19) 

                                                                                                                                             

The quantity 𝐺𝑖 (1) can be considered as the contribution of state i to the mean queue length. Intuitively, since all the three 

states are communicating, the accumulation of customers in one state will influence all the three states.  

 

By using PASTA property, the probability that there are n customers in the system given that the server is found at state i is 

P(n|i) = 
𝑝(𝑛,𝑖)

∑ 𝑝(𝑛,𝑖)∞
𝑛=0

 =  
𝑝(𝑛,𝑖)

𝜋𝑖
  , n ≥0, i = 0, 1, 2 ,3. 

Then the mean number of customers in the system found by an arriving customer under the condition that the server is found at 

state i is given by  

E (L | I = i) =∑ 𝑛𝑝(𝑛|𝑖) =
∑ 𝑛𝑝(𝑛|𝑖)∞
𝑛=0

𝜋𝑖

∞
𝑛=0  =

𝐺𝑖
′(1)

𝜋𝑖
  ,     i = 0, 1, 2,3. 

 With known 𝐺𝑖
′(1) and 𝜋𝑖 , we have 

 E(L | I =0) = 

2(2𝜉+2𝜇)𝜆𝑞0𝜉𝜃𝛿
2+2(2𝜉+2𝜇)𝜆𝑞1𝜉𝛿𝜃

2+4𝜆𝑞2𝜉𝜃
2𝛿2+(2𝜉−2𝜇)𝜆𝑞3𝜃

2𝛿2+𝜇2𝜃2𝛿2+2𝜆2𝑞3
2𝜃2𝛿2−4𝜆2𝑞1𝑞2𝜉𝜃

2𝛿

−4𝜆2𝑞0𝑞1𝜉
2𝛿𝜃−4𝜆2𝑞0𝑞3𝜉𝜃𝛿

2+(𝜆𝑞3−μ )μ δθP(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

2𝜉𝜃𝛿(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                    (20) 

E(L | I = 1) = 

2(2𝜉−𝜇)𝜆𝑞0𝜉𝜃𝛿
2+2(2𝜉+2𝜇)𝜆𝑞1𝜉𝜃

2𝛿+4𝜆𝑞2𝜉𝜃
2𝛿2+(2𝜉−2𝜇)𝜆𝑞3𝜃

2𝛿2+𝜇2𝜃2𝛿2+2𝜆2𝑞3
2𝜃2𝛿2−4𝜆2𝑞1𝑞2𝜉𝜃

2𝛿

+4𝜆2𝑞0
2𝜉2𝛿2+2𝜆2𝑞0𝑞3𝜉𝛿

2𝜃+(𝜆𝑞3−μ )μ δθP(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

2𝜉𝜃𝛿(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                     (21) 

E(L | I =2) = 

2(2𝜉−𝜇)𝜆𝑞0𝜉𝜃𝛿
2+2(2𝜉−𝜇)𝜆𝑞1𝜉𝜃

2𝛿+4𝜆𝑞2𝜉𝜃
2𝛿2+(2𝜉−2𝜇)𝜆𝑞3𝜃

2𝛿2+𝜇2𝜃2𝛿2+2𝜆2𝑞3
2𝜃2𝛿2+4𝜆2𝑞0𝑞1𝜉

2𝛿𝜃

+4𝜆2𝑞0
2𝜉2𝛿2+4𝜆2𝑞1

2𝜉2𝜃2+2𝜆2𝑞0𝑞3𝜉𝜃𝛿
2+2𝜆2𝑞1𝑞3𝜉𝛿𝜃

2+(𝜆𝑞3−μ )μ δθP(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

2𝜉𝜃𝛿(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
                        (22) 

E(L | I = 3) = 

2(2𝜉+3𝜇)𝜆𝑞0𝜉𝜃𝛿
2+2(2𝜉+3𝜇)𝜆𝑞1𝜉𝛿𝜃

2+2(2𝜉+𝜇)𝜆𝑞2𝜃
2𝛿2+(2𝜉−2𝜇)𝜆𝑞3𝜃

2𝛿2−2𝜇2𝜃2𝛿2+2𝜆2𝑞3
2𝜃2𝛿2−4𝜆2𝑞1𝑞2𝜉𝜃

2𝛿

−4𝜆2𝑞0𝑞1𝜉
2𝛿𝜃−6𝜆2𝑞0𝑞3𝜉𝜃𝛿

2−2𝜆2𝑞1𝑞3𝜉𝛿𝜃
2−2𝜆2𝑞2𝑞3𝜃

2𝛿2++{(𝜆𝑞3−μ )δθ+2ξ}μP(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

2𝜉𝜃𝛿(3𝜇𝜃𝛿−2𝜆𝑞0ξδ−2λ𝑞1ξθ−2λ𝑞2θδ−λ𝑞3θδ) 
          (23) 
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The equilibrium balking strategy in the fully observable case has been studied in [8]. Consider a customer who finds the system 

at state (n, i) upon arrival, we can get the expected mean sojourn time of such a customer that decides to enter the system from 

[8]:  

T (n, 3) = T (n, 2) = (n + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
  ,  

T (n, 1) = (n + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
  + 

1

𝜃
 + 

1

𝛿
  ,  

T (n, 0) = (n + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
  + 

1

𝜃
  ,     

If a customer decides to join the system given that the server is found at state i, then his expected net benefit will be 

 𝑠3(𝑞0 , 𝑞1  , 𝑞2 , 𝑞3  ) = R −C [(E (L | I = 3) + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
 ],                                                                                (24) 

𝑠2(𝑞0 , 𝑞1  , 𝑞2 , 𝑞3  ) = R −C [(E (L | I = 2) + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
 ],                                                                                 (25) 

𝑠1(𝑞0 , 𝑞1  , 𝑞2 , 𝑞3  ) = R −C [(E (L | I = 1) + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
 + 

1 

𝜃
+ 
1

𝛿
],                                                                       (26) 

𝑠0(𝑞0 , 𝑞1  , 𝑞2 , 𝑞3  ) = R −C [(E (L | I = 0) + 1) (1 + 
𝜉 

𝛿
 + 

𝜉 

𝜃
) 
1

𝜇
+

1

𝜃
],                                                                            (27) 

Theorem 1. In the almost unobservable M / M /1 queue with redundant server breakdowns and delayed repairs under the 

stability condition μ(3δθ)> λ (3δθ+ 2ξθ+ 2ξδ), there exists a mixed strategy(qe(0), qe (1), qe (2), qe (3))and the strategy has 

the form ‘while arriving at time t, observe I (t), enter with probability qe(I (t))’. In addition, the vector (qe(0), qe (1), qe (2), qe 
(3)) is specified by: 

 Case A: If  
R

C
 <  [(6ξ + μ)δθ − μP(0,3)(3δθ +  2ξθ +  2ξδ)] (

δθ+ ξθ+ ξδ

6ξ𝛿2𝜃2𝜇
) then (qe(0), qe (1), qe (2), qe (3)) = (0, 0, 0, 0); 

 Case B: If  
R

C
 > (

(6ξ+μ)δθ−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

3μ−λ
) (

δθ+ ξθ+ ξδ

2ξ𝛿2𝜃2
) +

1

θ
+
1

δ
  , then (qe(0), qe (1), qe (2), qe (3)) = (0, 0, 1 ,0); 

Case C:  If 
R

C
 >( 

(6ξ+μ)δθ+4λξδ−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

[(3μ−λ)θ−2λξ]
) (

δθ+ ξθ+ ξδ

2ξ𝛿2𝜃
) +

1

θ
+

1

δ
  , then 

                                                                                                (qe(0), qe (1), qe (2), qe (3)) = (1, 0, 1, 0); 

 Case D:  If 
R

C
 >( 

μθδ(6ξ+μ)+4λξ(δμ+μθ−θλ)(θ+ξ)−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

δθ(3μ−2λ)−2λξ(δ+θ)
) (

δθ+ ξθ+ ξδ

2ξθδμ
) +

1

θ
+

1

δ
   , then 

                                                                                            (qe(0), qe (1), qe (2), qe (3)) = (1, 1, 1, 0); 

 

Proof. The proof is fairly delicate and lengthy. It is intuitively clear that, 𝑞𝑒 (1) ≤, 𝑞𝑒 (0) ≤, 𝑞𝑒 (2) because customers are 

willing to enter the system when the server is in working state than in breakdown state. We tag a customer at his arrival instant, 

the customer prefers to balk if 𝑆𝑖 ( 𝑞0 , 𝑞1 , 𝑞2, 𝑞3 ) < 0. if 𝑆𝑖 ( 𝑞0 , 𝑞1 , 𝑞2, 𝑞3 ) = 0, he is indifferent between joining and 

balking. Otherwise, he joins the queue. We will show that there are seven cases; 

 Case A: If  
R

C
 <  [(6ξ + μ)δθ − μP(0,3)(3δθ +  2ξθ +  2ξδ)] (

δθ+ ξθ+ ξδ

6ξ𝛿2𝜃2𝜇
), then 𝑆2 (0, 0, 0, 0) <0 and 𝑆1 (0, 0, 0, 0) = 𝑆2 (0, 0, 0, 0) -  

𝐶

𝜃
 - 

𝐶

𝛿
 and 𝑆0 (0, 0, 0, 0) = 𝑆2 (0, 0, 0, 0) - 

𝐶

𝜃
 .  𝑖𝑓 𝑆3 (0, 0, 0, 0) <0 therefore, if all other customers use (0, 0, 0, 0) as their 

strategy, the tagged customer suffers a negative reward. Hence, the tagged customer’s best choice would be to balk if he 

observes the server at state 3.  

Furthermore  𝑆2 (0, 0, 0, 0) < 0, if all other customers use (0, 0, 0, 0) as their strategy, the net reward is negative. Thus, the best 

choice is balking if he finds the server at state 2. 
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 Similarly,  𝑆1 (0, 0, 0, 0) <0 and 𝑆0 (0, 0, 0, 0) < 0 so that, 𝑞𝑒 (1) = 0,  𝑞𝑒 (0) = 0.  

In a word, If  
R

C
 <  [(6ξ + μ)δθ − μP(0,3)(3δθ +  2ξθ +  2ξδ)] (

δθ+ ξθ+ ξδ

6ξ𝛿2𝜃2𝜇
),then (𝑞𝑒(0), 𝑞𝑒 (1), 𝑞𝑒 (2), 𝑞𝑒 (3)) = (0, 0, 0, 0). 

 Case B:  If  
R

C
 > (

(6ξ+μ)δθ−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

3μ−λ
) (

δθ+ ξθ+ ξδ

2ξ𝛿2𝜃2
) +

1

θ
+
1

δ
  , then   𝑆1 (0, 0, 1, 0) > 0 If all other customers use (0, 0, 0 

,1) as their strategy, the tagged customer receives a positive reward. Therefore, the tagged customer enters the system with 

probability 1 if the server is found at state 1. 

𝑆1 (0, 0,1, 0)   = 𝑆0 (0, 0, 1, 0)   - 
𝐶

𝛿
  >0 then   𝑆0 (0, 0, 1, 0) >   0. If all other customers use (0, 0, 1, 0) as their strategy, then the 

net benefit for the tagged customer is positive and we have 𝑞𝑒(0) = 0. Finally, 𝑆2 (0, 0, 1, 0) > 0 and 𝑞𝑒 (2) = 1. 

 For the Case B, if 
𝑅

𝐶
 > (

(6𝜉+𝜇)+4𝜆

3𝜇−𝜆
)(

𝛿𝜃+ 𝜉𝜃+ 𝜉𝛿

2𝜉𝜃𝛿
) +

1

𝜃
+

1

𝛿
  then the equilibrium mixed strategy is (𝑞𝑒(0), 𝑞𝑒 (1), 𝑞𝑒 (2), 𝑞𝑒 (3)) = 

(0, 0, 1,0)  

 Case C:  If 
R

C
 >( 

(6ξ+μ)δθ+4λξδ−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

[(3μ−λ)θ−2λξ]
) (

δθ+ ξθ+ ξδ

2ξ𝛿2𝜃
) +

1

θ
+

1

δ
  , then   𝑆1 (1, 0, 0, 1)  > 0 If all other customers use       

(1, 0, 1 ,0 ) as their strategy, the tagged customer receives a positive reward. Therefore, the tagged customer enters the system 

with probability 1 if the server is found at state 1. 

𝑆1 (1, 0, 1, 0)   = 𝑆2 (1, 0, 1, 0)  - 
𝐶

𝜃
 - 
𝐶

𝛿
  >0 then   𝑆2 (1, 0, 1,0) >   0. If all other customers use (1, 0, 1, 0) as their strategy, then 

the net benefit for the tagged customer is positive and we have 𝑞𝑒 (0) = 1. Finally, 𝑆2 (1, 0, 1, 0) > 0 and 𝑞𝑒 (2) = 1 .as a result 

the best response as the tagged customer who finds the server at state 0 and 2 or 3 upon arrival is to enter the system  

To sum up, we have (𝑞𝑒(0), 𝑞𝑒 (1), 𝑞𝑒 (2), 𝑞𝑒 (3)) = (1, 0, 1, 0) in this case. 

 Case D:  If 
R

C
 >( 

μθδ(6ξ+μ)+4λξ(δμ+μθ−θλ)(θ+ξ)−μP(0,3)(3δθ+ 2ξθ+ 2ξδ)

δθ(3μ−2λ)−2λξ(δ+θ)
) (

δθ+ ξθ+ ξδ

2ξθδμ
) +

1

θ
+

1

δ
    then𝑆1 (1, 1, 1, 0) > 0. Substitution of 

𝑞0= 𝑞1= 𝑞2  = 1 into it follows that 𝑆2 (1, 1, 1, 0) > 𝑆0  (1 ,1, 1, 0) > 𝑆1 (1,1, 1, 0) > 0. Evidently, 𝑆1 (1, 1, 1, 0) > 0. That is, if 

all other customers use (1 ,1 ,1, 0) as their strategy, the best response of the tagged customer is entering if he finds the server at 

state 1. And we have 𝑞𝑒(1) = 1. 

 Moreover, 𝑆0(1, 1, 1 ,0) > 0, if all other customers use (1, 1, 1, 0) as their strategy, the tagged customer receives a positive 

reward. Thus, he joins the system with probability 1 if he finds the server at state 0. We have 𝑞𝑒 (0) = 1 

Similarly, 𝑆2 (1, 1, 1, 0) >0 and  𝑞𝑒 (2) = 1. In a word, we have (𝑞𝑒(0), 𝑞𝑒 (1), 𝑞𝑒 (2), 𝑞𝑒 (3)) = (1, 1, 1, 0) in this case.  

V. THE FULLY UNOBSERVABLE QUEUE 

Now we focus our attention on the fully unobservable queue with redundant server where arriving customers do not observe 

the number of customers in the system or the state of the server. The fully unobservable case in real-life situation can be 

illustrated by the decision making of customers in the call centers and data center, the servers may not provide the information 

with respect to the number of customers just waiting in the system prior to the customer’s arrival. And there is one extra server 

is available the customer has to evaluate the net benefits of his decisions. In the fully unobservable case, a mixed strategy has 

the form ‘while arriving at time t, do not observe (L (t), I (t)), enter with probability q’. Clearly, the new queue is equivalent to 

the original queue except that the arrival intensity λ should be replaced by λq. The formulas for the fully unobservable case are 

special cases of the formulas for the almost unobservable case. By taking 𝑞0= 𝑞1= 𝑞2= 𝑞3= q, we can get the expressions of 

𝐺𝑖
′(1) in a way similar to that exhibited in Section IV, Then  

 

𝐺0
′ (1) = 

(2𝜉+2𝜇)𝜆𝑞𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞𝜋1𝛿𝜃+2𝜆𝑞𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿+2𝜆

2𝑞2𝜋3𝜃𝛿−2𝜆
2𝑞2𝜋1𝜃𝛿

−2𝜆2𝑞2𝜋0𝜃(𝜉+𝛿)+(𝜆𝑞−𝜇)𝜇𝛿𝜃𝑃(0,3)

𝜃(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) 
                                     (28) 

 

𝐺1
′(1) = 

(2𝜉−𝜇)𝜆𝑞𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞𝜋1𝛿𝜃+2𝜆𝑞𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿−2𝜆

2𝑞2𝜋1𝜃𝛿+2𝜆
2𝑞2𝜋3𝜃𝛿

+𝜆2𝑞2𝜋0𝛿(2𝜉+𝜃)+(𝜆𝑞−𝜇)𝜇𝛿𝜃𝑃(0,3)

𝛿(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) 
                                        (29) 
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𝐺2
′ (1) = 

(2𝜉−𝜇)𝜆𝑞𝜋0𝜃𝛿+(2𝜉−𝜇)𝜆𝑞𝜋1𝛿𝜃+2𝜆𝑞𝜋2𝜉𝜃𝛿+(2𝜉−2𝜇)𝜆𝑞𝜋3𝜃𝛿+𝜇
2𝜋3𝜃𝛿+𝜆

2𝑞2𝜋1(𝛿𝜃+2𝜉𝜃+2𝜉𝛿)       

+𝜆2𝑞2𝜋0(2𝜉𝛿+𝛿𝜃)+2𝜆
2𝑞2𝜋3𝜃𝛿+(𝜆𝑞−𝜇)𝜇𝛿𝜃𝑃(0,3)

𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) 
                                        (30) 

 

𝐺3
′ (1) = 

(2𝜉+2𝜇)𝜆𝑞𝜋0𝜃𝛿+(2𝜉+2𝜇)𝜆𝑞𝜋1𝛿𝜃+2𝜆𝑞𝜋2𝜉𝜃𝛿+2𝜆𝑞𝜋3𝜉𝜃𝛿−2𝜇
2𝜋3𝜃𝛿−𝜆

2𝑞2𝜋3𝜃𝛿−2𝜆
2𝑞2𝜋1𝜃𝛿

−2𝜆2𝑞2𝜋0(𝜃𝜉+𝛿𝜃)−2𝜆
2𝑞2𝜋3𝜉(𝜃+𝛿)+2𝜆𝜇𝑞𝜋3(𝜃𝜉+𝜉𝛿+2𝛿𝜃)+{(𝜆𝑞−𝜇)𝛿𝜃+2𝜉}𝜇𝑃(0,3)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) 
                                             (31) 

 

 

Clearly 𝐺𝑖
′(1) = ∑ 𝑛𝑝(𝑛, 𝑖)∞

𝑛=0     i = 0, 1, 2,3. 

thus, the mean queue length is given by 

 E (L) = 𝐺0
′ (1) + 𝐺1

′(1) + 𝐺2
′(1) + 𝐺3

′ (1) = 

      

2𝜆𝑞𝜉[𝜋0(2𝜉𝛿+2𝜇𝛿+2𝜉𝜃+3𝜃𝛿−2𝜇𝜃)+ 𝜋1(2𝜉𝛿+2𝜇𝛿+2𝜇𝜃+2𝜉𝜃+3𝜃𝛿)+𝜋2(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+𝜋3(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)]+2𝜇
2𝜋3𝜉(𝛿+𝜃)

+𝜆2𝑞2𝜋3𝜃𝛿(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+{(𝜆𝑞−𝜇)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+2𝜉𝛿𝜃}𝜇𝑃(0,3)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
 

 

          =  
2𝜆𝑞𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+2𝜇

2𝜋3𝜉(𝛿+𝜃)+𝜆
2𝑞2𝜃2𝛿2+{(𝜆𝑞−𝜇)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+2𝜉𝛿𝜃}𝜇𝑃(0,3)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
          (32) 

Therefore, the mean sojourn time of a customer who joins the system can be derived by using Little’s law, then 

 E (W) = 
𝐸(𝐿)

𝜆𝑞
 

    = 
2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝑞𝜃

2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆𝑞

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
       (33)          

 Clearly, E (W) is strictly increasing for q, q ∈ [0, 1]. This property is crucial for our analysis. A general balking strategy in the 

fully unobservable case is specified by a single joining probability q. The case q = 0 corresponds to the pure strategy ‘to balk’ 

whereas the case q = 1 corresponds to the pure strategy ‘to join’. Any value of q ∈ (0, 1) corresponds to a mixed strategy ‘to 

join with probability q’. We can describe the equilibrium behavior of the customers in the following theorem. The equilibrium 

strategies depend on the value of the ratio R /C. Customers have a greater incentive to enter the system if the value of R/ C is 

higher.  

Theorem 2. In the fully unobservable M / M /1 queue with redundant server with breakdowns and delayed repairs, there exists 

a unique equilibrium strategy ‘enter with probability 𝑞𝑒  ’, where 𝑞𝑒is specified                                            

 𝑞𝑒 =

{
 
 

 
 0                           ,   

𝑅

𝐶
< E(W)|𝑞=0,

𝑞𝑒
∗       , E(W)|𝑞=0 ≤

𝑅

𝐶
≤ E(W)|𝑞=1

1                             ,
𝑅

𝐶
> E(W)|𝑞=1

 

E(W)|𝑞=0 >    
[𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)(1+𝜇𝑃(0,3)]

3𝜇𝜃𝛿  
 

E(W)|𝑞=1 =

2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝜃
2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆

2𝜉(3𝜇𝜃𝛿−2𝜆ξδ−2λξθ−3λθδ) 
 

𝑞𝑒
∗= 

[6𝑅𝜇𝜉𝜃𝛿−𝐶𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)−𝐶𝜉{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}]±

√
{6𝑅𝜇𝜉𝜃𝛿−𝐶𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)−𝐶𝜉{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}}

2

−4𝐶[2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)]{𝐶𝜃
2𝛿2+4𝑅𝜉2𝛿+4𝑅𝜉2𝜃+6𝑅𝜉𝜃𝛿}

2𝜆{𝐶𝜃2𝛿2+4𝑅𝜉2𝛿+4𝑅𝜉2𝜃+6𝑅𝜉𝜃𝛿}
 



Preeti Gautami Dubey & Dr. R. K. Shrivastava / IJMTT, 67(2), 130-139, 2021 

 

138 

Proof. Based on the reward-cost structure, if a tagged customer decides to enter the system at his arrival instant, his expected 

net reward is 

 S (q) = R −C E(W) 

          =R-C  

2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝑞𝜃
2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆𝑞

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
                                                  (34) 

Clearly, S (q) is strictly decreasing for q, q ∈ [0, 1]. In addition,  

E(W) =

2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝑞𝜃
2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆𝑞

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) 
      

            >   
2𝜉[𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝑞𝜃

2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
   

E(W)|𝑞=0 >    
[𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)(1+𝜇𝑃(0,3)]

3𝜇𝜃𝛿  
                                                                                     (35) 

E(W)|𝑞=1 =

2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝜃
2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆

2𝜉(3𝜇𝜃𝛿−2𝜆ξδ−2λξθ−3λθδ) 
                                                    (36) 

Now,from eq(34) 

 S (0) < R - C  
[𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)(1+𝜇𝑃(0,3)]

3𝜇𝜃𝛿  
 

S (1) = R −𝐶

2𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+𝜆𝜃
2𝛿2+𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)

+
2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)

𝜆

2𝜉(3𝜇𝜃𝛿−2𝜆ξδ−2λξθ−3λθδ) 
   

When
𝑅

𝐶
< E(W)|𝑞=0 , S (q) is negative for every q. Therefore, the tagged customer’s best choice would be to balk. If 

𝑅

𝐶
>

E(W)|𝑞=1  , then S (q) ≥S (1) > 0, the expected net benefit of the tagged customer is positive, thus he joins the system with 

probability 1. 

 When E(W)|𝑞=0 ≤
𝑅

𝐶
≤ E(W)|𝑞=1  , there exists a unique root 𝑞𝑒

∗  of the equation S (q) = 0 in the interval [0, 1]. 

𝑞𝑒
∗= 

[6𝑅𝜇𝜉𝜃𝛿−𝐶𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)−𝐶𝜉{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}]±

√
{6𝑅𝜇𝜉𝜃𝛿−𝐶𝜇𝑃(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)−𝐶𝜉{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}}

2

−4𝐶[2𝜇2𝜋3𝜉(𝛿+𝜃)+{2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}𝜇𝑃(0,3)]{𝐶𝜃
2𝛿2+4𝑅𝜉2𝛿+4𝑅𝜉2𝜃+6𝑅𝜉𝜃𝛿}

2𝜆{𝐶𝜃2𝛿2+4𝑅𝜉2𝛿+4𝑅𝜉2𝜃+6𝑅𝜉𝜃𝛿}
  

The goal of a social planer is to maximize overall social welfare, that is, the sum of customer utility and the payoff of server. 

The expected net social benefit per time unit, given that the customers follow a mixed strategy with joining probability q is 

given by  

SB (q) = 𝜆𝑞R - C 
2𝜆𝑞𝜉[𝜋02𝜇𝛿−𝜋02𝜇𝜃+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿]+2𝜇

2𝜋3𝜉(𝛿+𝜃)+𝜆
2𝑞2𝜃2𝛿2+{(𝜆𝑞−𝜇)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+2𝜉𝛿𝜃}𝜇𝑃(0,3)

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  
  

then 

 𝑆𝐵′(q ) = 𝜆R  -C 

2𝜉(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ) [2𝜉𝜆{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}+𝜆
22𝑞𝜃2𝛿2+𝜆𝜇𝑝(0,3)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)]

−[2𝜆𝑞𝜉{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿}+𝜆
2𝑞2𝜃2𝛿2+2𝜇2𝜋3𝜉(𝛿+𝜃)+{(𝜆𝑞−𝜇)(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)+2𝜉𝛿𝜃}𝜇𝑃(0,3)]

(−4𝜆ξ2δ−4λ𝜉2θ−6λ𝜉θδ)

4𝜉2(3𝜇𝜃𝛿−2𝜆𝑞ξδ−2λ𝑞ξθ−3λ𝑞θδ)  2
 

 Let 𝑞 ̂denote the root of equation  𝑆𝐵′(q)= 0 and the optimal entrance probability for the system is denoted by 𝑞∗,then  
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𝑞 ̂=
3𝜇𝛿𝜃

𝜆(2𝜉𝜃+2𝜉𝛿+3𝛿𝜃)
±

1

𝜆(2𝜉𝜃+2𝜉𝛿+3𝛿𝜃)

√

9𝜇2𝛿2𝜃2{2𝑅𝜉(2𝜉𝜃+2𝜉𝛿+3𝛿𝜃)+𝐶𝛿2𝜃2}

−2𝜇𝜉(2𝜉𝜃+2𝜉𝛿+3𝛿𝜃)[9𝑅𝛿𝜇𝛿2𝜃2−𝐶(𝜃+𝛿)[2𝜇𝜋3𝜉(𝛿+𝜃)+𝑝(0,3){2𝜉𝜃𝛿−𝜇(2𝜉𝛿+2𝜉𝜃+3𝜃𝛿)}]

−3𝐶𝛿𝜃{𝜋02𝜇(𝛿−𝜃)+ 𝜋12𝜇(𝛿+𝜃)+2𝜉𝛿+2𝜉𝜃+3𝜃𝛿+𝜇𝜋3(𝛿+𝜃)+𝛿𝜃𝑝(0,3)}]

{2𝑅𝜉(2𝜉𝜃+2𝜉𝛿+3𝛿𝜃)+𝐶𝛿2𝜃2}
 

 Based on the stability condition, we can conclude that  𝑆𝐵′′(q)< 0 for any probability q ∈ [0, 1]. Thus, the social welfare 

function SB (q) is strictly concave, and it attains a unique maximum at the point q = 𝑞 ̂ If 0 < 𝑞 ̂< 1, then the optimal entrance 

probability for the system is 𝑞∗=𝑞 ̂ . If 𝑞 ̂> 1, then 𝑞∗= 1. In a word, we have 

 𝑞∗= min { 𝑞 ̂, 1}.  

VI. CONCLUSION 

Inspired by Wang and Zhang [8], we study the equilibrium strategies for the almost unobservable and fully unobservable 

single-server queues with redundant server with breakdowns and delayed repairs.  In practical customer faces a big problem 

before enter the system he has to decide whether balk the system or enter the system in our model the balking capacity of 

customers is less and customer most probably enter the system. By the redundant server the system provides a reliable working 

facility to the customer the repair time is not memoryless since the repair time has two stages. This work can be generalized in 

the different  directions. the case of general interarrival times is the simplest generalization of this paper . In addition,  A multi-

state queueing model is a direct extension to this study. In practice, a system is frequently subjected to breakdowns with 

different difficulties. we can also study the social benefit for different  information levels. 
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