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Abstract: In this research article, we apply four semi-analytical iteration techniques namely: Differential Transform method, 

variational iteration method, Adomian decomposition method and Temimi and Ansari respectively to both linear and nonlinear 

differential equations of first, second and third orders. The results obtained reveal, the variational iteration gives a solution in 
series form which converges to the true solution followed by the Adomian decomposition method and Temimi and Ansari 

method. 
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I. INTRODUCTION 

Most of the problems in engineering and sciences have equations that are nonlinear in form. These equations oftentimes have 

close form or analytical solutions, whereas, at other times, close form solutions are difficult to come by so approximate 

solutions are sort to describe the behaviour of the related parameters. Scientists and engineers alike have written extensively on 

these semi-analytical methods due to the ease with which nonlinear problems are solved by them. The approximate solutions 

obtained converges to the exact solution under some underlying conditions which satisfies the initial and boundary condition. 

The differential transform method (DTM) proposed by Zhou [1] is a transformation technique which uses the Taylor series 

expansion to obtain analytic solution of a differential equation which converges to the exact solution. In this method certain 

transformation rules are applied to transform the given equation, equation such as algebraic equation in terms of the differential 

transform of the original transform and the solution of the algebraic equation given the desired solution of the problem. The 

method has been solved several problems in [2], [3], [4], [5]. Equally elegant and time consuming is Adomian innovative 

method christened Adomian decomposition method. In this method, the equation under study is split into linear and nonlinear 

portion. The linear operator representing the linear portion of the equation is inverted and the linear operator is then applied to 

the equation. Any given conditions are taken into consideration. The nonlinear portion is decomposed into a series of what is 

called Adomian Polynomials. The method generates a solution in the form of a series whose terms are determined by a 

recursive relationship using the Adomian Polynomials. ADM has been applied successively by researchers to solve myriad of 

problems ranging from linear and nonlinear ordinary and partial differential equations. See [6], [7], [8], [9], [10], [ 11]. Another 

method worthy of note that came from the Lagrange multiplier method which does not involve small perturbation or 

linearization is the Ji-Huang He’s variational iteration method (VIM). This method gives a convergent solution of both 

ordinary and partial differentia; equation without any restrictive assumption that may change the physical nature of the problem 

under investigation. This novel method solves elegantly, efficiently, easily, and accurately a large class of nonlinear problems 

which approximate solution converges rapidly to the accurate solution. Extensive applications of this method are found in, 

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]. Most recently, Temimi and 

Ansari [30] suggested a novel iterative method called TAM. This method is advantageous in that, it does not require the so-

called Adomian polynomials, involves less computational work and does not involve restricted assumptions that appear in 

other iterative methods such as VIM and DTM. 
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Researchers have used this method to obtain both exact and approximate solutions of many problems.  This includes: Multi-

point boundary value problems [31], Nonlinear thin flow problems [32], Wave-like equations with variable coefficients [33], 

Nonlinear problems [34]. 

In this research article, we employ four semi-analytical methods viz: Differential transform method (DTM), Adomian 

decomposition method (ADM), Variational Iteration Method (VIM) and Temimi and Ansari method (TAM) to extend the 

works of Necdet and Konuralp [35] to solve equations frequently occurring in Science and Engineering. To the best of my 

knowledge, these four methods haven’t been compared before. 

II. Differential Transform Method (DTM) 

Let 𝑢(𝑡) be a given analytic function in the given domain D and let 𝑥 = 𝑥𝑜 be an initial point of the function. 

Then the 𝑘th derivative of 𝑢(𝑡) about point 𝑡 = 𝑡0 is defined as follows 

𝑈(𝑘) =
1

𝑘!
[

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

          (1) 

where u(t) is the original function and 𝑈(𝑘) is the transformed function 

The inverse transforms of 𝑈(𝑘) in Eq. (1) is given as 

𝑢(𝑡) = ∑ (𝑡 − 𝑡0)𝑘𝑈(𝑘)∞
𝑘=0          (2) 

Combining Eqs. (1) and (2), the original function, 𝑢(𝑡) can be rewritten as a finite series of the form  

𝑢(𝑡) = ∑
(𝑡−𝑡0)𝑘

𝑘!
[

𝑑𝑘𝑢(𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

∞
𝑘=0      (3)  

2.1          Fundamental Operations of the Differential Transform Method 

 Original functions  Transformed function 

𝑦(𝑡) = 𝛼𝑣(𝑡) ± 𝛽𝑤(𝑡)   𝑌(𝑘) = 𝛼𝑉(𝑡) ± 𝛽𝑊(𝑡)  

𝑦(𝑡) = 𝛼𝑣(𝑡)  𝑌(𝑘) = 𝛼𝑉(𝑡) 

𝑦(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
  𝑌(𝑘) = (𝑘 + 1)𝑉(𝑘 + 1) 

𝑦(𝑡) =
𝑑2𝑣(𝑡)

𝑑𝑡2    𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2)𝑉(𝑘 + 2) 

y(t) = 
𝑑𝑟(𝑡)

𝑑𝑡𝑟 ,   𝑌(𝑘) =
(𝑘+𝑟)!𝑉(𝑘+𝑟)

𝑘!
 

𝑦(𝑡) = 𝑣(𝑡)𝑤(𝑡)   𝑌(𝑘) = ∑ 𝑉(𝑘)𝑊(𝑘 − 𝑛)𝑘
𝑛=0  

𝑦(𝑡) = 𝑡𝑟  
 𝑌(𝑘) = δ(k − r) = {

1, 𝑖𝑓 𝑘 = 𝑟
0, 𝑖𝑓 𝑘 ≠ 𝑟
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𝑦(𝑡) = 𝑣3  

𝑌(𝑘) = ∑ ∑ 𝑣(𝑟)𝑣(𝑘1 − 𝑟)𝑣(𝑘 − 𝑟)

𝑘1

𝑟

𝑘

𝑘1

 

 𝑦(𝑡) = [
𝑑𝑣(𝑡)

𝑑𝑡2
]

2

,  
𝑌(𝑘) = ∑(k + 1)(k − r + 1)(r + 1)V(k − r + 1)

𝑘 

𝑟

 

𝑦(𝑡) = 𝑒𝜆𝑡    𝑌(𝑘) =
𝜆𝑘

𝑘!
  

 𝑦(𝑡) = (1 + 𝑡)𝑟   𝑌(𝑘) =
𝑟(𝑟−1)…(𝑟−𝑘+1)

𝑘!
 

𝑦(𝑡) = sin(𝑛𝑡 + 𝛼)   𝑌(𝑘) =
𝑛𝑘

𝑘!
sin (

𝑛𝑘

2
+ 𝛼) 

𝑦(𝑡) = cos(𝑛𝑡 + 𝛼) 
𝑌(𝑘) =

𝑛𝑘

𝑘!
cos (

𝑛𝑘

2
+ 𝛼) 

 

III. Adomian Decomposition Method (ADM) 

. A brief outline of the method is as follows.  

Consider a general nonlinear differential equation of the form 

𝐷(𝑦) = 𝑓(𝑥)          (4)  

where 𝐷 is a nonlinear differential operator comprising both the linear and nonlinear terms, while 𝑓(𝑥) is any differentiable 

function of 𝑥 

Decomposing the linear term in Eq. (4) into the form 𝐿 + 𝑅, where 𝐿 is the highest order derivative that is invertible and 𝑅 is 

the remainder of the linear term. 

Rewriting Eq. (4) in operator form, we have 

𝐿[𝑦] + 𝑅[𝑦] + 𝑁[𝑦] = 𝑓(𝑥)          

𝐿[𝑦] = 𝑓(𝑥) − 𝑅𝑦(𝑥) − 𝑁𝑦(𝑥)        (5) 

While 𝑁(𝑦) is a nonlinear term and 𝑔 is the source term. 
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Applying the inverse operator 𝐿−1 of both sides of Eq. (5), we obtain 

𝐿−1(𝐿𝑦(𝑥)) = 𝐿−1(𝑓(𝑥)) − 𝐿−1(𝑅𝑦(𝑥)) − 𝐿−1(𝑁𝑦(𝑥)) 

Where 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑥𝑑𝑥
𝑥

0

𝑥

0
     

𝑦(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅(𝑦(𝑥)) − 𝐿−1𝑁(𝑦(𝑥))      (6) 

Where g(𝑥) is the term obtained from integrating the source term. That is, [𝐿−1(𝑔)] and 𝜑0  from the given conditions 

Now rewriting the solution and nonlinear terms as decomposition series of the form 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0  and 𝑁(𝑦(𝑥)) = ∑ 𝐴𝑛(𝑥)∞

𝑛=0 ,       (7) 

where the 𝐴𝑛
′𝑠 are the Adomian polynomials obtained using the formula 

𝐴𝑘 =
1

𝑘!

𝜕𝑘

𝜕𝜆𝑘
[𝑁 (∑ 𝑦𝑛𝜆𝑛

∞

𝑛=0

)]

𝜆=0

, 𝑘 = 0,1,2 … 

Putting Eq. (7) into Eq. (6), we obtain the solution in the form a decomposition series 

∑ 𝑦𝑛(𝑥)∞
𝑛=0 = 𝑦(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅(∑ 𝑦𝑛(𝑥)∞

𝑛=0 ) − 𝐿−1𝑁(∑ 𝐴𝑛(𝑥)∞
𝑛=0 )   (8) 

Where 𝑦0(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) is the zeroth component of 𝑦𝑛(𝑥) 

The subsequent members of the series are obtained recursively using 

𝑦𝑘+1 = −𝐿−1𝑅(𝑦𝑘(𝑥)) − 𝐿−1(𝐴𝑘(𝑥)), 𝑘 ≥ 0      (9) 

Then exact solution of the problem is the limit of the recursive relation 

𝑦(𝑥) = lim
𝑛→∞

∑ 𝑦𝑘(𝑥)𝑛
𝑘=0          (10) 

IV. He’s Variational Iteration method (VIM) 

. The basic idea of the VIM is as follows 

Consider the ordinary differential equation of the form 
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𝐿𝑦 + 𝑁(𝑦) = 𝑓(𝑥),   𝑥 ∈ 𝐼        (11) 

Where 𝐿 and 𝑁 are linear and nonlinear operators respectively, and 𝑓(𝑥) is any given inhomogeneous terms defined for 𝑥 ∈ 𝐼  

We defined a correctional functional for Eq. (11) as follows 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏) (𝐿𝑦𝑛(𝜏) + 𝑁(𝑦̃𝑛(𝜏)) − 𝑓(𝜏)) 𝑑𝜏
𝑥

0
      (12) 

Where  𝜆(𝜏) is a Lagrange multiplier obtained through variational theory, 𝑦𝑛(𝑥) is the nth approximation of 𝑦(𝑥) and 𝑦̃𝑛(𝑥) is 

a restricted variation meaning 𝛿𝑦̃𝑛(𝑥) = 0 

By imposing the variation of both sides of Eq. (12) and taking the restricted variation we obtained 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + 𝛿(∫ 𝜆(𝜏)𝐿𝑦𝑛(𝜏)𝑑𝜏
𝑥

0
        (13) 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + [𝜆(𝜏)(∫ 𝐿𝑦𝑛(𝜉)𝑑𝜉
𝜏

0
]

𝜏=0

𝜏=𝑥
− ∫ 𝜆1(𝜏)(∫ 𝐿𝛿𝑦𝑛(𝜉)

𝜏

0
)𝑑𝜉

𝑥

0
    (14) 

Now by applying the stationary condition, the value of the Lagrange multiplier, 𝜆(𝜏) can be found. Then the successive 

approximations, 𝑦𝑛(𝑥), 𝑛 = 0,1,2,3 …. Can be found in the form 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏) (𝐿𝑦𝑛(𝜏) + 𝑁(𝑦𝑛(𝜏)) − 𝑓(𝜏)) 𝑑𝜏
𝑥

0
      (15) 

The exact solution is then obtained as the limit of the successive approximations from Eq. (15) 

𝑦(𝑥) = lim
𝑛→∞

𝑦𝑛(𝑥) 

V. Temimi and Ansari Method (TAM) 

Consider the general differential equation in operator form as follows 

𝐿(𝑦(𝑥)) + 𝑁(𝑦(𝑥)) + 𝑓(𝑥) = 0, 𝐵 (𝑦,
𝑑𝑦

𝑑𝑥
) = 0       (16) 

Where 𝑥 is the independent variable, 𝑦(𝑥) is an unknown function, 𝑓(𝑥) is a given known function, 𝐿 is a linear operator, 𝑁 is 

a nonlinear operator and 𝐵 is a boundary operator. 

To implement TAM, we first assume an initial guess of the form, 𝑦0(𝑥) that satisfy the equation as follows 

𝐿(𝑦0(𝑥)) + 𝑓(𝑥) = 0, 𝐵 (𝑦0,
𝑑𝑦0

𝑑𝑥
) = 0        (17) 

We consider the next iteration as follows 

𝐿(𝑦1(𝑥)) + 𝑁(𝑦0(𝑥)) + 𝑓(𝑥) = 0, , 𝐵 (𝑦1,
𝑑𝑦1

𝑑𝑥
) = 0       (18)  

Continuing the same way to obtain the subsequent terms, the general equation of the method becomes 

𝐿(𝑦𝑛+1(𝑥)) + 𝑁(𝑦𝑛(𝑥)) + 𝑓(𝑥) = 0, 𝐵 (𝑦𝑛+1,
𝑑𝑦𝑛+1

𝑑𝑥
) = 0      (19)  

From Eq. (19), each 𝑦(𝑥) is considered alone as a solution for Eq. (16). This method easy to implement, straightforward and 

direct. The method gives better approximate solution which converges to the exact solution with only few members. 
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VI. EXPERIMENTAL EVALUATION 

In this subsection, some linear and nonlinear problems are solved using the Adomian decomposition, Differential Transform 

method, Variational iteration method and the Temimi and Ansari method. This is to determine whether the approximate 

solution converges to the exact solution or there is marked error between them. 

 

 

Example 6.1 

Solve the differential equation, 
𝑑𝑦

𝑑𝑥
− 𝑦 = 0, subject to the condition, 𝑦(0) = 1 

Solution by ADM. 

Writing the given equation in operator form 

𝐿𝑦 = 𝑦            (20) 

Taking the inverse transform of both sides 

𝐿−1(𝐿𝑦) = 𝐿−1(𝑦) 

𝑦(𝑥) − 𝑦(0) = 𝐿−1(𝑦) 

Using the initial condition, we obtain 

𝑦(𝑥) = 1 + 𝐿−1(𝑦) 

Let 𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0  

The decomposition of the problems becomes 

 ∑ 𝑦𝑛(𝑥)∞
𝑛=0 = 1 + 𝐿−1(∑ 𝑦𝑛(𝑥)∞

𝑛=0 )        (21) 

Comparing both sides, we get the first five iterative solutions as 

𝑦0(𝑥) = 1 

𝑦1(𝑥) = 𝑥 

𝑦2(𝑥) =
𝑥2

2!
 

𝑦3(𝑥) =
𝑥3

3!
 

𝑦4(𝑥) =
𝑥4

4!
 

Th recursive relation of the problem becomes   

𝑦𝑛+1(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0 , 𝑛 ≥ 0         (22) 
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𝑦(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ 

𝑦(𝑥) = 𝑒𝑥   (converges to the exact solution) 

Solution by VIM 

The correctional for Eq. (20), we have 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏)(𝐿𝑦𝑛(𝜏) − 𝑦𝑛(𝜏))𝑑𝜏
𝑥

0
, 𝑛 ≥ 0      (23) 

The first five iterations using eq. (23) gives 

𝑦(0) = 𝑦0(𝑥) = 1 

𝑦1(𝑥) = 1 + 𝑥 

𝑦2(𝑥) = 1 + 𝑥 +
𝑥2

2!
 

𝑦3(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
 

𝑦4(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
 

The solution of the problem becomes 

𝑦(𝑥) = lim
𝑛⟶∞

𝑦𝑛(𝑥) 

𝑦(𝑥) = 𝑒𝑥 

Solution by DTM 

Taking the DTM of both sides of Eq. (20) 

(𝑘 + 1)! 𝑌(𝑘 + 1) = 𝑌(𝑘) 

Rearranging gives 

𝑌(𝑘 + 1) =
𝑌(𝑘)

(𝑘+1)!
          (24) 

So that for 𝑘 = 0,1,2, .., we have the following 

𝑌(1) = 1, 𝑌(2) =
1

2!
, 𝑌(3) =

1

3!
, 𝑌(4) =

1

4!
, 𝑌(5) =

1

5!
, … 𝑌(𝑛) =

1

𝑛!
 

Now the series expansion becomes 

𝑦(𝑥) = ∑ 𝑥𝑛𝑌(𝑘)

𝑛

𝑘=0
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𝑦(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯

𝑥𝑛

𝑛!
 

𝑦(𝑥) = 𝑒𝑥 (converges to the real solution) 

Solution by TAM 

Writing Eq. (20) in the form gives 

𝐿𝑦 − 𝑦 = 0           (25) 

Where 𝐿(𝑦) = 𝑦1,  𝑁(𝑦) = −𝑦, 𝑓(𝑥) = 0 

The first iterate become 

𝐿(𝑦0(𝑥)) = 0 

Taking the inverse operator, we obtain 

∫ 𝑦0
1(𝜏)𝑑𝜏 = ∫ 0𝑑𝜏 + 𝑐

𝑥

0

𝑥

0

 

𝑦0(𝑥) = 1 

The second iterate of the problem now become 

𝐿(𝑦1(𝑥)) + 𝑁(𝑦0(𝑥)) + 𝑓(𝑥) = 0,   𝑦1(0) = 1       (26) 

Solving the above gives 

𝑦1(𝑥) = 1 + 𝑥 

The problem for the third iterate now become 

𝐿(𝑦2(𝑥)) + 𝑁(𝑦1(𝑥)) + 𝑓(𝑥) = 0,   𝑦2(0) = 1       (27) 

Solving Eq. (27) gives 

𝑦2(𝑥) = 1 + 𝑥 +
𝑥2

2!
  

Following the same procedures, we get the fourth and fifth iterates as 

𝑦3(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
 

 

𝑦4(𝑥) = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

41
 

Continuing in the same way, we get 

𝑦(𝑥) = lim
𝑛⟶∞

𝑦𝑛(𝑥) 
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𝑦(𝑥) = 𝑒𝑥 (converges to the real or exact solution) 

Example 6.2  Solve the nonlinear differential equation, 𝑦′ + 𝑦2 = 1, subject to 𝑦(0) = 0 

Solution by ADM 

Writing the given equation in operator form 

𝐿𝑦 + 𝑦2 = 1,           (28) 

Where the linear operator 𝐿 is the highest order derivative 

Taking the inverse operator of both sides, we get 

𝐿−1(𝐿𝑦) + 𝐿−1(𝑦2) = 𝐿−1(1) 

𝑦(𝑥) − 𝑦(0) = 𝑥 − 𝐿−1(𝑦2) 

Let 𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0  

∑ 𝑦𝑛(𝑥)∞
𝑛=0 = 𝑥 − 𝐿−1(∑ 𝑦𝑛(𝑥)∞

𝑛=0 )         

𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + ⋯ = 𝑥 − 𝐿−1(𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + ⋯ )     (29) 

Equating both sides, we obtain 

𝑦0(𝑥) = 𝑥 

The recursive relation for the problem become 

𝑦𝑛+1(𝑥) = −𝐿−1(𝐴𝑛
2 ), 𝑛 ≥ 0 

𝑦1(𝑥) = −𝐿−1(𝐴0) = −= −𝐿−1(𝑦0
2) = −

𝑥3

3
 

𝑦2(𝑥) = −𝐿−1(𝐴1) = −= −𝐿−1(2𝑦0𝑦1) = −
2𝑥5

15
 

𝑦3(𝑥) = −𝐿−1(𝐴2) = −= −𝐿−1(2𝑦0𝑦1 + 𝑦1
2) = −

17𝑥7

315
 

The solution in series is of the form 

𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + 𝑦3(𝑥) + ⋯ 

𝑦(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
−

17𝑥7

315
+ ⋯ 

 

Which converges to the exact solution 

𝑦(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
= tanh (𝑥) 
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Solution by VIM 

The correctional functional for Eq. (28) is given by 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏)(𝐿𝑦𝑛(𝜏) + 𝑦𝑛
2(𝜏) − 1)𝑑𝜏

𝑥

0
,  𝑛 ≥ 0 

Where the Lagrange multiplier, 𝜆(𝜏) is obtained optimally via the variational theory 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) − ∫ (𝐿𝑦𝑛(𝜏) + 𝑦𝑛
2(𝜏) − 1)𝑑𝜏

𝑥

0

 

    

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) − ∫ (
𝜕

𝜕𝜏
(𝑦𝑛(𝜏)) + 𝑦𝑛

2(𝜏) − 1) 𝑑𝜏
𝑥

0

 

Let 𝑦(0) = 𝑦0(𝑥) = 0 

The first four iterates of the problem becomes 

𝑦1(𝑥) = 𝑥 

𝑦2(𝑥) = 𝑥 −
𝑥3

3
 

𝑦3(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
−

17𝑥7

315
+ ⋯ 

Therefore, the exact solution of the problem become 

𝑦(𝑥) = tanh (𝑥) 

Solution by TAM 

Recall Eq. (28) in operator form 

𝐿𝑦 + 𝑦2 − 1 = 0           (30) 

Where 𝐿𝑦(𝑥) = 𝑦1, 𝑁(𝑦) = 𝑦2, 𝑓(𝑥) = −1 

The first iterate of the problem gives 

𝑳(𝑦0(𝑥)) = 𝟏, 𝑦0(0) = 0 

Taking the inverse operator of both sides and substituting the initial condition, we obtain 

𝑦0(𝑥) = 𝑥 

The second iterate of the problem become 

𝐿(𝑦1(𝑥)) + 𝑁(𝑦0(𝑥)) + 𝑓(𝑥) = 0,  𝑦1(0) = 0       (31) 

Taking the inverse transform operator of both sides, we get 

∫ 𝑦1
′ (𝜏)𝑑𝜏 = ∫ (1 − 𝜏2)𝑑𝜏

𝑥

0

𝑥

0
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Applying the initial condition, we obtain 

𝑦1(𝑥) = 𝑥 −
𝑥3

3
 

The third iterate of the become 

𝐿(𝑦2(𝑥)) + 𝑁(𝑦1(𝑥)) + 𝑓(𝑥) = 0,  𝑦2(0) = 0 

Taking the inverse operator of both sides, we get 

∫ 𝑦2
′ (𝜏)𝑑𝜏 = ∫ [1 − (𝜏 −

𝜏3

3
)

2

] 𝑑𝜏
𝑥

0

𝑥

0

 

Applying the initial condition, we obtain 

𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
 

Continuing in the same way, we get the fourth iterate as 

𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
 

𝑦3(𝑥) = 𝑥 −
𝑥3

3
+

2𝑥5

15
−

17𝑥7

315
 

𝑦(𝑥) = lim
𝑛⟶∞

𝑦𝑛(𝑥) 

The exact solution becomes 

𝑦(𝑥) = tanh (𝑥) 

Solution by DTM 

Rewritten Eq. (28) in standard form and taking the Differential transform of both sides, we get 

(𝑘 + 1)𝑌(𝑘 + 1) = 𝛿(𝑘) − ∑ 𝑌(𝑟)𝑌(𝑘 − 𝑟)𝑘
𝑟=0        (32) 

⟹ 𝑌(𝑘 + 1) =
1

𝑘+1
[𝛿(𝑘) − ∑ 𝑌(𝑟)𝑌(𝑘 − 𝑟)𝑘

𝑟=0 ]       (33) 

Therefore, for 𝑘 ≥ 0, then the values 𝑌(1), 𝑌(2), 𝑌(3) … are obtained as follows 

𝑌(1) = 1, 𝑌(3) =
1

3
, 𝑌(5) =

1

5
, 𝑌(7) =

1

7
  

Similarly, for 𝑘 ≥ 1, the odd conditions vanished 

Hence, 𝑌(𝑥) = ∑ 𝑡𝑘𝑌(𝑘)∞
𝑘=𝑜  become 

𝑌(𝑥) = 𝑥 +
1

3
𝑥3 +

2

15
𝑥5 + ⋯ 
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VII. DISCUSSION OF RESULTS AND CONCLUDING REMARKS 

In this paper, we employ four semi-analytical iterative methods to solve linear and nonlinear differential equations. Selected 

problems were successfully solved with all four of the methods. The results obtained showed, the differential transformation 

method gives a rapidly convergent solution which requires less computational work provided the order of the equation is not 

high, Variational iteration method elegantly gives a convergent solution in a series of steps, Adomian decomposition method 

produce a solution which is in the form of a decomposing infinite series and Temimi and Ansari solves both linear and 

nonlinear problem in much easier iterative steps which converges to the exact solution without the application of any 

assumption. Thus, in comparison, the differential transform method is mathematically involving if the order is high, variational 

iteration method is efficient and powerful, Adomian decomposition method is easier to apply and Temimi & Ansari method 

gives accurate and reliable result identical to the exact solution. In all, they are found to be efficient, reliable, less time 

consuming and elegant depending on the problem been examined.  

REFERENCES 

[1] Zhou, J.K., Differential Transform and its Applications for Electrical Circuits, Huarjung Univ. Press, Wuhan, China (in Chinese)., (1986). 

[2] Chen, C.L. and Liu, Y. C., Differential Transformation Technique for Steady nonlinear heat conduction problem. Applied Mathematics. 

Computation, (95)(1998) 155-164. 

[3] Edeki, S.O., Okagbue, H.I., Opanuga, A. A., and Adeosun, S. A. (2014). A semi-Analytical method for solutions of a certain class of ordinary 

differential equations. Applied Mathematics, 5(2014)  2034-2041. 

[4] Arikoglu, A. and Ozkol, I., Solution of differential difference equation by using differential transformation method. Applied Mathematics. 

Computation, 181(1)(2006)  153-162. 

[5] Abdel-Halim Hassan, I.H., Application of Differential Transformation method for solving systems of Differential equation. Applied Mathematical 

Modelling, 32(2008)  2552-2559. 

[6] Adomian, G., Convergent Series solution of Nonlinear equations, Journal of Computational Applied Mathematics, 11(1984) 225-230. 

[7] Adomian, G., On the Convergence region for the Decomposition solutions. Journal of Computational Applied Mathematics, 11(1984)  379-380. 

[8] Adomian, G. and Roch, R., On the solution of Nonlinear differential equation with convolution product nonlinearities. Journal of Applied 

Analytical Mathematics, 114(1986)  171-175. 

[9] Adomian, G., A review of Decomposition method in Applied Mathematics, Journal of Analytical Applied, (135)(1998) 501-544. 

[10] Adomain, G., and Roch, G.,  Noise term in Decomposition solution series. Journal of Computational Applied Mathematics, 24(11)(1992)  61-64. 

[11] Cherruault, Y., and Adomian, G., Decomposition Method: A new proof of convergence. Mathematics Computational Modelling, 18(12)(1993) 103-

106. 

[12] He, J.H., Variational Iteration method for delay differential equation. Communications in Nonlinear Science and Numerical Simulat ion, 2(4)(1997)  

235-236. 

[13] He, J.H.,  Nonlinear Oscillation with fractional derivative and its approximation. International Conference on Vibration Engineering, 98(1998)  

2881-291, Dalian, China. 

[14] He, J.H., Variational Iteration Method and its Application, Mechanics & Practice (Lixueyu Shijian). 20(1) (1998)  30-32. 

[15] He, J.H., Variational Iteration Approach to 2-Spring System, Mechanical Science & Technology, 17(2)(1998)  221-223 (in Chinese). 

[16] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media. Computer Methods in Applied Mechanics 

and Engineering, 167(1998) 57-68. 

[17] He, J.H., Approximate solution of nonlinear differential equations with convolution product nonlinearities. Computer Methods in Applied  

Mechanics and Engineering, 167(1998)(1-2) 69-73. 

[18] He, J.H., Variational iteration method- a kind of non-linear analytical technique: Some examples, International Journal of Nonlinear Mechanics, 

34(4)(1999)  699-708. 

[19] He, J.H.,  A new approach to nonlinear partial differential equations. Communications in Nonlinear Science & Numerical Simulation, 2(4)(1997)  

230-235. 

[20]  He, J.H., Variational iteration method for autonomous ordinary differential systems. Applied Mathematics and Computation, 114(2-3)(1998)  115-

123.  

[21] He, J.H.., A simple perturbation approach to Blasius equation. Applied Mathematics and Computation, 140(2)(2-3)  217-222. 

[22] He, J.H., Perturbation Methods: Basic and Beyond, Elsevier., (2006). 

[23] He, J.H., Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics, 20(10)(2006)  1141-1199. 

[24] He, J.H., and Wu, X.H.., Variational iteration method: new development and applications. Comput. Math. Appl, 54(7/8)(2007) 881-894. 

[25] Abdou, M.A., and Soliman, A.A., Variational iteration method for solving Burger’s equation. Journal of Computational Applied Mathematics, 

181(2005)  245-251. 

[26] Wazwaz, A.M., The Variational iteration method for rational solutions for KDV, K (2,2), Burgers, and cubic Boussinesq equations. Journal of 

Computational Applied Mathematics, 207(2007)  18-23. 

[27] Wazwaz, A.M., A comparison between the variational iteration method and Adomian decomposition method. Journal of computational Applied 

Mathematics, 207(2007)  129-136. 

[28] Al-Jawary, M.A. and Al-Razaq, S.G., A Semi Analytical Iteration Technique for solving Duffing Equations. International Journal of Pure and 

Applied Mathematics, 18(2016) 871-885. 

[29] Farshad, E., Hadi, A., Farshad, E, F., and Rohoallah, M., An Iterative Method for solving Partial Differential Equations and solution of Korteweg-

Devries Equations for Showing the Capability of the Iterative Method. World Applied Programming, 3(2013) 320-327. 

[30] Temimi, H., and Ansari, A., A New Iterative Technique for Solving Nonlinear Second Multi-Point Boundary Value Problems. Applied 

Mathematics and Computation, 218(2011) 1457-1466. 



Liberty Ebiwareme / IJMTT, 67(2), 146-158, 2021 

 

158 

[31] Temimi, H., and Ansari, A.R., A Computational Iterative Method for Solving Nonlinear Ordinary Differential Equations. LMS Journal of 

Computational Mathematics, 18(2015) 730-753. 

[32] Al-Jawary, M.A. (2017). A Semi-Analytical Iterative Method for Solving Nonlinear Thin Film Flow Problems. Chaos Solitons and Fractals, 

99(2017) 52-56. 

[33] Wazwaz, A. M., and Gorguis, A., Exact Solutions for Heat-Like and Wave-Like Equations with Variable Coefficients. Applied Mathematics and 

Computation, 149(2004) 15-29. 

[34] Temimi, H., and Ansari, A.R.,  A semi-Analytical Iterative Technique for solving Nonlinear Problems. Computers and Mathematics with 

Applications, 61(2)(2011a)  203-210.  

 [35] Necdet, B., and Konuralp, A., The Use of Variational Iteration Method, Differential Transform method and Adomian Decomposition Method for 

Solving Different Types of Nonlinear Partial Differential Equations. International Journal of Nonlinear Science and Numerical Simulation, 

7(1)(2006)  65-70. 




