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Abstract - Let 𝑋 be a non – empty set.  In this paper is given a new space called the quasi weak – partial cone b - metric space 

𝑋. There are defined right (left) open balls, right (left) closed balls, right topology, left topology, right Cauchy sequences, left 

Cauchy sequences and right (left) convergent sequences in it. Furthermore, there is proved the existence and uniqueness of a 

fixed point related to a nonlinear contraction using a comparison function in 𝑋. Some results are obtain as corollaries. These 

results generalize some well – known theorems in quasi weak – partial cone metric space. In addition, as illustrations are 
given some examples. 
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I. INTRODUCTION 

          Fixed point theory plays an important role in many fields of Mathematics as Functional Analysis, Economy, 

Informatics, etc. The study of this theory has developed during the years. Its evolution is focused on two directions, 

ones the generalization of metric spaces and the other the improvement of contractive conditions. 
The authors in [1] expanded the metric space to cone metric space by replacing set of real numbers by a Banach 

space. The authors had studied fixed points in these spaces which complete Banach contractions and some other 

contractions. Many authors have worked on these spaces such as  [2], [3], [4], [5], [6].  

In 1994, Mathew [7] defined a new space which was called partial metric space. Later, in 1999 R.Heckmann [8], in 
his paper generalized partial metric spaces into weak- partial metric space. Many authors have worked related to 

fixed point in these spaces. ([9], [10], [11], [12], [13], [14]) 

          Brakat et al [15] have given an interesting new space, generalizing weak partial metric space in weak quasi – 
partial metric space.  

          In this paper is defined weak quasi – partial cone b - metric space and are shown some topologic aspects of it. 

Furthermore, are shown some fixed point theorems and corollaries in this space.  As applications of this theory, 

some results are illustrated by examples. Our obtained results are generalizations of some known results in metric 
space, cone metric space and partial metric space.  

 

II. PRELIMINARIES 
 

Definition 2.1 [1] Let 𝑃 be a nonempty subset of 𝐸, where 𝐸 is an ordered Banach space. The set 𝑃 is called cone if it satisfies 

the following conditions:  

1. 𝑃 ≠ {0} 

2. For every 𝑎, 𝑏 ∈ 𝑅, 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃, for each 𝑥, 𝑦 ∈ 𝑃 

3. For every 𝑥 ∈ 𝑃 then −𝑥 ∈ 𝑃. 

The cone 𝑃 is called normal [1] if for every 𝑥, 𝑦 ∈ 𝑃 such that 𝑥 ≪ 𝑦 then ‖𝑥‖ ≤ 𝐾‖𝑦‖, where 𝐾 > 0. K is called the 

normality constant of 𝑃. 

The authors in [1] have defined a partial ordering relation in cone 𝑃 as follows: 

For each 𝑥, 𝑦 ∈ 𝑃, 𝑥 ≤ 𝑦 only if 𝑦 − 𝑥 ∈ 𝑃 and  x < y if , 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. For every 𝑥, 𝑦 ∈ 𝑃, 𝑥 ≪ 𝑦 only if 𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃.  
 

Definition 2.2. [1] Let 𝑃 be a cone and 𝑋 a non – empty set. The map 𝑑: 𝑋 × 𝑋 → 𝑃 is called a cone metric if it satisfies the 

following conditions: 

1. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,  for every 𝑥, 𝑦 ∈ 𝑋, 
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2. For every 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 

3. For each 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). 

The ordered couple (𝑋, 𝑑) is called a cone metric space. 
 

Definition 2.3. [15] Let M be a non – empty set. The map ρ: M × M → R+ is called weak partial metric space if it accomplishes 

the following conditions:  

1. 𝜌(𝑠, 𝑠) = 𝜌(𝑠, 𝑡) if and only if 𝑠 = 𝑡, for every 𝑠, 𝑡 ∈ 𝑀, 

2. 𝜌(𝑠, 𝑠) ≤ 𝜌(𝑠, 𝑡), for each (𝑠, 𝑡) ∈ 𝑀2, 

3. 𝜌(𝑠, 𝑡) = 𝜌(𝑡, 𝑠), for each (𝑠, 𝑡) ∈ 𝑀2, 

4. 𝜌(𝑠, 𝑡) ≤ 𝜌(𝑠, 𝑧) + 𝜌(𝑧, 𝑡), for every 𝑠, 𝑡, 𝑧 ∈ 𝑀. 

 (𝑀, 𝜌) is called weak partial metric space. 

 

Definition 2.4. Let 𝑋 be a non – empty set and P a cone. The function 𝑞𝑤: 𝑋 × 𝑋 → 𝑃 is called quasi – weak partial cone b - 

metric if it satisfies the following conditions: 

1. 𝑞𝑤(𝑥, 𝑥) = 𝑞𝑤(𝑥, 𝑦) = 𝑞𝑤(𝑦, 𝑦) if and only if 𝑥 = 𝑦, for every 𝑥, 𝑦 ∈ 𝑋, 

2. 𝑞𝑤(𝑥, 𝑥) ≤ 𝑞𝑤(𝑥, 𝑦), for each (𝑥, 𝑦) ∈ 𝑋2, 

3. 𝑞𝑤(𝑥, 𝑦) ≤ 𝑠(𝑞𝑤(𝑥, 𝑧) + 𝑞𝑤(𝑧, 𝑦)), for every 𝑥, 𝑦, 𝑧 ∈ 𝑀 and 𝑠 ≥ 1. 

The ordered couple (X, qw) is called quasi weak partial cone b - metric space.  

 

Example 2.5. Let 𝐸 = 𝑅2, 𝑋 = 𝑅 and 𝑃 = {(𝑥, 𝑦) ∈ 𝐸, 𝑥, 𝑦 ≥ 0} be a cone. 

Define the map 𝑞𝑤: 𝑋 × 𝑋 → 𝑃 such that: 

𝑞𝑤(𝑥, 𝑦) = {
(𝑚𝑎𝑥{𝑥, 𝑦} ,

1

𝑦
−

1

𝑥
+ 𝑚𝑎𝑥{𝑥, 𝑦}), (𝑥, 𝑦) ≠ (0,0)

(0,0) (𝑥, 𝑦) = (0,0)

 

 

The map 𝑞𝑤 is a quasi – weak partial cone b - metric and (X, qw)  is quasi – weak partial cone metric space with 𝑠 ≥ 1. 

 

Below there is defined the topology and there are given some properties of quasi – weak partial cone metric space using the 

same methods as in  Sila E., 2015 [2] for p – quasi cone metric space. 

 

Definition 2.6. Let (𝑋, 𝑞𝑤) be a quasi – weak partial cone b - metric space.  

The set  

𝐵𝑤
𝑙 (𝑥, 𝑐) = {𝑦 ∈ 𝑋, 𝑞𝑤(𝑦, 𝑥) ≪ 𝑐 + 𝑞𝑤(𝑥, 𝑥)} 

 

is called left open ball centered in x with radius 𝑐 ≫ 0. 
The set  

𝐵𝑤
𝑟 (𝑥, 𝑐) = {𝑦 ∈ 𝑋, 𝑞𝑤(𝑥, 𝑦) ≪ 𝑐 + 𝑞𝑤(𝑥, 𝑥)} 

is called right open ball centered in x with radius 𝑐 ≫ 0. 
 

Definition 2.7. Let (𝑋, 𝑞𝑤) be a quasi – weak partial cone b -  metric space. 

The set  

 𝐵′𝑤
𝑙 (𝑥, 𝑐) = {𝑦 ∈ 𝑋, 𝑞𝑤(𝑦, 𝑥) ≤ 𝑐 + 𝑞𝑤(𝑥, 𝑥)} 

is called left closed ball centered in x with radius 𝑐 ≫ 0. 

The set  

  𝐵𝑤
′𝑟(𝑥, 𝑐) = {𝑦 ∈ 𝑋, 𝑞𝑤(𝑦, 𝑥) ≤ 𝑐 + 𝑞𝑤(𝑥, 𝑥)}. 

 

is called right closed ball centered in 𝑥 with radius 𝑐 ≫ 0. 

 

      Let (𝑋, 𝑞𝑤) be a quasi – weak partial cone b - metric space. 

Theorem 2.8 The family 𝜏𝑤
𝑟 = {𝜙, 𝑋, 𝐺 ⊂ 𝑋| for each 𝑥 ∈ 𝐺, there exists 𝐵𝑤

𝑟 (𝑥, 𝑐) ⊂ 𝐺} is a right topology of 𝑞𝑤. 

The topology 𝜏𝑤
𝑟  is called right topology obtained by 𝑞𝑤. 

 

Theorem 2.9 The family 𝜏𝑤
𝑙 = {𝜙, 𝑋, 𝐺 ⊂ 𝑋| for each 𝑥 ∈ 𝐺, there exists 𝐵𝑤

𝑙 (𝑥, 𝑐) ⊂ 𝐺} is a left topology of 𝑞𝑤. 

The topology 𝜏𝑤
𝑙  is called right topology obtained by the quasi weak partial cone metric 𝑞𝑤. 
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The following propositions are proved for the right topology  𝜏𝑤
𝑟   in (𝑋, 𝑞𝑤). 

 

Definition 2.10  The set 𝐴 ⊂ 𝑋 is called right open if 𝐴 ∈ 𝜏𝑤
𝑟 .  

 

Definition 2.11 The set 𝑉 ⊂ 𝑋 is called open neighborhood of point 𝑎 ∈ 𝑋 if there exists a right open ball 𝐵𝑤
𝑟 (𝑎, 𝑐) such that 

𝐵𝑤
𝑟 (𝑎, 𝑐) ⊂ 𝑉. 

 

Theorem 2.12 The topology 𝜏𝑤
𝑟  in (𝑋, 𝑞𝑤) accomplishes the first axiom of countability.  

 

Definition 2.13. Let (𝑋, 𝑞𝑤) be a quasi – weak partial cone b - metric space and {𝑥𝑛}𝑛∈𝑁 a sequence in it.  

 

1. The sequence {𝑥𝑛}𝑛∈𝑁 is called right convergent to 𝑥 ∈ 𝑋, if for each 𝑐 ≫ 0, there exists 𝑛0 ∈ 𝑁, such that for every 

𝑛 > 𝑛0 it yields 𝑞𝑑(𝑥𝑛 , 𝑥) ≪ 𝑐 + 𝑞(𝑥, 𝑥). This is denoted lim
𝑛→∞

𝑞𝑑(𝑥𝑛 , 𝑥) = 𝑞(𝑥, 𝑥) 

2. The sequence {𝑥𝑛}𝑛∈𝑁 is called left convergent to 𝑥 ∈ 𝑋, if for each 𝑐 ≫ 0, there exists 𝑛0 ∈ 𝑁, such that for every 

𝑛 > 𝑛0 it yields 𝑞𝑑(𝑥, 𝑥𝑛) ≪ 𝑐 + 𝑞(𝑥, 𝑥). This is denoted lim
𝑛→∞

𝑞𝑑(𝑥, 𝑥𝑛) = 𝑞(𝑥, 𝑥). 

3. The sequence {𝑥𝑛}𝑛∈𝑁 is called convergent to 𝑥 ∈ 𝑋, if it is right and left convergent to 𝑥 ∈ 𝑋. 

4. The sequence {𝑥𝑛}𝑛∈𝑁 is called left Cauchy, if for every 𝑛 < 𝑚 there exists lim
𝑛,𝑚→∞

𝑞𝑑(𝑥𝑛, 𝑥𝑚)  and it is finite. 

5. The sequence {𝑥𝑛}𝑛∈𝑁 is called right Cauchy, if for every 𝑛 < 𝑚 there exists 

lim
𝑛,𝑚→∞

𝑞𝑑(𝑥𝑚 , 𝑥𝑛)  and it is finite. 

6. The sequence {𝑥𝑛}𝑛∈𝑁 is called Cauchy, if it is right and left Cauchy. 

 

Definition 2.14. The space (𝑋, 𝑞𝑤) is called complete if every Cauchy sequence converges. 

 

Definition 2.15. [16] The map 𝜑: 𝑃 → 𝑃, where 𝑃 is a cone in a Banach space 𝐸, is called a comparison function if it satisfies: 

 1. for all t ∈ 𝑃, 𝜑(𝑡) < 𝑡, 

 2. for all 𝑡1, 𝑡2 ∈ 𝑃, 𝑡1 < 𝑡2 it yields 𝜑(𝑡1) < 𝜑(𝑡2) 

 3. lim
𝑛→∞

‖𝜑𝑛(𝑡)‖ = 0, for each 𝑡 ∈ 𝑃. 

 

III. Main results 

 

       Theorem 3.1. Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 

𝐾 ≥ 1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction:  

                   𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(max {𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 

where 𝜑: 𝑋 → 𝑃 is a comparison function. Then the function 𝑇 has a unique fixed point. 

Proof. Let 𝑥0 ∈ 𝑋 and {𝑥𝑛}𝑛∈𝑁 ∈ 𝑋 such that 𝑥𝑛 = 𝑇𝑥𝑛−1. 

If 𝑥𝑛 = 𝑥𝑛−1 = ⋯ = 𝑥1 = 𝑥0, then the theorem is true. 

Suppose that there exists 𝑖 ∈ 𝑁, 𝑥𝑖 ≠ 𝑥0. 

𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) = 𝑞𝑤(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1)
≤ 𝜑(max {𝑞𝑤(𝑥𝑛, 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛, 𝑥𝑛−1), 

 𝑞𝑤(𝑥𝑛, 𝑥𝑛)} = 𝜑(max {𝑞𝑤(𝑥𝑛, 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)}) 

 

Case 1.  
max {𝑞𝑤(𝑥𝑛 , 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛 , 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)} = 𝑞𝑤(𝑥𝑛, 𝑥𝑛) 

 

So the following inequality holds   

𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛 , 𝑥𝑛)) ≤ 𝜑2(𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1)) ≤ ⋯ ≤ 𝜑𝑛(𝑞𝑤(𝑥0, 𝑥0)). 

 
Case 2.  

max {𝑞𝑤(𝑥𝑛 , 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛 , 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)} = 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1) 

As a results 

 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1)) ≤ 𝜑2(𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1)) ≤ ⋯ ≤ 𝜑𝑛−1(𝑞𝑤(𝑥0, 𝑥0)). 

 

Case 3.  
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max {𝑞𝑤(𝑥𝑛 , 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛 , 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)} = 𝑞𝑤(𝑥𝑛, 𝑥𝑛−1) 

Consequently, it yields  

𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛 , 𝑥𝑛−1)) 

In this case there are two options either 

 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜑𝑛(𝑞𝑤(𝑥1, 𝑥0)) or  𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛, 𝑥𝑛−1) ≤ ⋯ ≤ 𝜑𝑛(𝑞𝑤(𝑥0, 𝑥0)) 

 

Case 4.  

max {𝑞𝑤(𝑥𝑛 , 𝑥𝑛), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛 , 𝑥𝑛−1), 𝑞𝑤(𝑥𝑛−1, 𝑥𝑛), 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)} = 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) 

As a results 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑(𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)). This case cannot happen because 𝜑(𝑡) < 𝑡, for each 𝑡 ∈ 𝑃. 

 

Consequently for each case the inequality 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ 𝜑𝑛(𝑐), where 𝑐 ∈ 𝑃 and 𝑛 ∈ 𝑁, holds. 

Since the cone 𝑃 is normal with constant of normality 𝐾, it yields:  
‖𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)‖ ≤ 𝐾‖𝜑𝑛(𝑐)‖. 

Taking limit in this inequality, it results 

lim
𝑛→+∞

‖𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)‖ ≤ 𝐾 lim
𝑛→+∞

‖𝜑𝑛(𝑐)‖ = 0. 

Consequently, lim
𝑛→+∞

𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) = 0. 

For 𝑛, 𝑘 ∈ 𝑁  
𝑞𝑤(𝑥𝑛+𝑘 , 𝑥𝑛) ≤ 𝑠(𝑞𝑤(𝑥𝑛+𝑘 , 𝑥𝑛+1) + 𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)) ≤ 𝑠2𝑞𝑤(𝑥𝑛+𝑘 , 𝑥𝑛+2) + 𝑠2𝑞𝑤(𝑥𝑛+2, 𝑥𝑛+1) + 𝑠𝑞𝑤(𝑥𝑛+1, 𝑥𝑛) ≤ ⋯

≤ 𝑠𝑘𝑞𝑤(𝑥𝑛+𝑘 , 𝑥𝑛+𝑘−1) + 𝑠𝑘−1𝑞𝑤(𝑥𝑛+𝑘−1, 𝑥𝑛+𝑘−2) + ⋯ + 𝑠𝑞𝑤(𝑥𝑛+1, 𝑥𝑛)
≤ 𝑠𝑘𝜑𝑛+𝑘(𝑐) + 𝑠𝑘−1𝜑𝑛+𝑘−1(𝑐) + ⋯ + 𝑠𝜑𝑛+1(𝑐)

≤ [𝑠𝑛+𝑘𝜑𝑛+𝑘(𝑐) + 𝑠𝑛+𝑘−1𝜑𝑛+𝑘−1(𝑐) + ⋯ + 𝑠𝑛+1𝜑𝑛+1(𝑐) ]
1

𝑠𝑛
≤

1

𝑠𝑛
 
𝑠𝑛+1 (1 − (𝑠𝜑(𝑐))

𝑘
) 𝜑𝑛(𝑐)

1 − 𝑠𝜑(𝑐)

≤
𝑠𝜑𝑛(𝑐)

1 − 𝑠𝜑(𝑐)
 

 

‖𝑞𝑤(𝑥𝑛+𝑘 , 𝑥𝑛)‖ ≤ 𝐾 ‖
𝑠𝜑𝑛(𝑐)

1 − 𝑠𝜑(𝑐)
‖ 

Taking limit of both sides lim
𝑛,𝑘→+∞

‖𝑞𝑑(𝑥𝑛+𝑘 , 𝑥𝑛)‖ ≤ 𝐾 lim
𝑛→+∞

‖
𝑠𝜑𝑛(𝑐)

1−𝑠𝜑(𝑐)
‖ = 0 

 

Consequently, the sequence {𝑥𝑛}𝑛∈𝑁is left Cauchy. 

Using the same technique it can be shown that the sequence {𝑥𝑛}𝑛∈𝑁 is right Cauchy. As a result the sequence {𝑥𝑛}𝑛∈𝑁 is 

Cauchy. Since the space (𝑋, 𝑞𝑑) is complete then the sequence  {𝑥𝑛}𝑛∈𝑁 converges to 𝑢 ∈ 𝑋, so lim
𝑛→+∞

𝑇𝑥𝑛 = 𝑢. 

The next step is to show thar 𝑢 is a fixed point of 𝑇, 𝑇𝑢 = 𝑢.  

Since lim
𝑛→+∞

𝑞𝑤(𝑇𝑥𝑛 , 𝑢) = 𝑞𝑤(𝑢, 𝑢) and the map 𝑇 is continuous lim
𝑛→+∞

𝑞𝑤(𝑇(𝑇𝑥𝑛−1), 𝑢) = 𝑞𝑤(𝑇𝑢, 𝑢). Due to the fact that the 

space is Hausdorff, it yields 𝑞𝑤(𝑇𝑢, 𝑢) = 𝑞𝑤(𝑢, 𝑢). As a result 𝑇𝑢 = 𝑢 and 𝑢 is a fixed point of 𝑇. 

Below is shown the uniqueness of the fixed point 𝑢. 

Let 𝑣 ∈ 𝑋 , 𝑣 ≠ 𝑢, another fixed point of map 𝑇, so 𝑇𝑣 = 𝑣.  

𝑞𝑤(𝑢, 𝑣) = 𝑞𝑤(𝑇𝑢, 𝑇𝑣) ≤ 𝜑(max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢), 𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑣, 𝑢)})
= 𝜑(max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢)}) 

Case 1. max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢)} = 𝑞𝑤(𝑢, 𝑢) 

𝑞𝑤(𝑢, 𝑣) ≤ 𝜑(𝑞𝑤(𝑢, 𝑢)) < 𝑞𝑤(𝑢, 𝑢) 

This case cannot happen and 𝑢 = 𝑣. 
 

Case 2. max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢)} = 𝑞𝑤(𝑣, 𝑣) 

𝑞𝑤(𝑢, 𝑣) ≤ 𝜑(𝑞𝑤(𝑣, 𝑣)) < 𝑞𝑤(𝑣, 𝑣) 

This case cannot happen and 𝑢 = 𝑣. 

 

Case 3. max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢)} = 𝑞𝑤(𝑢, 𝑣) 

 

𝑞𝑤(𝑢, 𝑣) ≤ 𝜑(𝑞𝑤(𝑢, 𝑣)) < 𝑞𝑤(𝑢, 𝑣) 
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Case 4. max{𝑞𝑤(𝑢, 𝑢), 𝑞𝑤(𝑣, 𝑣), 𝑞𝑤(𝑢, 𝑣), 𝑞𝑤(𝑣, 𝑢)} = 𝑞𝑤(𝑣, 𝑢) 

It is true that  𝑞𝑤(𝑢, 𝑣) < 𝑞𝑤(𝑣, 𝑢). 

Furthermore 𝑞𝑤(𝑣, 𝑢) < 𝑞𝑤(𝑢, 𝑣). Consequently 𝑞𝑤(𝑣, 𝑢) = 𝑞𝑤(𝑢, 𝑣) and it happens only when 𝑢 = 𝑣. 

As a result, 𝑢 is a unique fixed point of 𝑇. 

 

The following example illustrates Theorem 3.1. 

 

Example 3.2. Let 𝑃 = {(𝑥, 𝑦) ∈ 𝑅2, 𝑥, 𝑦 > 0} be a cone with 𝐾 = 1 and  𝑋 = [0,1]. 
Define the map 𝑞𝑤: 𝑋 × 𝑋 ⟶ 𝑃 such that:  

𝑞𝑤(𝑥, 𝑦) = {
(max{𝑥, 𝑦} , min {

1

𝑥
−

1

𝑦
,
1

𝑦
−

1

𝑥
} + max{𝑥, 𝑦}), (𝑥, 𝑦) ≠ (0,0)

(0,0), 𝑥 = 𝑦 = 0

 

𝑞𝑤(𝑥, 𝑦) is a quasi – weak partial cone metric and (𝑋, 𝑞𝑤) is quasi – weak partial cone metric space. 

Let 𝑇: 𝑋 ⟶ 𝑋, 𝑇𝑥 =
𝑥

6
 be a continuous map and 𝜑: 𝑋 ⟶ 𝑋 × 𝑋 a comparison function such that 𝜑(𝑥) = (

𝑥

3
,

𝑥

3
). 

Below is shown that the map 𝑇 completes the nonlinear contraction condition of Theorem 3.1. 

For this are taken the following cases: 

Case 1. 𝑥 < 𝑦 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) = 𝑞𝑤 (
𝑥

6
,
𝑦

6
) = (max {

𝑥

6
,
𝑦

6
} , min {

6

𝑥
−

6

𝑦
,
6

𝑦
−

6

𝑥
} + max {

𝑥

6
,
𝑦

6
}) = (

𝑦

6
,
6(𝑥 − 𝑦)

𝑥𝑦
+

𝑦

6
) < (

𝑦

6
,
𝑦

6
) 

𝜑(max{𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 

= 𝜑 (max {(𝑥, 𝑥), (𝑦, 𝑦), (𝑦,
(𝑥 − 𝑦)

𝑥𝑦
+ 𝑦) , (𝑦,

(𝑥 − 𝑦)

𝑥𝑦
+ 𝑦) , (𝑥,

−5

𝑥
+ 𝑥) , (𝑦,

−5

𝑦
+ 𝑦) , (𝑦,

1

𝑥
−

6

𝑦
+ 𝑦) or (𝑦,

6

𝑦
−

1

𝑥
+ 𝑦)})

= (
𝑦

3
,
𝑦

3
) 

Consequenlty,  

𝑞𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝜑(max{𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 
 

Case 2. 𝑦 < 𝑥 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) = 𝑞𝑤 (
𝑥

6
,
𝑦

6
) = (max {

𝑥

6
,
𝑦

6
} , min {

6

𝑥
−

6

𝑦
,
6

𝑦
−

6

𝑥
} + max {

𝑥

6
,
𝑦

6
}) = (

𝑥

6
,
6(𝑦 − 𝑥)

𝑥𝑦
+

𝑥

6
) < (

𝑥

6
,
𝑥

6
) 

𝜑(max{𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 

= 𝜑 (max {(𝑥, 𝑥), (𝑦, 𝑦), (𝑥,
(𝑦 − 𝑥)

𝑥𝑦
+ 𝑥) , (𝑥,

(𝑦 − 𝑥)

𝑥𝑦
+ 𝑥) , (𝑥,

−5

𝑥
+ 𝑥) , (𝑦,

−5

𝑦
+ 𝑦) , (𝑥,

1

𝑥
−

6

𝑦
+ 𝑥) 𝑜𝑟(𝑥,

6

𝑦
−

1

𝑥
+ 𝑥) })

= (
𝑥

3
,
𝑥

3
) 

As a result,  

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤  𝜑(max{𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 
 

Case 3. 𝑥 = 𝑦 ≠ 0 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) = 𝑞𝑤 (
𝑥

6
,

𝑥

6
) = (

𝑥

6
,

𝑥

6
) < (

𝑥

3
,

𝑥

3
) = 𝜑(max{𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 

 

Case 4. 𝑥 = 𝑦 = 0 

This is a trivial case. 

Since the map 𝑇 accomplishes the condition of  Theorem 3.1, it has a unique fixed point 𝑥 = 0. 
 

Corollary 3.3 Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 𝐾 ≥
1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction: 

  𝑞𝑤(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝜑(𝑞𝑤(𝑥, 𝑦))  

where 𝜑: 𝑃 → 𝑃 is a comparison function, then the map 𝑇 has a unique fixed point. 
Proof. 

𝑞𝑤(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝜑(𝑞𝑤(𝑥, 𝑦)) ≤ 𝜑(max {𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}) 

This accomplishes the conditions of Theorem 3.1, consequently the map 𝑇 has a unique fixed point.  
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Corollary 3.4. Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 𝐾 ≥
1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction: 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ ℎ max {𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)} 

where 𝑥, 𝑦 ∈ 𝑋 and 0 < ℎ < 1, then the map 𝑇 has a unique fixed point. 

 

Proof. Taking 𝜑(𝑡) = ℎ𝑡, in Theorem 3.1, it yields that the map 𝑇 has a unique fixed point. 

 

Remark 3.5. Corollary 3.4 generalizes the results of Ciric Lj. B. (1974)[17] in quasi – weak partial cone b - metric space. 

 

Corollary 3.6. Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 𝐾 ≥
1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction: 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ 𝜆1 𝑞𝑤(𝑥, 𝑥) + 𝜆2 𝑞𝑤(𝑦, 𝑦) + 𝜆3 𝑞𝑤(𝑥, 𝑦) + 𝜆4 𝑞𝑤(𝑦, 𝑥) + 𝜆5 𝑞𝑤(𝑇𝑥, 𝑥) + 𝜆6 𝑞𝑤(𝑇𝑦, 𝑦) + 𝜆7 𝑞𝑤(𝑥, 𝑇𝑦) 

where 𝑥, 𝑦 ∈ 𝑋 and 0 < 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 <
1

7
, then the map 𝑇 has a unique fixed point. 

Proof. From the contraction condition, it yields  

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ 𝜆1 𝑞𝑤(𝑥, 𝑥) + 𝜆2 𝑞𝑤(𝑦, 𝑦) + 𝜆3 𝑞𝑤(𝑥, 𝑦) + 𝜆4 𝑞𝑤(𝑦, 𝑥) + 𝜆5 𝑞𝑤(𝑇𝑥, 𝑥) + 𝜆6 𝑞𝑤(𝑇𝑦, 𝑦) + 𝜆7 𝑞𝑤(𝑥, 𝑇𝑦)
≤ (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7)(𝑞𝑤(𝑥, 𝑥) + 𝑞𝑤(𝑦, 𝑦) + 𝑞𝑤(𝑥, 𝑦) + 𝑞𝑤(𝑦, 𝑥) + 𝑞𝑤(𝑇𝑥, 𝑥)
+ 𝑞𝑤(𝑇𝑦, 𝑦) + 𝑞𝑤(𝑥, 𝑇𝑦)) 

                                  ≤ 7(𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7)max {𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 
                                                     𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)} 

Denoting 7(𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7) = ℎ, 0 < ℎ < 1, it completes the contraction condition of Corollary 3.4. As a 

result, the map 𝑇 has a unique fixed point. 

 

Remark 3.7. Corollary 3.6 is a generalization of theorem Hardy-Rogers (1973) [18] in quasi – weak partial cone b - metric 

space. 

 

Corollary 3.8. Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 𝐾 ≥
1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction: 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ ℎ max { 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦)} 

where 𝑥, 𝑦 ∈ 𝑋 and 0 < ℎ < 1, then the map 𝑇 has a unique fixed point. 

 

Remark 3.9. Corollary 3.8 generalizes theorem of  Bianchini R. M. T. (1972) [19] quasi – weak partial cone b - metric space. 

 

Corollary 3.10. Let (𝑋, 𝑞𝑤) be a Hausdorff complete quasi – weak partial cone b - metric space with constant of normality 𝐾 ≥
1 and 𝑇: 𝑋 → 𝑋 a continuous map which satisfies the following nonlinear contraction: 

𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ ℎ 𝑞𝑤(𝑥, 𝑦) 

where 𝑥, 𝑦 ∈ 𝑋 and 0 < ℎ < 1, then the map 𝑇 has a fixed point. 
Proof.  
𝑞𝑤(𝑇𝑥, 𝑇𝑦) ≤ ℎ 𝑞𝑤(𝑥, 𝑦) ≤ ℎ max {𝑞𝑤(𝑥, 𝑥), 𝑞𝑤(𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑦), 𝑞𝑤(𝑦, 𝑥), 𝑞𝑤(𝑇𝑥, 𝑥), 𝑞𝑤(𝑇𝑦, 𝑦), 𝑞𝑤(𝑥, 𝑇𝑦)}. 

It completes the contraction of Corollary 3.4 so the map 𝑇 has a unique fixed point. 

 

Remark 3.11. Corollary 3.10 generalizes Theorem of Banach (Huang L.G., Zhang X. 2007) [1] in  quasi – weak partial cone b - 

metric space. 

IV. CONCLUSIONS 

This paper is a contribution in Fixed Point Theory. It gives a new space called quasi – weak partial cone b - metric space 

which is a generalization of cone metric space. There are defined right and left topologies and Cauchy convergences in  this 

space. Furthermore, there is proved an important result which emphasizes the existance and uniqueness of a fixed point for a 

nonlinear contraction functions. In addition, there are obtained some corollaries which generalize some well – known results. 
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