Bipolar Pythagorean Fuzzy Regular α Generalized Closed Sets

S.Nithiyapriya ${ }^{\# 1}$, S.Maragathavalli ${ }^{* 2}$
${ }^{\# 1}$ Research Scholar, Government Arts College, Udumalpet,India
${ }^{* 2}$ Assistant Professor, Government Arts College, Udumalpet,India

Abstract

In this paper, The concept of Regular α Generalized Closed sets in Bipolar Pythagorean Fuzzy Topological Spaces are studied. We introduce the concept of Bipolar Pythagorean Fuzzy Regular a Generalized Open Sets. Some interesting properties are investigated with some examples.

Keywords : Bipolar Pythagorean Fuzzy Sets, Bipolar Pythagorean Fuzzy Topology, Bipolar Pythagoren Fuzzy Regular α Generalized Closed Sets, Bipolar Pythagorean Fuzzy Regular α Generalized Open Sets.

I. INTRODUCTION

The fuzzy concept has invaded almost all branches of mathematics ever since the introduction of fuzzy sets by L.A. Zadeh [12]. Fuzzy sets have appilications in many field such as information and control. The theory of fuzzy topological space was introduced and developed by C.L. Chang[6] and since then various notions in classical topology have been extended to fuzzy topological space. The idea of intuitionistic fuzzy set was first published by Atanassov [2] and many works by the same author and his colleagues appeared in the literature. Yager [3] proposed another class of nonstandard fuzzy sets, called Pythagorean fuzzy sets and Murat Olgun, Mehmet Ünver, Seyhmus Yardimci[16] introduced the notion of Pythagorean fuzzy topological spaces. Zhang [14] introduced the extension of fuzzy set with bipolarity, called Bipolar value fuzzy sets. Bosc and Pivert[10] said that Bipolarity refers to the propensity of the human mind to reason and make decisions on the basis of positive and negative effects. In bipolar valued fuzzy set, the interval of membership value is $[-1,1]$. The positive membership degrees represents the possibilities of something to be happened whereas the negative membership degrees represents the impossibilities. Azhzgappan and Kamaraj[15] investigated Bipolar Fuzzy Topological Spaces. Kim et al[9]constructed bipolar fuzzy set and preserving mappings between them and studied it in the sense of a topological universe. Mohana[13] has introduced the bipolar pythagorean fuzzy π generalized pre-closed sets. In this paper we introduce bipolar pythagorean fuzzy α generalized closed set and bipolar pythagorean fuzzy α generalized open set in bipolar pythagorean fuzzy topological spaces.

II. PRELIMINARIES

Definition 2.1: Let X be the non empty universe of discourse. A fuzzy set A in $\mathrm{X}, A=\left\{\left(x, \mu_{A}(x)\right): x \in X\right\}$ where $\mu_{A}: X \rightarrow$ $[0,1]$ is the membership function of the fuzzy set $\mathrm{A} ; \mu_{A}(x) \in[0,1]$ is the membership of $x \in X$.

Definition 2.2: Let X be the non empty universe of discourse. An Intuitionistic fuzzy $\operatorname{set}(\mathrm{IFS}) \mathrm{A}$ in X is given by $\mathrm{A}=\left\{x, \mu_{A}(x), v_{A}(x): x \in X\right\}$ where the functions $\mu_{A}(x) \in[0,1]$ and $v_{A}(x) \in[0,1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A, respectively, and $0 \leqslant \mu_{A}(x)+v_{A}(x) \leqslant 1$ for each $x \in X$. The degree of indeterminacy $I_{A}=1-\left(\mu_{A}(x)+v_{A}(x)\right)$ for each $x \in X$.

Definition 2.3: Let X be the non empty universe of discourse. A Pythagorean fuzzy $\operatorname{set}(\mathrm{PFS}) \mathrm{P}$ in X is given by $\mathrm{P}=\left\{\left\langle x, \mu_{P}(x), v_{P}(x)\right\rangle: x \in X\right\}$ where the functions $\mu_{P}(x) \in[0,1]$ and $v_{P}(x) \in[0,1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set P , respectively, and $0 \leqslant \mu_{P}^{2}(x)+v_{P}^{2}(x) \leqslant 1$ for each $x \in X$. The degree of indeterminacy $I_{P}=\sqrt{1-\left(\mu_{P}^{2}(x)+v_{P}^{2}(x)\right)}$ for each $x \in X$.

Definition 2.4: Let X be a non empty set. A Bipolar Pythagorean Fuzzy Set $A=\left\{\left(x, \mu_{A}^{+}, \mu_{A}^{-}, v_{A}^{+}, v_{A}^{-}\right): x \in X\right\}$ where $\mu_{A}^{+}: X \rightarrow$ $[0,1], v_{A}^{+}: X \rightarrow[0,1], \mu_{A}^{-}: X \rightarrow[-1,0], v_{A}^{-}: X \rightarrow[-1,0]$ are the mappings such that $0 \leqslant\left(\mu_{A}^{+}(x)\right)^{2}+\left(v_{A}^{+}(x)\right)^{2} \leqslant 1$ and $-1 \leqslant$ $\left(\mu_{A}^{-}(x)\right)^{2}+\left(v_{A}^{-}(x)^{2} \leqslant 0\right.$ where
$\mu_{A}^{+}(x)$ denote the positive membership degree.
$v_{A}^{+}(x)$ denote the positive non membership degree.
$\mu_{A}^{-}(x)$ denote the negative membership degree.
$\nu_{A}^{-}(x)$ denote the negative non membership degree.
Definition 2.5: Let $A=\left\{\left\langle x, \mu_{A}^{+}(x), v_{A}^{+}(x), \mu_{A}^{-}(x), v_{A}^{-}(x)\right\rangle: x \in X\right\}$ and $B=\left\{\left\langle x, \mu_{B}^{+}(x), v_{B}^{+}(x), \mu_{B}^{-}(x), v_{B}^{-}(x)\right\rangle: x \in X\right\}$ be two Bipolar Pythagorean Fuzzy sets over X. Then,
(i) The Bipolar Pythagorean fuzzy Complement of A is defined by

$$
A^{c}=\left\{\left\langle x, v_{A}^{+}(x), \mu_{A}^{+}(x), v_{A}^{-}(x), \mu_{A}^{-}(x)\right\rangle: x \in X\right\}
$$

(ii) The Bipolar Pythagorean fuzzy intersection of A and B is defined by $A \cap B=\left\{\left\langle x, \min \left\{\mu_{A}^{+}(x), \mu_{B}^{+}(x)\right\}, \max \left\{v_{A}^{+}(x), v_{B}^{+}(x)\right\}, \max \left\{\mu_{A}^{-}(x), \mu_{B}^{-}(x)\right\}, \min \left\{v_{A}^{-}(x), v_{B}^{-}(x)\right\}\right\rangle: x \in X\right\}$
(iii) The Bipolar Pythagorean fuzzy union of A and B is defined by
$A \cup B=\left\{\left\langle x, \max \left\{\mu_{A}^{+}(x), \mu_{B}^{+}(x)\right\}, \min \left\{v_{A}^{+}(x), v_{B}^{+}(x)\right\}, \min \left\{\mu_{A}^{-}(x), \mu_{B}^{-}(x)\right\}, \max \left\{v_{A}^{-}(x), v_{B}^{-}(x)\right\}\right\rangle: x \in X\right\}$
(iv) A is a Bipolar Pythagorean subset of B and write $A \subseteq B$ if $\left.\mu_{A}^{+}(x) \leqslant \mu_{B}^{+}(x), v_{A}^{+}(x) \geqslant v_{B}^{+}(x), \mu_{A}^{-}(x) \geqslant \mu_{B}^{-}(x), v_{A}^{-}(x) v_{B}^{-}(x)\right\rangle$ for each $x \in X$.
(v) $0_{X}=\{\langle x, 0,1,0,-1\rangle: x \in X\}$ and $1_{X}=\{\langle x, 1,0,-1,0\rangle: x \in X\}$.

Definition 2.6: Bipolar Pythagorean Fuzzy Topological Spaces: Let $X \neq \emptyset$ be a set and τ_{p} be a family of Bipolar Pythagorean fuzzy subsets of X. If
$T_{1} \quad 0_{X}, 1_{X} \in \tau_{p}$.
$T_{2} \quad$ For any $P_{1}, P_{2} \in \tau_{p}$, we have $P_{1} \cap P_{2} \in \tau_{p}$.
$T_{3} \quad \cup P_{i} \in \tau_{p}$ for arbitrary family $\left\{P_{i}\right.$ such that $\left.i \in J\right\} \subseteq \tau_{p}$.
Then τ_{p} is called Bipolar Pythagorean Fuzzy Topology on X and the pair $\left(X, \tau_{p}\right)$ is said to be Bipolar Pythagorean Fuzzy Topological space. Each member of τ_{p} is called Bipolar Pythagorean fuzzy open set(BPFOS). The complement of a Bipolar Pythagorean Fuzzy open set is called a Bipolar Pythagorean fuzzy Closed set(BPFCS).

Definition2.7: Let $\left(X, \tau_{p}\right)$ be a BPFTS and $P=\left\{\left\langle x, \mu_{A}^{+}(x), v_{A}^{+}(x), \mu_{A}^{-}(x), v_{A}^{-}(x)\right\rangle: x \in X\right\}$ be a BPFS over X . Then the Bipolar Pythagorean Fuzzy Interior, Bipolar Pythagorean Fuzzy Closure of P are defined by:
(i) $\operatorname{BPFint}(\mathrm{P})=\cup\left\{G / G\right.$ is a BPFOS in $\left(X, \tau_{p}\right)$ and $\left.G \subseteq P\right\}$.
(ii) $\operatorname{BPFcl}(\mathrm{P})=\cap\left\{K \quad / K\right.$ is a BPFCS in $\left(X, \tau_{p}\right)$ and $\left.P \subseteq K\right\}$.

It is clear that
a. BPFint (P) is the biggest Bipolar Pythagorean Fuzzy Open set contained in P.
b. $\mathrm{BPFcl}(\mathrm{P})$ is the smallest Bipolar Pythagorean Fuzzy Closed set containing P.

Definition 2.8: Let $\left(X, \tau_{p}\right)$ be a BPFTS and A, B be two Bipolar Pythagorean Fuzzy sets in X. Then Bipolar Pythagorean Fuzzy Interior holds the following properties:
a) $\operatorname{int}(A) \subseteq A$
b) $A \subseteq B \Rightarrow \operatorname{int}(A) \subseteq \operatorname{int}(B)$
c) $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$
d) $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$
e) $\operatorname{int}\left(0_{A}\right)=0_{A}$
f) $\operatorname{int}\left(1_{A}\right)=1_{A}$
g) $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$

Definition 2.9: Let $\left(X, \tau_{p}\right)$ be a BPFTS and A, B be two Bipolar Pythagorean Fuzzy sets in X. Then Bipolar Pythagorean Fuzzy Interior holds the following properties:
a) $A \subseteq \operatorname{cl}(A)$
b) $A \subseteq B \Longrightarrow c l(A) \subseteq c l(B)$
c) $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$
d) $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$
e) $\operatorname{cl}\left(0_{A}\right)=0_{A}$
f) $\operatorname{cl}\left(1_{A}\right)=1_{A}$
g) $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B)$

Definition 2.10: If BPFS $A=\left\{\left\langle x, \mu_{A}^{+}(x), v_{A}^{+}(x), \mu_{A}^{-}(x), v_{A}^{-}(x)\right\rangle: x \in X\right\}$ in a $\operatorname{BPTS}\left(X, \tau_{p}\right)$ is said to be
(a) Bipolar Pythagorean Fuzzy Semi closed set (BPFSCS) if $\operatorname{int}(\operatorname{cl}(A)) \subseteq A$
(b) Bipolar Pythagorean Fuzzy Semi open set (BPFSOS) if $A \subseteq \operatorname{cl}(\operatorname{int}(A))$
(c) Bipolar Pythagorean Fuzzy Pre-closed set(BPFPCS) if $\operatorname{cl}(\operatorname{int}(A)) \subseteq A$
(d) Bipolar Pythagorean Fuzzy Pre-open set(BPFPOS) if $A \subseteq \operatorname{int}(c l(A))$
(e) Bipolar Pythagorean Fuzzy α closed set (BPFR $\alpha \mathrm{CS})$ if $c l(\operatorname{int}(c l(A)) \subseteq A$
(f) Bipolar Pythagorean Fuzzy α open set $(\mathrm{BPF} \alpha \mathrm{OS})$ if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))$
(g) Bipolar Pythagorean Fuzzy γ closed set $(\mathrm{BPF} \gamma \mathrm{CS})$ if $A \subseteq \operatorname{int}(\operatorname{cl}(A) \cup \operatorname{cl}(\operatorname{int}(A))$
(h) Bipolar Pythagorean Fuzzy γ open set $(\mathrm{BPF} \gamma \mathrm{OS})$ if $\operatorname{cl}(\operatorname{int}(A) \cup \operatorname{int}(\operatorname{cl}(A)) \subseteq A$
(i) Bipolar Pythagorean Fuzzy regular closed set (BPFRCS) if $A=\operatorname{cl}(\operatorname{int}(A))$
(j) Bipolar Pythagorean Fuzzy regular open set (BPFROS) if $A=\operatorname{int}(\operatorname{cl}(A))$
(k) If BPF set A of a BPFTS $\left(X, \tau_{p}\right)$ is a Bipolar Pythagorean Fuzzy Generalized $\operatorname{closed} \operatorname{set}(\mathrm{BPFGCS})$, if $c l(A) \subseteq U$ whenever $A \subseteq U$ and U is BPFOS in X .
(1) If BPF set A of a BPFTS $\left(X, \tau_{p}\right)$ is a Bipolar Pythagorean Fuzzy Generalized open set(BPFGOS), if A^{c} is a BPFGCS in X.
(m) If BPF set A of a BPFTS $\left(X, \tau_{p}\right)$ is a Bipolar Pythagorean Fuzzy Regular Generalized $\operatorname{closed} \operatorname{set}($ BPFRGCS $)$, if $c l(A) \subseteq$ U whenever $A \subseteq U$ and U is BPFROS in X .
(n) If BPF set A of a BPFTS $\left(X, \tau_{p}\right)$ is a Bipolar Pythagorean Fuzzy Regular Generalized open set(BPFRGOS), if A^{c} is a BPFRGCS in X .

III. BIPOLAR PYTHAGOREAN FUZZY REGULAR α GENERALIZED CLOSED SETS

In this paper we define,
(i) Bipolar Pythagorean Fuzzy Regular α Generalized Closed sets shortly as BPFR α GCS and
(ii) Bipolar Pythagorean Fuzzy Regular α Generalized Open sets as BPFR α GOS.

Definition 3.1: A Bipolar Pythagorean Fuzzy Set A of a Bipolar Pythagorean Fuzzy Topological Space (X, τ_{p}) is called Bipolar Pythagorean Regular α Generalized closed set (BPFR α GCS in short), if $\alpha c l(A) \subseteq U$ whenever $A \subseteq U$ and U is BPF regular open set in X .

Example 3.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on X , where $\mathrm{T}=(\mathrm{x},(0.3,0.2),(0.5,0.6),(-0.4,-0.3),(-0.7,-0.4))$. Then the BPFS A=(x, $(0.5,0.3),(0.3,0.3),(-0.7,-0.2),(-0.5,-0.7))$ is a BPFR $\alpha \operatorname{GCS}$ in $\left(X, \tau_{p}\right)$.

Proposition 3.3: Every BPFCS is BPFR $\alpha \mathrm{GCS}$ in X but not conversely.
Proof: Let U be a BPF regular open set in X such that $A \subseteq U$. Since A is $\operatorname{BPFCS}, \operatorname{cl}(\mathrm{A})=\mathrm{A} . \operatorname{\alpha cl}(A)=A \cup \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))=$ $A \cup \operatorname{cl}(\operatorname{int}(A)) \subseteq A \cup \operatorname{cl}(A)=A \cup A=A \subseteq U$. Thus A is BPFR $\alpha \mathrm{GCS}$ in X.

Example 3.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5),(-$ $0.5,-0.4)$) and $T_{2}=(x,(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then A $=(x,(0.2,0.3),(0.6,0.9),(-$ $0.3,-0.4),(-0.6,-0.6))$ is a BPFR $\alpha \mathrm{GCS}$, but A is not a BPFCS in X .

Proposition 3.5: Every BPFRCS is a BPFR $\alpha \mathrm{GCS}$, but not conversely.
Proof: Let U be a BPF regular open set in X such that $A \subseteq U$. Since every BPF regular closed set is BPFCS, $\mathrm{cl}(\mathrm{A})=\mathrm{A}$. By hypothesis, $\alpha c l(A)=A \cup \operatorname{cl}(\operatorname{int}(c l(A)))=A \cup \operatorname{cl}(\operatorname{int}(A)) \subseteq A \cup \operatorname{cl}(A)=A \cup A=A \subseteq U$. Hence $\alpha c l(A) \subseteq U$. Thus, A is BPFR $\alpha \mathrm{GCS}$ in X .

Example 3.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5)$, (-$0.5,-0.4)$) and $T_{2}=(x,(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then A $=(x,(0.2,0.3),(0.6,0.9),(-$ $0.3,-0.4),(-0.6,-0.6))$ is a BPFR α GCS. But $\operatorname{cl}(\operatorname{int}(\mathrm{A}))=0 \sim \neq A$. Therefore, A is not a BPFRCS in X .

Proposition 3.7: Every $\mathrm{BPF} \alpha \mathrm{CS}$ is a $\mathrm{BPFR} \alpha \mathrm{GCS}$, but not conversely.
Proof: Let U be a BPF regular open set in X such that $A \subseteq U$. Since A is BPF α closed set, $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq A$. By hypothesis,
$\alpha c l(A)=A \cup c l(\operatorname{int}(c l(A))) \subseteq A \cup A=A \subseteq U$. Hence $\alpha c l(A) \subseteq U$. Thus, A is BPFR α GCS in X.
Example 3.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5),(-$ $0.5,-0.4)$) and $T_{2}=(\mathrm{x},(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.2,0.3),(0.6,0.9),(-$ $0.3,-0.4),(-0.6,-0.6))$ is a $\operatorname{BPFR} \alpha \mathrm{GCS}$. But $\operatorname{cl}\left(\operatorname{int}\left((\mathrm{cl}(\mathrm{A}))=T_{1}^{c} \nsubseteq A\right.\right.$. Therefore, A is not a $\mathrm{BPF} \alpha \mathrm{CS}$ in X .

Proposition 3.9: The union of two BPFR $\alpha \mathrm{GCS}$ is BPFR $\alpha \mathrm{GCS}$ in X .
Proof: Let A and B be the BPFR α GCS in X. Let $A \cup B \subseteq U$, where U is BPF regular open in X. Then $A \subseteq U$ and $B \subseteq U$, where U is BPF regular open, which implies $\alpha c l(A) \subseteq U$ and $\alpha c l(B) \subseteq U$, this implies $\alpha c l(A \cup B) \subseteq U$, since $c l(A \cup B)=$ $c l(A) \cup c l(B)$. Hence $(A \cup B)$ is also a BPFR $\alpha G C S$ in X .

Remark 3.10: The intersection of two BPFR $\alpha \mathrm{GCS}$ is not BPFR $\alpha \mathrm{GCS}$ in X as shown in the following Example.
Example 3.11: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $\mathrm{T}=(\mathrm{x},(0.5,0.3),(0.6,0.5),(-0.5,-0.3),(-0.7$, $-0.8)$). Then the BPFS A $=(x,(0.3,0.1),(0.7,0.4),(-0.5,-0.6),(-0.7,-0.4))$ and $\mathrm{B}=(\mathrm{x},(0.6,0.2),(0.3,0.7),(-0.8,-0.3),(-0.3$, $-0.9)$) is a BPFR $\alpha \mathrm{GCS}, A \cap B$ is not a BPFR $\alpha \mathrm{GCS}$ in X.

Remark 3.12: Every BPFR α GCS and BPFPCS in X are independent to each other.
Example 3.13: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.6),(0.3,0.4),(-0.6,-0.7),(-$ $0.5,-0.7)$) and $T_{2}=(\mathrm{x},(0.2,0.3),(0.7,0.7),(-0.3,-0.4),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.3,0.3),(0.5,0.4),(-$ $0.4,-0.6),(-0.5,-0.3)$) is a BPFR $\alpha \mathrm{GCS}$, but A is not a BPFPCS in X .

Example 3.14: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.3,0.4),(0.8,0.7),(-0.4,-0.5),(-$ $0.7,-0.8)$) and $T_{2}=(\mathrm{x},(0.8,0.9),(0.3,0.2),(-0.3,-0.3),(-0.6,-0.6))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.1,0.2),(0.8,0.7),(-$ $0.1,-0.2),(-0.8,-0.9)$) is a BPFPCS, but A is not a BPFR $\alpha \mathrm{GCS}$ in X .

Remark 3.15: Every BPFR α GCS and BPFSCS in X are independent to each other.
Example 3.16: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.6),(0.3,0.4),(-0.6,-0.7),(-$ $0.5,-0.7)$) and $T_{2}=(\mathrm{x},(0.2,0.3),(0.7,0.7),(-0.3,-0.4),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.3,0.3),(0.5,0.4),(-$ $0.4,-0.6),(-0.5,-0.3)$) is a BPFR $\alpha \mathrm{GCS}$, but A is not a BPFSCS in X .

Example 3.17: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.4,0.3),(0.5,0.8),(-0.6,-0.3),(-$ $0.6,-0.7)$) and $T_{2}=(\mathrm{x},(0.3,0.3),(0.8,0.8),(-0.4,-0.2),(-0.7,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.4,0.3),(0.5,0.8),(-$ $0.6,-0.3),(-0.6,-0.7))$ is a BPFSCS, but A is not a BPFR $\alpha \mathrm{GS}$ in X .

Proposition 3.18: Every BPFGCS is BPFR α GCS in X but not conversely.
Proof: Let $\mathrm{A} \subseteq \mathrm{U}$ and U be a BPF regular open set in X . By hypothesis, $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$. This implies $\alpha c l(A)=$ $A \cup \operatorname{cl}(\operatorname{int}(c l(A))) \subseteq A \cup c l(A)) \subseteq U$. Therefore, A is BPFR $\alpha \operatorname{GCS}$ in X .

Example 3.19: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $\mathrm{T}=(\mathrm{x},(0.6,0.8),(0.3,0.2),(-0.5,-0.7),(-0.3$, $-0.2)$). Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.5,0.3),(0.6,0.3),(-0.4,-0.5),(-0.6,-0.4)$) is a BPFR α GCS, but A is not a BPFGCS in X .

Proposition 3.20: If A is both a BPF regular open set and BPFR α GCS in X , then A is a BPFRGCS in X .
Proof: Let $A \subseteq U$ and U be a BPFROS in X . By hypothesis, we have $\alpha c l(A) \subseteq U$ and $\operatorname{cl}(\mathrm{A})=\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq A \cup$ $\operatorname{cl}(\operatorname{int}(c l(A)))=\alpha c l(A) \subseteq U$. Hence A is BPFRGCS in X .

Proposition 3.21: If A is both a BPF pre-open set and BPFR α GCS in X , then A is a BPFRGCS in X .
Proof: Let $A \subseteq U$ and U be a BPFROS in X . By hypothesis, we have $\alpha c l(A) \subseteq U$ and $\operatorname{cl}(\mathrm{A})=\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subseteq A \cup$ $c l(\operatorname{int}(c l(A)))=\alpha c l(A) \subseteq U$. Hence A is BPFRGCS in X .

Proposition 3.22: If A is both BPFROS and BPFR $\alpha \mathrm{GCS}$ in X , then A is BPF $\alpha \mathrm{CS}$ in X .

Proof: As $\mathrm{A} \subseteq A$, by hypothesis, $\alpha c l(A) \subseteq A$. But we have $A \subseteq \alpha c l(A)$. This implies $\alpha \operatorname{cl}(\mathrm{A})=\mathrm{A}$. Hence A is $\mathrm{BPF} \alpha \mathrm{CS}$ in X .
Proposition 3.23: Let A be $\mathrm{BPFR} \alpha \mathrm{GCS}$ in X and $A \subseteq B \subseteq \alpha c l(A)$, then B is $\operatorname{BPFR} \alpha \mathrm{GCS}$ in X .
Proof: Let $\mathrm{B} \subseteq U$ and U is BPFROS in X . Then $A \subseteq U$ since $A \subseteq B$. As A is BPFR $\alpha \mathrm{CS}$ in $\mathrm{X}, \alpha c l(A) \subseteq U$ and by hypothesis $\mathrm{B} \subseteq \alpha c l(A)$. This implies $\alpha c l(B) \subseteq \alpha c l(A) \subseteq U$. Therefore, $\alpha c l(B) \subseteq U$ and hence B is BPFR $\alpha \mathrm{GCS}$ in X .

Proposition 3.24: Let A be BPFRGCS in X and $A \subseteq B \subseteq c l(A)$, then B is $\mathrm{BPFR} \alpha \mathrm{GCS}$ in X .
Proof: Let $\mathrm{B} \subseteq U$ and U is BPFROS in X . Then $A \subseteq U$ since $A \subseteq B$. As A is BPFRCS in $\mathrm{X}, c l(A) \subseteq U$ and by hypothesis $\mathrm{B} \subseteq$ $c l(A)$. This implies $\alpha c l(B)(B) \subseteq c l(A) \subseteq U$. Therefore, $\alpha c l(B) \subseteq U$ and B is BPFR $\alpha \mathrm{GCS}$ in X .

Figure 1: The relation between various types of BPFCSs are given in the following diagram

IV. BIPOLAR PYTHAGOREAN FUZZY REGULAR α GENERALIZED OPEN SETS

Definition 4.1: A Bipolar Pythagorean Fuzzy Set A of a Bipolar Pythagorean Fuzzy Topological Space (X, τ_{p}) is called a Bipolar Pythagorean Regular α Generalized Open set (BPFRGOS in short), if $\alpha \operatorname{int}(A) \supseteq U$ whenever $A \supseteq U$ and U is BPFRCS in $\left(X, \tau_{p}\right)$. Alternatively, a BPF set A is said to be Bipolar Pythagorean Fuzzy Regular α Generalized Open $\operatorname{Set}(\mathrm{BPFR} \alpha \mathrm{GOS})$, if its complement A^{c} is $\operatorname{BPFR} \alpha \operatorname{GCS}$ in (X, τ_{p}).

Example 4.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on X , where $\mathrm{T}=(\mathrm{x},(0.3,0.2),(0.5,0.6),(-0.4,-0.3),(-0.7,-0.4))$. Then the BPFS A $=(x,(0.3,0.3),(0.5,0.3),(-0.5,-0.7),(-0.7,-0.2))$ is a BPFR α GOS in X.

Proposition 4.3: Every BPFOS is BPFR α GOS in X but not conversely.
Proof: Let U be a BPF regular closed set in X such that $A \supseteq U$. Since A is $\operatorname{BPFOS}, \operatorname{int}(\mathrm{A})=\mathrm{A} . \operatorname{dint}(A)=A \cap$ $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))=A \cap \operatorname{int}(c l(A)) \supseteq A \cap \operatorname{int}(A)=A \cap A=A \supseteq U$. Thus, A is $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X .

Example 4.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5)$, ($0.5,-0.4)$) and $T_{2}=(x,(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.6,0.9),(0.2,0.3)$, $(-$ $0.6,-0.6),(-0.3,-0.4))$ is a BPFR α GOS, but A is not a BPFOS in X .

Proposition 4.5: Every BPFROS is a BPFR α GOS, but not conversely.
Proof: Let U be a BPF regular closed set in X such that $A \supseteq U$. Since every BPF regular open set is BPFOS, int(A)=A. By hypothesis, $\operatorname{\alpha int}(A)=A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))=A \cap \operatorname{int}(\operatorname{cl}(A)) \supseteq A \cap \operatorname{int}(A)=A \cap A=A \supseteq U$. Hence $\alpha \operatorname{int}(A) \supseteq U$. Thus, A is BPFR α GOS in X.

Example 4.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5)$, (-
$0.5,-0.4))$ and $T_{2}=(x,(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.6,0.9),(0.2,0.3),(-$ $0.6,-0.6),(0.3,-0.4)$)is a BPFR α GOS, but A is not a BPFROS in X .

Proposition 4.7: Every BPF $\alpha \mathrm{OS}$ is a BPFR α GOS but not conversely.
Proof: Let U be a BPF regular closed set in X such that $A \supseteq U$. Since A is BPF α open set, $\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \supseteq A$. By hypothesis, $\alpha \operatorname{int}(A)=A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \supseteq A \cap A=A \supseteq U$. Hence $\alpha \operatorname{int}(A) \supseteq U$. Thus, A is BPFR α GOS in X.

Example 4.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-0.6,-0.5)$, (-$0.5,-0.4)$) and $T_{2}=(x,(0.3,0.2),(0.7,0.9),(-0.4,-0.3),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.6,0.9),(0.2,0.3)$, (-$0.6,-0.6),(0.3,-0.4))$ is a $\mathrm{BPFR} \alpha \mathrm{GOS}$, but A is not a $\mathrm{BPF} \alpha \mathrm{OS}$ in X .

Theorem 4.9: If A and B are two BPFGR $\alpha \mathrm{OS}$ in X , then the intersection of A and B is also BPFR $\alpha \mathrm{GOS}$ in X .
Proof: Let A and B be two BPFR $\alpha \mathrm{GOS}$ in X. Then A^{c} and B^{c} are BPFR $\alpha \mathrm{GCS}$ in X. By Theorem 3.9, $A^{c} \cup B^{c}$ is BPFR $\alpha \mathrm{GCS}$ in X. $(A \cap B)^{c}$ is BPFR $\alpha \mathrm{GCS}$ in X. Therefore, $A \cup B$ is BPFR $\alpha \mathrm{GOS}$ in X.

Remark 4.10: The union of any two $\mathrm{BPFR} \alpha \mathrm{GOS}$ is not $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X as shown in the following Example.
Example 4.11: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $\mathrm{T}=(\mathrm{x},(0.5,0.3),(0.4,0.8),(-0.5,-0.4),(-0.6$, $0.8)$). Then the BPFS A $=(\mathrm{x},(0.6,0.1),(0.2,0.8),(-0.8,-0.2),(-0.5,-0.9))$ and $\mathrm{B}=(\mathrm{x},(0.4,0.9),(0.6,0.2),(-0.5,-0.9),(-0.9,-$ $0.3)$) is a $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X , but $A \cup B$ is not a $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X .

Remark 4.12: Every BPFR α GOS and BPFSOS in X are independent to each other.
Example 4.13: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.6),(0.3,0.4),(-0.6,-0.7)$, (-$0.5,-0.7))$ and $T_{2}=(x,(0.2,0.3),(0.7,0.7),(-0.3,-0.4),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.5,0.4),(0.3,0.3)$, $(-$ $0.5,-0.3),(-0.4,-0.6))$ is a BPFR α GOS, but A is not a BPFSOS in X.

Example 4.14: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.4,0.3),(0.5,0.8),(-0.6,-0.3),(-$ $0.6,-0.7))$ and $T_{2}=(x,(0.3,0.3),(0.8,0.8),(-0.4,-0.2),(-0.7,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.5,0.8),(0.4,0.3),(-$ $0.6,-0.7),(-0.6,-0.3))$ is a BPFSOS, but A is not a BPFR $\alpha \mathrm{GOS}$ in X .

Remark 4.15: Every BPFR α GOS and BPFPOS in $\left(X, \tau_{p}\right)$ are independent to each other.
Example 4.16: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.5,0.6),(0.3,0.4),(-0.6,-0.7)$, (-$0.5,-0.7)$) and $T_{2}=(x,(0.2,0.3),(0.7,0.7),(-0.3,-0.4),(-0.6,-0.8))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.5,0.4)(0.3,0.3),(-0.5,-$ $0.3),(-0.4,-0.6))$ is a BPFR α GOS, but A is not a BPFPOS in X .

Example 4.17: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T_{1}, T_{2}, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $T_{1}=(\mathrm{x},(0.3,0.4),(0.8,0.7),(-0.4,-0.5)$, (-$0.7,-0.8))$ and $T_{2}=(x,(0.8,0.9),(0.3,0.2),(-0.3,-0.3),(-0.6,-0.6))$. Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.7,0.8),(0.1,0.2),(-$ $0.8,-0.9),(-0.1,-0.2))$ is a BPFPOS, but A is not a BPFR $\alpha \mathrm{GOS}$ in X .

Proposition 4.18: Every BPFGOS is BPF α GOS in X but not conversely.
Proof: Let $\mathrm{A} \supseteq \mathrm{U}$ and U be a BPF regular closed set in X . By hypothesis, $\mathrm{cl}(\mathrm{A}) \supseteq \mathrm{U}$, whenever $\mathrm{A} \supseteq \mathrm{U}$. This implies, $\alpha \operatorname{int}(A)=$ $A \cap \operatorname{int}(c l(\operatorname{int}(A))) \supseteq A \cap \operatorname{cl}(A)) \supseteq U$. Therefore A is BPFR $\alpha \mathrm{GOS}$ in X .

Example 4.19: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ and $\tau_{p}=\left\{0_{p}, T, 1_{p}\right\}$ be a BPFT on $\left(X, \tau_{p}\right)$, where $\mathrm{T}=(\mathrm{x},(0.6,0.8),(0.3,0.2),(-0.5,-0.7),(-0.3$, $0.2)$). Here A is the BPFS then $\mathrm{A}=(\mathrm{x},(0.6,0.3),(0.5,0.3),(-0.6,-0.4),(-0.4,-0.5))$ is a BPFR α GOS, But A is not a BPFGOS in X .

Proposition 4.20: If A is both a BPF regular closed set and $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X , then A is a BPFRGOS in X .
Proof: Let $A \supseteq U$ and U be a BPFRCS in X. By hypothesis, we have $\alpha \operatorname{int}(A) \supseteq U$ and $\operatorname{int}(\mathrm{A})=\operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \supseteq A \cap$ $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))=\operatorname{\alpha int}(A) \supseteq U$. Hence A is BPFRGOS in X.

Proposition 4.21: If A is both a BPF pre-closed set and $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X , then A is a BPFRGOS in X .

Proof: Let $A \supseteq U$ and U be a BPFRCS in X. By hypothesis, we have $\alpha \operatorname{int}(A) \supseteq U$ and $\operatorname{int}(\mathrm{A})=\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))) \supseteq A \cap$ $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))=\alpha \operatorname{int}(A) \supseteq U$. Hence A is BPFRGOS in X.

Proposition 4.22: If A is both BPFRCS and BPFR $\alpha \mathrm{GOS}$ in X , then A is $\mathrm{BPF} \alpha \mathrm{OS}$ in X .
Proof: $\mathrm{As} \mathrm{A} \supseteq A$, by hypothesis, $\alpha \operatorname{int}(A) \supseteq A$. But we have $A \supseteq \alpha \operatorname{int}(A)$. This implies $\alpha \operatorname{int}(\mathrm{A})=\mathrm{A}$. Hence A is $\mathrm{BPF} \alpha \mathrm{OS}$ in X.

Proposition 4.23: Let A be $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X and $A \supseteq B \supseteq \alpha \operatorname{int}(A)$, then B is $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X .
Proof: Let A be a BPFR α GOS in X and B be a BPF set in X . Let $\mathrm{A} \supseteq \mathrm{B} \supseteq \alpha \operatorname{int}(\mathrm{A})$. Then A^{c} is a BPFR $\alpha \mathrm{GCS}$ in X and $A^{c} \subseteq$ $B^{c} \subseteq \alpha c l\left(A^{c}\right)$. Then B^{c} is a BPFR $\alpha \mathrm{GCS}$ in X. Hence Bis BPFR $\alpha \mathrm{GOS}$ in X.

Proposition 4.24: Let $\left(\mathrm{X}, \tau_{p}\right)$ be a BPFTS and every B be a $\mathrm{BPFRCS}, \mathrm{B} \supseteq \mathrm{A} \supseteq \operatorname{int}(\mathrm{cl}(\mathrm{B})$. Then A is $\mathrm{BPFR} \alpha \mathrm{GOS}$ in X . Proof: Let B be a BPFRCS in X . Then $\mathrm{B}=\operatorname{cl}(\operatorname{int}(\mathrm{B}))$. By hypothesis, $\mathrm{A} \supseteq \operatorname{int}(\mathrm{cl}(\mathrm{B}) \supseteq \operatorname{int}(\operatorname{cl}(\operatorname{cl}(\operatorname{int}(\mathrm{B})))) \supseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{B}))) \supseteq$ $\operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathrm{A})))$. Therefore A is a BPF α open set. Since every BPF α open set is a BPFR α GOS. Hence A is a BPFR α GOS in X.

REFERENCES

[1] Coker, D., An introduction to intuitionistic topological spaces, Busefal, 81(2000), 5. Chen,S. Li,S. Ma and X. Wang, m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy Sets, The Scientific World Journal, 2014.
[2] K.T. Atanassov, Intuitionisticfuzzysets, FuzzySetsSyst20(1986), 87-96.
[3] Yager RR Pythagorean fuzzy subsets in Proceedings of the joint IFSA world congress NAFIPS annual meeting(2013), 57-61.
[4] T.Fukutake, R.K.Saraf, M.Caldas, M.Mishra, Mappings via Fgp BPFclosed Sets, Bull. of Fukuaka Univ. of Edu., 52 (2003),11-20.
[5] K.J.Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI- Algebras, Bull.Malays.
[6] C.L.Chang, Fuzzy Topological Spaces, J.Math.Anal.Appl., 24(1968),182-190.
[7] Xindong peng, Yong Yan, Some Results for Pythagorean Fuzzy Sets, PFinternational Journal of BPFintelligent Systems, 30(2015),1133-1160.
[8] K. Sakthivel, Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and intuitionistic Fuzzy Generalized Irresolute Mappings, Applied Mathematical Sciences, 4 (2010), 1831-1842.
[9] Kim, J. H., P. K. Lim, J. G. Lee, and K. Hur,Bipolar Fuzzy Intuitionistic topologicalspaces, Infinite Study, 2018.
[10] P. Bosc, O.Pivert, On a fuzzy bipolar relational algebra, InformationSciences, 219 (2013) 1-16.
[11] J. Chen, S. Li, S. Ma and X. Wang. m-polar Fuzzy sets: An Extension of Bipolar Fuzzy Sets. The Scientific World Journal, 2014.
[12] L. A. Zadeh Fuzzy sets, Information and Control 8(1965), 338-353.
[13] K. Mohana, R. Jansi, Bipolar Phytagorean π generalized Pre-closed sets in Topological spaces, International journal of analytical and experimental model analysis, Jan 2020, 164-171.
[14] W-R. Zhang, Bipolar fuzzy sets, Proc. of IEEE(1998) 835-840.
[15] M. Azhagappan and M. Kamaraj, Notes on bipolar valued fuzzy RW-closed and bipolar valued fuzzy RW-open sets in bipolar valued fuzzy topological spaces, International Journal of Mathematical Archive 7(3) (2016) 30-36.
[16] Murat Olgun, Mehmet Unver, Seyhmus Yardimci, Pythagorean fuzzy topological spaces, complex and Intelligent Systems (2019) 5: 177-183.

