Nirmala Index

V.R.Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India

Abstract: In Chemical Graph Theory, several degree based topological indices were introduced and studied since 1972. In this paper, a novel invariant is considered, which is the Nirmala index defined as the sum of the square root of sum of the degrees of the pairs of adjacent vertices. We initiate a study of the Nirmla index.

Keywords: topological index, Nirmala index, Nirmala exponential, dendrimer.

Mathematics Subject Classification: 05C05, 05C12, 05C35.

I. Introduction

Let *G* be a simple, finite, connected graph with *the* vertex set V(G) and edge set E(G). The degree $d_G(u)$ of a vertex *u* is the number of vertices adjacent to *u*. The additional definitions and notations, the reader may refer to [1].

A molecular graph is a graph in which the vertices correspond to the atoms and the edges to the bonds of a molecule. A topological index is a numeric quantity from structural graph of a molecule. Several topological indices have been considered in Theoretical Chemistry, and have found some applications, especially in *QSPR/QSAR* study, see [2, 3, 4].

In Chemical Science, numerous vertex degree based topological indices or graph indices have been introduced and extensively studied in [4, 5].

The Sombor index was defined by Gutman in [6] as

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_G(u)^2 + d_G(v)^2}$$

Recently, some Sombor indices were studied in [7, 8, 9, 10, 11, 12, 13, 14].

Inspired by work on Sombor indices, we introduce the Nirmala index of a graph G as follows: The Nirmala index of a molecular graph G is defined as

$$N(G) = \sum_{uv \in E(G)} \sqrt{d_G(u) + d_G(v)}.$$

Considering the Nirmala index, we define the Nirmala exponential of a graph G as

$$N(G, x) = \sum_{uv \in E(G)} x^{\sqrt{d_G(u) + d_G(v)}}$$

In this study, we compute the Nirmala index, Nirmala exponential of four families of dendrimers. For dendrimers, see [15].

II. Results for Porphyrin Dendrimer $D_n P_n$

We consider the family of porphyrin dendrimers. This family of dendrimers is denoted by D_nP_n . The molecular graph of D_nP_n is shown in Figure 1.

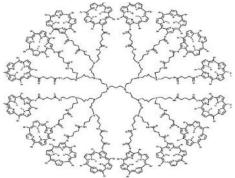


Figure 1. The molecular graph of $D_n P_n$

Let *G* be the molecular graph of $D_n P_n$. By calculation, we find that *G* has 96n - 10 vertices and 105n - 11 edges. In $D_n P_n$, there are six types of edges based on degrees of end vertices of each edge as given in Table 1.

$d_G(u), d_G(v) \setminus uv \in E(G)$	(1, 3)	(1, 4)	(2, 2)	(2, 3)	(3, 3)	(3, 4)
Number of edges	2 <i>n</i>	24 <i>n</i>	10n - 5	48n - 6	13 <i>n</i>	8 <i>n</i>

Table 1. Edge partition of $D_n P_n$

In the following theorem, we compute the Nirmala index and its exponential of $D_n P_n$. **Theorem 1.** Let $D_n P_n$ be the family of porphyrin dendrimers. Then

(i) $N(D_nP_n) = (24 + 72\sqrt{5} + 13\sqrt{6} + 8\sqrt{7})n - (10 + 6\sqrt{5}).$

(ii) $N(D_nP_n, x) = (12n-5)x^2 + (72n-6)x^{\sqrt{5}} + 13nx^{\sqrt{6}} + 8nx^{\sqrt{7}}.$

Proof: From definitions and by using Table 1, we deduce

(i)
$$N(D_n P_n) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{\frac{1}{2}}$$
$$= (1+3)^{\frac{1}{2}} 2n + (1+4)^{\frac{1}{2}} 24n + (2+2)^{\frac{1}{2}} (10n-5) + (2+3)^{\frac{1}{2}} (48n-6)$$
$$+ (3+3)^{\frac{1}{2}} 13n + (3+4)^{\frac{1}{2}} 8n$$
$$= (24+72\sqrt{5}+13\sqrt{6}+8\sqrt{7})n - (10+6\sqrt{5}).$$

(ii)
$$N(D_n P_n, x) = \sum_{uv \in E(G)} x^{\left[d_G(u) + d_G(v)\right]^{\frac{1}{2}}}$$
$$= 2nx^{(1+3)^{\frac{1}{2}}} + 24nx^{(1+4)^{\frac{1}{2}}} + (10n-5)x^{(2+2)^{\frac{1}{2}}} + (48n-6)x^{(2+3)^{\frac{1}{2}}} + 13nx^{(3+3)^{\frac{1}{2}}} + 8nx^{(3+4)^{\frac{1}{2}}}$$
$$= (12n-5)x^2 + (72n-6)x^{\sqrt{5}} + 13nx^{\sqrt{6}} + 8nx^{\sqrt{7}}.$$

III. Results for Propyl Ether Imine Dendrimer PETIM

We consider the family of propyl ether imine dendrimers. This family of dendrimers is denoted by *PETIM*. The molecular graph of *PETIM* is depicted in Figure 2.

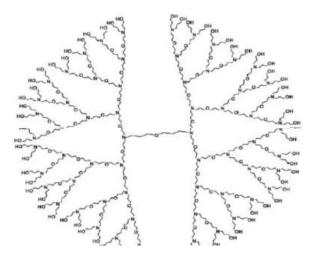


Figure 2. The molecular graph of PETIM

Let *G* be the molecular graph of *PETIM*. By calculation, we find that *G* has $24 \times 2^n - 23$ vertices and $24 \times 2^n - 24$ edges. In *PETIM*, there are three types of edges based on degrees of end vertices of each edge as given in Table 2.

$d_G(u), d_G(v) \setminus uv \in E(G)$	(1, 2)	(2, 2)	(2, 3)
Number of edges	2×2^n	$16 \times 2^{n} - 18$	$6 \times 2^n - 6$

Table 2. Edge partition of PETIM

In the following theorem, we compute the Nirmala index and its exponential of *PETIM*. **Theorem 2.** Let *PETIM* be the family of porpyl ether imine dendrimers. Then

(i)
$$N(PETIM) = (2\sqrt{3} + 32 + 6\sqrt{5})2^n - (36 + 6\sqrt{5})$$

(ii) $N(PETIM, x) = 2 \times 2^n x^{\sqrt{3}} + (16 \times 2^n - 18) x^2 + (6 \times 2^n - 6) x^{\sqrt{5}}.$

Proof: From definitions and by using Table 2, we derive

(i)
$$N(PETIM) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{\frac{1}{2}}$$

= $(1+2)^{\frac{1}{2}} 2 \times 2^n + (2+2)^{\frac{1}{2}} (16 \times 2^n - 18) + (2+3)^{\frac{1}{2}} (6 \times 2^n - 6)$
= $(2\sqrt{3} + 32 + 6\sqrt{5}) 2^n - (36 + 6\sqrt{5}).$

(ii)
$$N(PETIM, x) = \sum_{uv \in E(G)} x^{\left[d_G(u) + d_G(v)\right]^{\frac{1}{2}}}$$

= $2 \times 2^n x^{(1+2)^{\frac{1}{2}}} + (16 \times 2^n - 18) x^{(2+2)^{\frac{1}{2}}} + (6 \times 2^n - 6) x^{(2+3)^{\frac{1}{2}}}$
= $2 \times 2^n x^{\sqrt{3}} + (16 \times 2^n - 18) x^2 + (6 \times 2^n - 6) x^{\sqrt{5}}.$

IV. Results for Poly Ethylene Amide Amine Dendrimer PETAA

We consider the family of poly ethylene amide amine dendrimers. This family of dendrimers is denoted by *PETAA*. The molecular graph of *PETAA* is presented in Figure 3.

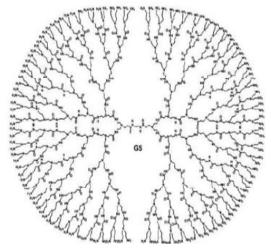


Figure 3. The molecular graph of PETAA

Let G be the molecular graph of *PETAA*. By calculation, we find that G has $44 \times 2^n - 18$ vertices and $44 \times 2^n - 19$ edges. In *PETAA*, there are three types of edges based on degrees of end vertices of each edge as given in Table 3.

$d_G(u), d_G(v) \setminus uv \in E(G)$	(1, 2)	(1, 3)	(2, 2)	(2, 3)
Number of edges	4×2^n	$4 \times 2^{n} - 2$	$16 \times 2^{n} - 8$	$20 \times 2^{n} - 9$

Table 3. Edge partition of PETAA

In the following theorem, we determine the Nirmala index and its exponential of *PETAA*. **Theorem 3.** Let *PETAA* be the family of poly ethylene amide amine dendrimers. Then

(i) $N(PETAA) = (4\sqrt{3} + 40 + 20\sqrt{5})2^n - (16 + 9\sqrt{5}).$

(ii) $N(PETAA, x) = 4 \times 2^n x^{\sqrt{3}} + (20 \times 2^n - 10) x^2 + (20 \times 2^n - 9) x^{\sqrt{5}}.$

Proof: By using definitions and Table 3, we obtain

(i)
$$N(PETAA) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{\frac{1}{2}}$$
$$= (1+2)^{\frac{1}{2}} 4 \times 2^n + (1+3)^{\frac{1}{2}} (4 \times 2^n - 2) + (2+2)^{\frac{1}{2}} (16 \times 2^n - 8) + (2+3)^{\frac{1}{2}} (20 \times 2^n - 9)$$
$$= (4\sqrt{3} + 40 + 20\sqrt{5}) 2^n - (16 + 9\sqrt{5}).$$

(ii)
$$N(PETAA, x) = \sum_{uv \in E(G)} x^{\left[d_{G}(u) + d_{G}(v)\right]^{\frac{1}{2}}} = 4 \times 2^{n} x^{(1+2)^{\frac{1}{2}}} + (4 \times 2^{n} - 2) x^{(1+3)^{\frac{1}{2}}} + (16 \times 2^{n} - 8) x^{(2+2)^{\frac{1}{2}}} + (20 \times 2^{n} - 9) x^{(2+3)^{\frac{1}{2}}} = 4 \times 2^{n} x^{\sqrt{3}} + (20 \times 2^{n} - 10) x^{2} + (20 \times 2^{n} - 9) x^{\sqrt{5}}.$$

V. Results for Zinc Prophyrin Dendrimer DPZ_n

We consider the family of zinc prophyrin dendrimers. This family of dendrimers is denoted by DPZ_n , where *n* is the steps of growth in this type of dendrimers. The molecular graph of DPZ_n is shown in Figure 4.

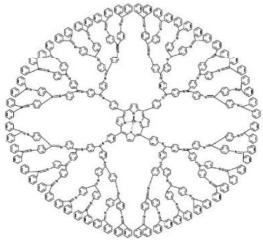


Figure 4. The molecular graph of DPZ_n

Let *G* be the molecular graph of DPZ_n . By calculation, we obtain that *G* has $56 \times 2^n - 7$ vertices $64 \times 2^n - 4$ edges. In DPZ_n , there are four types of edges based on degrees of end vertices of each edge as given in Table 4.

$d_G(u), d_G(v) \setminus uv \in E(G)$	(2, 2)	(2, 3)	(3, 3)	(3, 4)
Number of edges	$16 \times 2^{n} - 4$	$40 \times 2^{n} - 16$	$8 \times 2^{n} + 12$	4

In the following theorem, we determine the Nirmala index and its exponential of DPZ_n . **Theorem 4.** Let DPZ_n be the family of zinc prophyrin dendrimers. Then

(i)
$$N(DPZ_n) = (32 + 40\sqrt{5} + 8\sqrt{6})2^n - (8 + 16\sqrt{5} - 12\sqrt{6} + 4\sqrt{7}).$$

(ii)
$$N(DPZ_n, x) = (16 \times 2^n - 4)x^2 + (40 \times 2^n - 16)x^{\sqrt{5}} + (8 \times 2^n + 12)x^{\sqrt{6}} + 4x^{\sqrt{7}}.$$

Proof: From definitions and by using Table 4, we deduce

(i)
$$N(DPZ_n) = \sum_{uv \in E(G)} \left[d_G(u) + d_G(v) \right]^{\frac{1}{2}}$$

= $(2+2)^{\frac{1}{2}} (16 \times 2^n - 4) + (2+3)^{\frac{1}{2}} (40 \times 2^n - 16) + (3+3)^{\frac{1}{2}} (8 \times 2^n + 12) + (3+4)^{\frac{1}{2}} 4$
= $(32+40\sqrt{5}+8\sqrt{6})2^n - (8+16\sqrt{5}-12\sqrt{6}+4\sqrt{7}).$

(ii)
$$N(DPZ_n, x) = \sum_{uv \in E(G)} x^{\left[d_G(u) + d_G(v)\right]^{\frac{1}{2}}} = (16 \times 2^n - 4)^{(2+2)^{\frac{1}{2}}} + (40 \times 2^n - 16) x^{(2+3)^{\frac{1}{2}}} + (8 \times 2^n + 12) x^{(3+3)^{\frac{1}{2}}} + 4x^{(3+4)^{\frac{1}{2}}} = (16 \times 2^n - 4) x^2 + (40 \times 2^n - 16) x^{\sqrt{5}} + (8 \times 2^n + 12) x^{\sqrt{6}} + 4x^{\sqrt{7}}.$$

CONCLUSION

In this study, a novel invariant is considered which is the Nirmala index. Also we have defined the Nirmala exponential of a molecular graph. Furthermore, the Nirmala index and its corresponding exponential for certain dendrimers are computed.

REFERENCES

- [1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- [2] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
- [3] V.R.Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing (2018).
- [4] R.Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
- [5] V.R.Kulli, Graph indices, in Hand Book of Research on Advanced Applications of Application Graph Theory in Modern Society, M. Pal. S. Samanta and A. Pal, (eds.) IGI Global, USA (2019) 66-91.
- [6] I.Gutman, Geometric approach to degree based topological indices : Sombor indices MATCH Common, Math. Comput. Chem. 86(2021) 11-16.
- [7] K.C.Das, A.S. Cevik, I.N. Cangul and Y. Shang, On Sombor index, Symmetry, 13(2021) 140.
- [8] I.Gutman, Some basic properties of Sombor indices, Open Journal of Discrete Applied Mathematics, 4(1)(2021) 1-3.
 [9] V.R.Kulli, Sombor indices of certain graph operators, International Journal of Engineering Sciences and Research Technology, 10(1)(2021) 127-134.
- [10] V.R Kulli, Multiplicative Sombor indices of certain nanotubes, International Journal of Mathematical Archive, 12(2021).
- [11] V.R.Kulli and I. Gutman, Computation of Sombor indices of certain networks, SSRG International Journal of Applied Chemistry, 8(1)(2021) 1-5.
- [12] I.Milovanovic, E.Milovanovic and M.Matejic, On some mathematical properties of Sombor indices, Bull. Int. Math. Virtual Inst. 11(2)(2021) 341-353.
- [13] I.Redzepovic, Chemical applicability of Sombor indices, J. Serb. Chem. Soc., https://doi.org/10.2298/JSC201215006R., (2021).
- [14] T.Reti, T.Doslic and A.Ali, On the Sombor index of graphs, Contributions of Mathematics, 3(2021) 11-18.
- [15] V.R.Kulli, B. Chaluvaraju, V. Lokesha and S.A. Basha, Gourava indices of some dendrimers, Research Review International Journal of Multidisciplinary, 4(6)(2019) 212-215.