GENERALIZED WEINSTEIN AND SOBOLEV SPACES

HASSEN BEN MOHAMED
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, GABES
MOHAMED MOKTAR CHAFFAR DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY
PARIS-EST UNIVERSITY (UPEC) CRETEIL, FRANCE

Abstract

In this paper we present a brief history and the basic ideas of the generalized Weinstein operator $\triangle_{W}^{\alpha, d, n}$ which generalizes the Weinstein operator $\triangle_{W}^{\alpha, d}$. In $\mathrm{n}=0$ we regain the Weinstein operator has several applications in pure and applied mathematics especially in fluid mechanics. We study the Sobolev spaces of exponential type $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ associated with the generalized Weinstein and investigate their properties, Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Using the theory of reproducing kernels (which was written in 1942-1943), we introduce a class of symbols of exponential type and their associated pseudodifferential operators related to the generalized Weinstein operator $\triangle_{W}^{\alpha, d, n}$ and finally, we give some applications to these spaces.

Keywords: Sobolev Spaces, Generalized Weinstein operator, Generalized Weinstein transform, Weinstein, Kernel Reproducing Theory, pseudodifferential operator.

1. INTRODUCTION

The generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ studied by various authors defined on $\left.\mathbb{R}_{+}^{d+1}=\mathbb{R}^{d} \times\right] 0,+\infty[$, by :

$$
\begin{equation*}
\Delta_{W}^{\alpha, d, n}=\sum_{i=1}^{d+1} \frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 \alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}}-\frac{4 n(\alpha+n)}{x_{d+1}^{2}} \tag{1.1}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $\alpha>-\frac{1}{2}$.
The expression above can also be written in the form $\Delta_{W}^{\alpha, d, n}=\Delta_{d}+L_{\alpha, n}$ where Δ_{d} is the Laplacian for the d first variables and $L_{\alpha, n}$ is the second- order singular differentiel operator on the half line given by :

$$
L_{\alpha, n}=\frac{\partial^{2}}{\partial x_{d+1}^{2}}+\frac{2 \alpha+1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}}-\frac{4 n(\alpha+n)}{x_{d+1}^{2}}
$$

In $\mathrm{n}=0$ we regain the Weinstein operator $\Delta_{W}^{\alpha, d}=\Delta_{W}^{\alpha, d, 0}$, mostly referred to as the Laplace-Bessel differential operator is now known as an important operator in analysis. The relevant harmonic analysis associated with the Bessel differential operator $L_{\alpha}=L_{\alpha, 0}$ goes back to S. Bochner, J. Delsarte, B.M. Levitan and has been studied by many other authors such as J. Löfström and J. peetre [11], K.Stempak [14], K. Trimèche [15], I.A. Aliev and B. Rubin [8]. (See [2], [3], [4], [5], [6] \& [16]) The generalized Weinstein kernel $\Lambda_{\alpha, d, n}$ is the function given by :

$$
\forall x, y \in \mathbb{C}^{d+1}, \Lambda_{\alpha, d, n}(x, y)=x_{d+1}^{2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} j_{\alpha+2 n}\left(x_{d+1} y_{d+1}\right)
$$

where $x=\left(x^{\prime}, x_{d+1}\right), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and j_{α} is the normalized Bessel function of index α defined by :

$$
\begin{equation*}
\forall \xi \in \mathbb{C}, j_{\alpha}(\xi)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+\alpha+1)}\left(\frac{\xi}{2}\right)^{2 n} \tag{1.2}
\end{equation*}
$$

Using the Weinstein kernel $\Lambda_{\alpha, d, n}$, we define the Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ by :
$\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Lambda_{\alpha, d, n}(x, \lambda) d \mu_{\alpha, d}(x), f \in L^{1}\left(\mathbb{R}_{+}^{d+1}, \mu_{\alpha, d}(x)\right)$
where $\mu_{\alpha, d}$ is the measure on \mathbb{R}_{+}^{d+1} given by :

$$
\begin{equation*}
d \mu_{\alpha, d}(x)=x_{d+1}^{2 \alpha+1} d x \tag{1.3}
\end{equation*}
$$

The Weinstein transform, referred to as the Fourier-Bessel transform, has been investigated by I.A. Aliev [7] and others. (See [2], [3], [4], [5], [9] and [16]).
We denote by $\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ the space, which is constituted of functions $\varphi \in \mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$ such that

$$
\forall h, k>0, N^{h, k}(\varphi)=\sup _{\substack{x \in \mathbb{R}^{d+1} \\ \mu \in \mathbb{N}^{d+1}}}\left[\frac{e^{k\|x\|}\left|\partial^{\mu} \mathscr{M}_{n}^{-1} \varphi(x)\right|}{h^{|\mu|} \mu!}\right]<\infty
$$

where \mathscr{M}_{n}, is the map defined by :

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathscr{M}_{n}(f)(x)=x_{d+1}^{2 n} f(x)
$$

For $s \in \mathbb{R}$, we define the generalized Sobolev-Weinstein space of exponential type of order s, that will be denoted $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, as the set of all $u \in \mathscr{G}_{n, *}^{\prime}$ (the dual of $\left.\mathscr{G}_{n, *}\right)$ such that $\mathscr{F}_{W}^{\alpha, d, n}(u)$ is a function and

$$
\|u\|_{\mathscr{H}_{\alpha, n}^{s}}=\left[\int_{\mathbb{R}_{+}^{d+1}} e^{2 s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda)\right]^{\frac{1}{2}}<\infty
$$

The space $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ provided with the norm $\|\cdot\|_{\mathscr{H}_{\alpha, n}^{s}}$ is a Banach space.

The contents of this paper is as follows :
In the second section, we recapitulate some results related to the harmonic analysis associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$.

In the section 3, we study the Sobolev spaces of exponential type $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ associated with the operator $\Delta_{W}^{\alpha, d, n}$ and investigate their properties.

In the last section, using the theory of reproducing kernels, some applications are given for the spaces $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Moreover, we introduce certain classes of symbols of exponential type and study their associated pseudodifferential operators related to the operator $\triangle_{W}^{\alpha, d, n}$.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic analysis associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$ given by (1.1).

In what follows, we need the following notations :

- $\mathscr{C}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of continuous functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of \mathscr{C}^{∞}-functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1}, even with respect to the last variable.
- $\mathscr{D}_{*}\left(\mathbb{R}^{d+1}\right)$, the space of \mathscr{C}^{∞}-functions on \mathbb{R}^{d+1} which are of compact support, even with respect to the last variable.
- $\mathscr{H}_{*}\left(\mathbb{C}^{d+1}\right)$, the space of entire functions on \mathbb{C}^{d+1}, even with respect to the last variable, rapidly decreasing and of exponential type.
- \mathscr{M}_{n}, the map defined by :

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathscr{M}_{n}(f)(x)=x_{d+1}^{2 n} f(x) .
$$

where $x=\left(x^{\prime}, x_{d+1}\right)$ and $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$

- $L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right), 1 \leq p \leq+\infty$, the space of measurable functions on \mathbb{R}_{+}^{d+1} such that

$$
\begin{array}{ll}
\|f\|_{\alpha, n, p} & =\left[\int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{M}_{n}^{-1} f(x)\right|^{p} d \mu_{\alpha+2 n, d}(x)\right]^{\frac{1}{p}}<+\infty, \text { if } 1 \leq p<+\infty \\
\|f\|_{\alpha, n, \infty} & =\underset{x \in \mathbb{R}_{+}^{d+1}}{ }\left|\mathscr{M}_{n}^{-1} f(x)\right|<+\infty
\end{array}
$$

where $\mu_{\alpha, d}$ is the measure given by the relation (1.3).

- $L_{\alpha}^{p}\left(\mathbb{R}_{+}^{d+1}\right):=L_{\alpha, 0}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ and $\|f\|_{\alpha, p}:=\|f\|_{\alpha, 0, p}, 1 \leq p \leq+\infty$.
- $\mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right), \mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ repespectively stand for the subspace of $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right), \mathscr{D}_{*}\left(\mathbb{R}^{d+1}\right)$ and $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$ consisting of functions f such that

$$
\forall k \in\{1, \ldots, 2 n-1\}, \frac{\partial^{k} f}{\partial x_{d+1}^{k}}\left(x^{\prime}, 0\right)=f\left(x^{\prime}, 0\right)=0
$$

For all $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, we define the Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ by :

$$
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Lambda_{\alpha, d, n}(x, \lambda) d \mu_{\alpha, d}(x)
$$

where $\Lambda_{\alpha, d, n}$ is the generalized Weinstein kernel given by :

$$
\forall x, y \in \mathbb{C}^{d+1}, \Lambda_{\alpha, d, n}(x, y)=x_{d+1}^{2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} j_{\alpha+2 n}\left(x_{d+1} y_{d+1}\right)
$$

$x=\left(x^{\prime}, x_{d+1}\right), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.2).
Let us begin by the following definition and result.
Lemma 1. (see [1])
i) The map \mathscr{M}_{n} is an isomorphism from $\mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)\left(\right.$ resp. $\left.\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)\right)$ onto $\mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$ $\left(\operatorname{resp} . \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)\right)$.
ii) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
L_{\alpha, n} \circ \mathscr{M}_{n}(f)=\mathscr{M}_{n} \circ L_{\alpha+2 n}(f) . \tag{2.1}
\end{equation*}
$$

iii) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\Delta_{W}^{\alpha, d, n} \circ \mathscr{M}_{n}(f)=\mathscr{M}_{n} \circ \Delta_{W}^{\alpha+2 n}(f) . \tag{2.2}
\end{equation*}
$$

iv) For all $f \in \mathscr{E}_{*}\left(\mathbb{R}^{d+1}\right)$ and $g \in \mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} \Delta_{W}^{\alpha, d, n}(f)(x) g(x) d \mu_{\alpha, d}(x)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Delta_{W}^{\alpha, d, n} g(x) d \mu_{\alpha, d}(x) . \tag{2.3}
\end{equation*}
$$

Definition 1. The generalized Weinstein kernel $\Lambda_{\alpha, d, n}$ is the function given by :

$$
\begin{equation*}
\forall x, y \in \mathbb{C}^{d+1}, \Lambda_{\alpha, d, n}(x, y)=x_{d+1}^{2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} j_{\alpha+2 n}\left(x_{d+1} y_{d+1}\right), \tag{2.4}
\end{equation*}
$$

where $x=\left(x^{\prime}, x_{d+1}\right), x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.2).

It is easy to see that the generalized Weinstein kernel $\Lambda_{\alpha, d, n}$ has a unique extention to $\mathbb{C}^{d+1} \times \mathbb{C}^{d+1}$ and satisifies the following properties.
Proposition 1. i) The function $x \mapsto \Lambda_{\alpha, d, n}(x, y)$ satisifies the differentiel equation

$$
\begin{equation*}
\triangle_{W}^{\alpha, d, n}\left(\Lambda_{\alpha, d, n}(., y)\right)(x)=-\|y\|^{2} \Lambda_{\alpha, d, n}(x, y) \tag{2.5}
\end{equation*}
$$

ii) For all $x, y \in \mathbb{C}^{d+1}$, we have

$$
\begin{equation*}
\Lambda_{\alpha, d, d}(x, y)=a_{\alpha+2 n} e^{-i\left\langle x^{\prime}, y^{\prime}\right\rangle} x_{d+1}^{2 n} \int_{0}^{1}\left(1-t^{2}\right)^{\alpha+2 n-\frac{1}{2}} \cos \left(t x_{d+1} y_{d+1}\right) d t \tag{2.6}
\end{equation*}
$$

where a_{α} is the constant given by :

$$
\begin{equation*}
a_{\alpha}=\frac{2 \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} . \tag{2.7}
\end{equation*}
$$

iii) For all $\beta \in \mathbb{N}^{d+1}, x \in \mathbb{R}_{+}^{d+1}$ and $z \in \mathbb{C}^{d+1}$, we have

$$
\begin{equation*}
\left|D_{z}^{\beta} \Lambda_{\alpha, d, n}(x, z)\right| \leq x_{d+1}^{2 n}\|x\|^{|\beta|} \exp (\|x\|\|\operatorname{Im} z\|), \tag{2.8}
\end{equation*}
$$

where

$$
D_{z}^{\beta}=\frac{\partial^{\beta}}{\partial z_{1}^{\beta_{1}} \ldots \partial z_{d+1}^{\beta_{d+1}}} \text { and }|\beta|=\beta_{1}+\ldots+\beta_{d+1} .
$$

In particular, we have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{+}^{d+1},\left|\Lambda_{\alpha, d, n}(x, y)\right| \leq x_{d+1}^{2 n} . \tag{2.9}
\end{equation*}
$$

Definition 2. The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ is given for $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ by :

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} f(x) \Lambda_{\alpha, d, n}(x, \lambda) d \mu_{\alpha, d}(x) \tag{2.10}
\end{equation*}
$$

Remark 1. The generalized Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ can be written in the form :

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}=\mathscr{F}_{W}^{\alpha+2 n, d} \circ \mathscr{M}_{n}^{-1} \tag{2.11}
\end{equation*}
$$

where $\mathscr{F}_{W}^{\alpha, d}=\mathscr{F}_{W}^{\alpha, d, 0}$ is the classical Weinstein transform.
Some basic properties of the transform $\mathscr{F}_{W}^{\alpha, d, n}$ are summarized in the following results. For the proofs, we refer to [1].
Proposition 2. (see [1])
i) Let $m \in \mathbb{N}$ and $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, for all $x \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}\left[\left(\triangle_{W}^{\alpha, d, n}\right)^{m} f\right](x)=(-1)^{m}\|x\|^{2 m} \mathscr{F}_{W}^{\alpha, d, n}(f)(x) \tag{2.12}
\end{equation*}
$$

ii) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $m \in \mathbb{N}$. For all $\lambda \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\left(\triangle_{W}^{\alpha, d, n}\right)^{m}\left[\mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}(f)\right](\lambda)=\mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(P_{m} f\right)(\lambda) \tag{2.13}
\end{equation*}
$$

where $P_{m}(x)=(-1)^{m}\|x\|^{2 m}$.

Theorem 1. (see [1])
i) Let $f \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. If $\mathscr{F}_{W}^{\alpha, d, n}(f) \in L_{\alpha+2 n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$, then we have

$$
\begin{equation*}
f(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(y) \Lambda_{\alpha, d, n}(-x, y) d \mu_{\alpha+2 n, d}(y) \text {, a.e } x \in \mathbb{R}_{+}^{d+1} \tag{2.14}
\end{equation*}
$$

where $C_{\alpha, d}$ is the constant given by :

$$
\begin{equation*}
C_{\alpha, d}=\frac{1}{(2 \pi)^{\frac{d}{2}} 2^{\alpha} \Gamma(\alpha+1)} \tag{2.15}
\end{equation*}
$$

ii) The Weinstein transform $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from $\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ onto $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right)$ and from $\mathscr{D}_{n, *}\left(\mathbb{R}^{d+1}\right)$ onto $\mathscr{H}_{*}\left(\mathbb{C}^{d+1}\right)$.
Theorem 2. (see [1]).
i) For all $f, g \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have the following Parseval formula

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}} f(x) \overline{g(x)} d \mu_{\alpha, d}(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \overline{\mathscr{F}_{W}^{\alpha, d, n}(g)(\lambda)} d \mu_{\alpha+2 n, d}(\lambda) \tag{2.16}
\end{equation*}
$$

where $C_{\alpha, d}$ is the constant given by the relation (2.15).
ii) (Plancherel formula).

For all $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have :

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{d+1}}|f(x)|^{2} d \mu_{\alpha, d}(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \tag{2.17}
\end{equation*}
$$

iii) (Plancherel Theorem) :

The transform $\mathscr{F}_{W}^{\alpha, d, n}$ extends uniquely to an isometric isomorphism from $L^{2}\left(\mathbb{R}_{+}^{d+1}, d \mu_{\alpha, d}(x)\right)$ onto $L^{2}\left(\mathbb{R}_{+}^{d+1}, C_{\alpha+2 n, d}^{2} d \mu_{\alpha+2 n, d}(x)\right)$.
Definition 3. The translation operator $T_{x}^{\alpha, d, n}, \quad x \in \mathbb{R}_{+}^{d+1}$, associated with the operator $\Delta_{W}^{\alpha, d, n}$ is defined on $\mathscr{E}_{n, *}\left(\mathbb{R}_{+}^{d+1}\right)$ by :

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1}, T_{x}^{\alpha, d, n} f(y)=x_{d+1}^{2 n} \mathscr{M}_{n} T_{x}^{\alpha+2 n, d} \mathscr{M}_{n}^{-1} f(y) \tag{2.18}
\end{equation*}
$$

where
(2.19)

$$
T_{x}^{\alpha, d} f(y)=\frac{a_{\alpha}}{2} \int_{0}^{\pi} f\left(x^{\prime}+y^{\prime}, \sqrt{x_{d+1}^{2}+y_{d+1}^{2}+2 x_{d+1} y_{d+1} \cos \theta}\right)(\sin \theta)^{2 \alpha} d \theta
$$

$x^{\prime}+y^{\prime}=\left(x_{1}+y_{1}, \ldots, x_{d}+y_{d}\right)$ and a_{α} is the constant given by (2.7).
The following proposition summarizes some properties of the generalized Weinstein translation operator.

Proposition 3. (see [1])
i) Let $f \in L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right), 1 \leq p \leq+\infty$ and $x \in \mathbb{R}_{+}^{d+1}$. Then $T_{x}^{\alpha, d, n} f$ belongs to $L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\left\|T_{x}^{\alpha, d, n} f\right\|_{\alpha, n, p} \leq x_{d+1}^{2 n}\|f\|_{\alpha, n, p} \tag{2.20}
\end{equation*}
$$

ii) The function $t \mapsto \Lambda_{\alpha, d, n}(t, \lambda), \lambda \in \mathbb{C}^{d+1}$, satisfies on \mathbb{R}_{+}^{d+1} the following product formula:

$$
\begin{equation*}
\forall x, y \in \mathbb{R}_{+}^{d+1}, \Lambda_{\alpha, d, n}(x, \lambda) \Lambda_{\alpha, d, n}(y, \lambda)=T_{x}^{\alpha, d, n}\left[\Lambda_{\alpha, d, n}(., \lambda)\right](y) \tag{2.21}
\end{equation*}
$$

iii) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $x \in \mathbb{R}_{+}^{d+1}$, we have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left(T_{x}^{\alpha, d, n} f\right)(\lambda)=\Lambda_{\alpha, d, n}(-x, \lambda) \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \tag{2.22}
\end{equation*}
$$

iv) Let $f \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, for all $x, y \in \mathbb{R}_{+}^{d+1}$, we have
$T_{x}^{\alpha, d, n} f(y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \Lambda_{\alpha, d, n}(-x, \lambda) \Lambda_{\alpha, d, n}(-y, \lambda) \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) d \mu_{\alpha+2 n, d}(\lambda)$.
Definition 4. The generalized Weinstein convolution product of $f, g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ is given by :

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, f *_{\alpha, n} g(x)=\int_{\mathbb{R}_{+}^{d+1}} T_{x}^{\alpha, d, n} f(-y) g(y) d \mu_{\alpha, d}(y) \tag{2.24}
\end{equation*}
$$

Proposition 4. (see [1])
i) Let $p, q, r \in[1,+\infty]$ such that $\frac{1}{p}+\frac{1}{q}-\frac{1}{r}=1$. Then for all $f \in L_{\alpha, n}^{p}\left(\mathbb{R}_{+}^{d+1}\right)$ and $g \in L_{\alpha, n}^{q}\left(\mathbb{R}_{+}^{d+1}\right)$, the function $f *_{\alpha, n} g \in L_{\alpha, n}^{r}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\left\|f *_{\alpha, n} g\right\|_{\alpha, n, r} \leq\|f\|_{\alpha, n, p}\|g\|_{\alpha, n, q} \tag{2.25}
\end{equation*}
$$

ii) For all $f, g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right), f *_{\alpha, n} g \in L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}\left(f *_{\alpha, n} g\right)=\mathscr{F}_{W}^{\alpha, d, n}(f) \mathscr{F}_{W}^{\alpha, d, n}(g) . \tag{2.26}
\end{equation*}
$$

Notation. We denoted by $\mathscr{S}_{*}^{\prime},\left(\right.$ resp. $\left.\mathscr{S}_{n, *}^{\prime}\right)$ the strong dual of the space $\mathscr{S}_{*}\left(\mathbb{R}^{d+1}\right),\left(\right.$ resp. $\left.\mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)\right)$.
Definition 5. The generalized Fourier-Weinstein transform of a distribution $u \in$ \mathscr{S}_{*}^{\prime} is defined by :

$$
\begin{equation*}
\forall \phi \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right),\left\langle\mathscr{F}_{W}^{\alpha, d, n}(u), \phi\right\rangle=\left\langle u, \mathscr{F}_{W}^{\alpha, d, n}(\phi)\right\rangle \tag{2.27}
\end{equation*}
$$

The following proposition is as an immediate consequence of Theorem 1.
Proposition 5. The transform $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from \mathscr{S}_{*}^{\prime} onto $\mathscr{S}_{n, *}^{\prime}$.

Remark 2. Let $m \in \mathbb{N}$ and $u \in \mathscr{S}_{n, *}^{\prime}$, we have

$$
\begin{equation*}
\mathscr{F}_{W}^{\alpha, d, n}\left[\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m} u\right]=(-1)^{m}\|x\|^{2 m} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} u\right) \tag{2.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\forall \phi \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right),\left\langle\Delta_{W}^{\alpha, d, n} u, \phi\right\rangle=\left\langle u, \Delta_{W}^{\alpha, d, n} \phi\right\rangle \tag{2.29}
\end{equation*}
$$

3. The generalized Weinstein-Sobolev spaces of exponential type

In this section, we introduce and study the Sobolev spaces of exponential type associated with the generalized Weinstein operator $\Delta_{W}^{\alpha, d, n}$.
Notation. We denote by :
$\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ the set of all functions $\varphi \in \mathscr{E}_{n, *}\left(\mathbb{R}^{d+1}\right)$ such that

$$
\forall h, k>0, N^{h, k}(\varphi)=\sup _{\substack{x \in \mathbb{R}^{d+1} \\ \\ \mu \in \mathbb{N}^{d+1}}}\left[\frac{e^{k\|x\|}\left|\partial^{\mu} \mathscr{M}_{n}^{-1} \varphi(x)\right|}{h^{|\mu|} \mu!}\right]<+\infty
$$

The topology of $\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ is defined by the above seminorms.
We have the following useful result.

Theorem 3. The transform $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from $\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ onto $\mathscr{G}_{*}\left(\mathbb{R}^{d+1}\right):=\mathscr{G}_{0, *}\left(\mathbb{R}^{d+1}\right)$.
Proof. The result follows from the relations (2.11) and the fact that $\mathscr{F}_{W}^{\alpha+2 n, d}$ is an isomorphism from $\mathscr{G}_{*}\left(\mathbb{R}^{d+1}\right)$ onto itself.

Notation. We denote by $\mathscr{G}_{n, *}^{\prime}$ the strong dual of the space $\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$.
Definition 6. The Weinstein transform of a distribution $S \in \mathscr{G}_{*}^{\prime}$ is defined by :

$$
\begin{equation*}
\forall \phi \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right),\left\langle\mathscr{F}_{W}^{\alpha, d, n}(S), \phi\right\rangle=\left\langle S, \mathscr{F}_{W}^{\alpha, d, n}(\phi)\right\rangle \tag{3.1}
\end{equation*}
$$

Proposition 6. Let $m \in \mathbb{N}$ and $T \in \mathscr{G}_{*}^{\prime}$, we have

$$
\mathscr{F}_{W}^{\alpha, d, n}\left[\left(\Delta_{W}^{\alpha, d, n}\right)^{m} T\right]=(-1)^{m}\|\xi\|^{2 m} \mathscr{F}_{W}^{\alpha, d, n}(T) .
$$

Proof. The result is a direct consequence of the relations (2.12) and (3.1).
Definition 7. For $s \in \mathbb{R}$ and $1 \leq p<+\infty$, we define the space $\mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ as the set of all $u \in \mathscr{G}_{*}^{\prime}$ such that $\mathscr{F}_{W}^{\alpha, d, n}(u)$ is a function and

$$
\begin{equation*}
\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}=\left[C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{p s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)\right|^{p} d \mu_{\alpha+2 n, d}(\lambda)\right]^{\frac{1}{p}}<+\infty \tag{3.2}
\end{equation*}
$$

The norm on $\mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ is given by $\|u\|_{\mathscr{H}_{\alpha, n}^{s}}$.
For $p=2$, we provide the space $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right):=\mathscr{W}_{\alpha, n}^{s, 2}\left(\mathbb{R}_{+}^{d+1}\right)$ with the scalar product

$$
\begin{equation*}
\langle u, v\rangle_{s, \alpha, n}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{2 s\|\xi\|} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)(\xi)} d \mu_{\alpha+2 n, d}(\xi) \tag{3.3}
\end{equation*}
$$

and the norm

$$
\|u\|_{\mathscr{H}_{\alpha, n}^{s}}=\langle u, u\rangle_{s, \alpha, n}^{\frac{1}{2}}
$$

$\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ is the generalized Sobolev-Weinstein space of exponential type of order s. For $n=0$, we regain the classical Sobolev-Weinstein space $\mathscr{H}_{\mathscr{G}_{*}}^{s, \alpha}\left(\mathbb{R}_{+}^{d+1}\right)$ given in [3] and $\mathscr{F}_{W}^{\alpha, d}=\mathscr{F}_{W}^{\alpha, d, 0}$ is the classical Weinstein transform.(See [2], [3], [10], [12] and [13]).
Proposition 7. Let $s \in \mathbb{R}$ and $1 \leq p<+\infty$. The space $\mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ provided with the norm $\|\cdot\|_{W_{\alpha, n}^{s, n}}$ is a Banach space.

Proof. It is clear that the space $L^{p}\left(\mathbb{R}_{+}^{d+1}, e^{p s\|\lambda\|} d \mu_{\alpha+2 n, d}(x)\right)$ is complete. On the other hand $\mathscr{F}_{W}^{\alpha, d, n}$ is a topological isomorphism from \mathscr{G}_{*}^{\prime} onto itself $\mathscr{G}_{n, *}^{\prime}$. This achieves the proof.

We proceed as [3], we obtain the following results.
Proposition 8. i) For all $s \in \mathbb{R}$, we have

$$
\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right) \subset \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)
$$

ii) We have

$$
\mathscr{H}_{\alpha, n}^{0}\left(\mathbb{R}_{+}^{d+1}\right)=L_{\alpha+2 n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)
$$

iii) For all $s, t \in \mathbb{R}, t>s$, the space $\mathscr{W}_{\alpha, n}^{t, p}\left(\mathbb{R}_{+}^{d+1}\right)$ is continuously contained in $\mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$.
iv) Let P be a linear partial differential operator with constant coefficients, $s \in \mathbb{R}$, $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $t<s$.
Then $P(u) \in \mathscr{H}_{\alpha, n}^{t}\left(\mathbb{R}_{+}^{d+1}\right)$ and the map $v \mapsto P(v)$ is continuous on $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
v) Let $Q(D)=\sum_{m \in \mathbb{N}} a_{m} D^{m}$ be a differential operator of infinite order such that there exist constants $C>0$ and $r>0$ satisfying :

$$
\begin{equation*}
\forall m \in \mathbb{N},\left|a_{m}\right| \leq C \frac{r^{m}}{m!} \tag{3.4}
\end{equation*}
$$

If $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, then $Q(u) \in \mathscr{H}_{\alpha, n}^{s-r}\left(\mathbb{R}_{+}^{d+1}\right)$ and the map :
$Q: \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \rightarrow \mathscr{H}_{\alpha, n}^{s-r}\left(\mathbb{R}_{+}^{d+1}\right)$ is continuous.
Proposition 9. Let $t \in \mathbb{R}$. The operator $\nabla_{t}: \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \rightarrow \mathscr{H}_{\alpha, n}^{s-t}\left(\mathbb{R}_{+}^{d+1}\right)$ defined for all $x \in \mathbb{R}_{+}^{d+1}$ by :

$$
\begin{equation*}
\nabla_{t} u(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{t \sqrt{1+\|\xi\|^{2}}} \Lambda_{\alpha, d, n}(-x, \xi) \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) d \mu_{\alpha+2 n, d}(\xi) \tag{3.5}
\end{equation*}
$$

is an isomorphism.
Proof. Let $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Then, the function $\xi \mapsto e^{(s-t)\|\xi\|} e^{t \sqrt{1+\|\xi\|^{2}}} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)$ belongs to $L_{\alpha+2 n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\forall \xi \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left(\nabla_{t} u\right)(\xi)=e^{t \sqrt{1+\|\xi\|^{2}}} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d+1}} e^{2(s-t)\|\lambda\|} \mid & \left|\mathscr{F}_{W}^{\alpha, d, n}(\nabla u)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& =\int_{\mathbb{R}_{+}^{d+1}} e^{2(s-t)\|\lambda\|+2 t \sqrt{1+\|\lambda\|^{2}}}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& \leq k_{t} \int_{\mathbb{R}_{+}^{d+1}} e^{2 s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda),
\end{aligned}
$$

with $k_{t}=\sup _{\lambda \in \mathbb{R}_{+}^{d+1}}\left[e^{2 t\left(\sqrt{1+\|\lambda\|^{2}}-\|\lambda\|\right)}\right] \leq e^{2|t|}$.
Thenwe deduce that $\nabla_{t} u \in \mathscr{H}_{\alpha, n}^{s-t}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|\nabla_{t} u\right\|_{\mathscr{H}_{\alpha, n}^{s-t}} \leq e^{|t|}\|u\|_{\mathscr{H}_{\alpha, n}^{s}}
$$

On the other hand, let $v \in \mathscr{H}_{\alpha, n}^{s-t}\left(\mathbb{R}_{+}^{d+1}\right)$ and put

$$
u=\left[\mathscr{F}_{W}^{\alpha, d, n}\right]^{-1}\left(e^{-t \sqrt{1+\|\lambda\|^{2}}} \mathscr{F}_{W}^{\alpha, d, n}(v)\right)
$$

From the definition of the operator ∇_{t}, we have $\nabla_{t} u=v$ and we get

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{d+1}} e^{2 s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda)=\int_{\mathbb{R}_{+}^{d+1}} e^{2\left(s\|\lambda\|-t \sqrt{1+\|\lambda\|^{2}}\right)}\left|\mathscr{F}_{W}^{\alpha, d, n}(v)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& \leq \sup _{\lambda \in \mathbb{R}_{+}^{d+1}}\left[e^{2 t\left(\|\lambda\|-\sqrt{1+\|\lambda\|^{2}}\right)}\right] \times \int_{\mathbb{R}_{+}^{d+1}} e^{2(s-t)\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(v)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda)<\infty .
\end{aligned}
$$

Then, $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and we obtain

$$
\|u\|_{\mathscr{H}_{\alpha, n}^{s}} \leq e^{|t|}\left\|\nabla_{t} u\right\|_{\mathscr{H}_{\alpha, n}^{s-t}}
$$

Hence the operator ∇_{t} is an isomorphism.
The following theorem deals with the dual $\left(\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)\right)^{\prime}$ of $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and gives a relation between $\left(\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)\right)^{\prime}$ and $\mathscr{H}_{\alpha, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$.

Theorem 4. The dual of $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ can be identified with $\mathscr{H}_{\alpha, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$. The relation of the identification is as follows :

$$
\begin{equation*}
\langle u, v\rangle_{0, \alpha, n}=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \overline{\mathscr{F}_{W}^{\alpha, d, n}(v)(\xi)} d \mu_{\alpha+2 n, d}(\xi), \tag{3.6}
\end{equation*}
$$

with $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $v \in \mathscr{H}_{\alpha, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$.
Proof. Using the same technique as in Theorem 3.10 of [3], we obtain the result.
Proposition 10. Let $s_{1}, s, s_{2} \in \mathbb{R}$, satisfying $s_{1}<s<s_{2}$. Then, for all $\varepsilon>0$, there exists a nonnegative constant C_{ε} such that for all $u \in \mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\begin{equation*}
\|u\|_{W_{\alpha, n}^{s, p}} \leq C_{\varepsilon}\|u\|_{W_{\alpha, n}^{s, p}}^{s_{1}, p}+\varepsilon\|u\|_{\mathscr{W}_{\alpha, n}^{s_{2}, p}} . \tag{3.7}
\end{equation*}
$$

Proof. Let $s_{1}, s_{2} \in \mathbb{R}, s_{1}<s_{2}$ and $\left.s \in\right] s_{1}, s_{2}[$. Then there exists $t \in] 0,1[$ such that $s=(1-t) s_{1}+t s_{2}$.
Using the Hölder's inequlity, we get

$$
\begin{aligned}
\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}} & \leq\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}^{1-t} \times\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}^{t} \\
& \leq\left(\varepsilon^{\frac{-t}{1-t}}\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}^{s_{1}, p}\right)^{1-t} \times\left(\varepsilon\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}^{s_{2}, p}\right)^{t} \\
& \leq C_{\varepsilon}\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}+\varepsilon\|u\|_{\mathscr{W}_{\alpha, n}^{s_{2}, p}}
\end{aligned}
$$

where $C_{\varepsilon}=\varepsilon^{\frac{-t}{1-t}}$.
Proposition 11. Let $s \in \mathbb{R}, m \in \mathbb{N}$ and $\varepsilon>0$. If $\mathscr{M}_{n} u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ then $\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m} u \in \mathscr{H}_{\alpha, n}^{s-\varepsilon}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m}(u)\right\|_{\mathscr{H}_{\alpha, n}^{s-\varepsilon}} \leq\left(\frac{2 m}{\varepsilon e}\right)^{2 m}\left\|\mathscr{M}_{n} u\right\|_{\mathscr{H}_{\alpha, n}^{s}} .
$$

Proof. Let $\varepsilon>0, m \in \mathbb{N}, s \in \mathbb{R}$ and $u \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
From (2.28), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{d+1}} e^{2(s-\varepsilon)\|\lambda\|} \mid & \left.\mathscr{F}_{W}^{\alpha, d, n}\left[\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m} u\right](\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& =\int_{\mathbb{R}_{+}^{d+1}}\|\lambda\|^{4 m} e^{2(s-\varepsilon)\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} u\right)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& \leq\left(\frac{2 m}{\varepsilon e}\right)^{4 m} \int_{\mathbb{R}_{+}^{d+1}} e^{2 s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} u\right)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda)<+\infty .
\end{aligned}
$$

Then $\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m}(u) \in \mathscr{H}_{\alpha, n}^{s-\varepsilon}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|\mathscr{M}_{n}\left(\Delta_{W}^{\alpha, d, n}\right)^{m}(u)\right\|_{\mathscr{H}_{\alpha, n}^{s-\varepsilon}} \leq\left(\frac{2 m}{\varepsilon e}\right)^{2 m}\left\|\mathscr{M}_{n} u\right\|_{\mathscr{H}_{\alpha, n}^{s}}
$$

Definition 8. Let $u \in \mathscr{S}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we define the operator $\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}$ by :
$\forall x \in \mathbb{R}_{+}^{d+1},\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}} u(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}}\|\xi\| \Lambda_{\alpha, d, n}(-x, \xi) \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) d \mu_{\alpha+2 n, d}(\xi)$.
Proposition 12. Let $P\left(\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right)=\sum_{m \in \mathbb{N}} a_{m}\left[\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right]^{m}$ be a fractional Weinstein Laplace operators of infinite order satisfying : there exist positive constants C and r such that

$$
\begin{equation*}
\forall m \in \mathbb{N},\left|a_{m}\right| \leq C \frac{r^{m}}{m!} \tag{3.9}
\end{equation*}
$$

If $u \in \mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$, then $P\left(\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right) u \in \mathscr{W}_{\alpha, n}^{s-r, p}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|P\left(\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right) u\right\|_{\mathscr{W}_{\alpha, n}^{s-r, p}} \leq C\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}}
$$

Proof. As an immediate consequence of the the condition (3.9), we have

$$
\forall \xi \in \mathbb{R}_{+}^{d+1},|P(\|\xi\|)| \leq C e^{r\|\xi\|}
$$

Thus we deduce the desired result.
Proposition 13. Let $t, s \in \mathbb{R}$. The operator $\exp \left(t\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right)$ defined by :
$\forall x \in \mathbb{R}_{+}^{d+1}, \exp \left(t\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right) u(x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{t\|\xi\|} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) \Lambda_{\alpha, d, n}(-x, \xi) d \mu_{\alpha+2 n, d}(\xi)$
is an isomorphism from $\mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$ onto $\mathscr{W}_{\alpha, n}^{s-t, p}\left(\mathbb{R}_{+}^{d+1}\right)$.
Proof. Let $t, s \in \mathbb{R}$ and $u \in \mathscr{W}_{\alpha, n}^{s, p}\left(\mathbb{R}_{+}^{d+1}\right)$. It is easy to see that

$$
\left\|\exp \left(t\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right) u\right\|_{\mathscr{W}_{\alpha, n}^{s, t, p}}=\|u\|_{\mathscr{W}_{\alpha, n}^{s, p}} .
$$

Thus the proof is immediate.
Proposition 14. Let $s>0$. Then each $u \in \mathscr{H}_{\alpha, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right)$ can be represented as an infinite sum of fractional Weinstein Laplace operators of square integrable function v, in other words,

$$
u=\sum_{m \in \mathbb{N}} \frac{s^{m}}{m!}\left[\left(-\Delta_{W}^{\alpha, d, n}\right)^{\frac{1}{2}}\right]^{m} v
$$

Proof. Let $u \in \mathscr{H}_{\alpha, n}^{-s}\left(\mathbb{R}_{+}^{d+1}\right), s>0$. Then, the function $\xi \mapsto e^{-s\|\xi\|} \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)$ belongs to $L_{\alpha}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$.
So, from the Plancheral theorem, there exists $v \in L_{\alpha+2 n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$, such that

$$
\forall \xi \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}(v)(\xi)=\frac{\mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)}{\sum_{m \in \mathbb{N}} \frac{s^{m}}{m!}\|\xi\|^{m}}
$$

Then

$$
\begin{aligned}
\mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) & =\sum_{m \in \mathbb{N}} \frac{s^{m}}{m!}\|\xi\|^{m} \mathscr{F}_{W}^{\alpha, d, n}(v)(\xi) \\
& =\sum_{m \in \mathbb{N}} \frac{s^{m}}{m!} \mathscr{F}_{W}^{\alpha, d, n}\left[\left(\left(-\Delta_{W}^{\alpha, d}\right)^{\frac{1}{2}}\right)^{m} v\right](\xi),
\end{aligned}
$$

which achieves the proof.

4. Applications

4.1. The reproducing kernels.

Proposition 15. For $s>0$, the Hilbert space $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ admits the reproducing kernel :
$\left.\forall x, y \in \mathbb{R}_{+}^{d+1}, \Theta_{s}^{\alpha, d, n}(x, y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{-2 s\|\lambda\|} \Lambda_{\alpha, d, n}(-x, \lambda)\right) \Lambda_{\alpha, d, n}(-y, \lambda) d \mu_{\alpha+2 n, d}(\lambda)$.
That is :
i) For every $y \in \mathbb{R}_{+}^{d+1}$, the distribution given by the function $x \mapsto \Theta_{s}^{\alpha, d, n}(x, y)$ belongs to $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
ii) For every $f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$, we have

$$
\forall y \in \mathbb{R}_{+}^{d+1},\left\langle f, \Theta_{s}^{\alpha, d, n}(., y)\right\rangle_{s, \alpha}=f(y)
$$

Proof. i) Let $y \in \mathbb{R}_{+}^{d+1}$ and $s>0$, the function $\lambda \mapsto e^{-2 s\|\lambda\|} \Lambda_{\alpha, d, n}(y, \lambda)$ belongs to $L_{\alpha, n}^{1}\left(\mathbb{R}_{+}^{d+1}\right) \cap L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$. Then, from the relation (2.17), the function $x \mapsto$ $\Theta_{s}^{\alpha, d, n}(x, y)$ belongs to $L_{\alpha, n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left[\Theta_{s}^{\alpha, d, n}(., y)\right](\lambda)=e^{-2 s\|\lambda\|} \Lambda_{\alpha, d, n}(-y, \lambda) . \tag{4.2}
\end{equation*}
$$

Then $\Theta_{s}^{\alpha, d, n}(., y) \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$.
ii) Let $f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ and $y \in \mathbb{R}_{+}^{d+1}$. Using the relations (3.3), (4.2) and (2.14), we obtain

$$
\begin{aligned}
\left\langle f, \Theta_{s}^{\alpha, d, n}(., y)\right\rangle_{s, \alpha, n} & =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \Lambda_{\alpha, d, n}(-y, \lambda) d \mu_{\alpha+2 n, d}(\lambda) \\
& =f(y)
\end{aligned}
$$

Definition 9. The generalized heat kernel $G^{\alpha, n, d}$ is given by :
$\forall t>0, \forall x, y \in \mathbb{R}^{d+1}, G^{\alpha, n, d}(t, x, y)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{-t\|\xi\|^{2}} \Lambda_{\alpha, d, n}(x, \xi) \Lambda_{\alpha, d, n}(-y, \xi) d \mu_{\alpha+2 n, d}(\xi)$.
The following Lemma will be useful later
Lemma 2. Let $t>0$, we define the function $\phi_{t}^{\alpha, d, n}$ by :

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d+1}, \phi_{t}^{\alpha, d, n}(x)=\frac{C_{\alpha+2 n, d}}{(2 t)^{\alpha+2 n+\frac{d}{2}+1}} x_{d+1}^{2 n} e^{-\frac{\|x\|^{2}}{4 t}} \tag{4.4}
\end{equation*}
$$

i) We have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left(\phi_{t}^{\alpha, d, n}\right)(\lambda)=e^{-t\|\lambda\|^{2}} \tag{4.5}
\end{equation*}
$$

ii) We have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{d+1}, T_{x}^{\alpha, d, n}\left(\phi_{t}^{\alpha, d, n}\right)(y)=\frac{C_{\alpha+2 n, d}}{(2 t)^{\alpha+2 n+\frac{d}{2}+1}} y_{d+1}^{2 n} e^{-\frac{\|x\|^{2}+\|y\|^{2}}{4 t}} \Lambda_{\alpha, d, n}\left(x,-\frac{i y}{2 t}\right) \tag{4.6}
\end{equation*}
$$

Proof. i) To see the result, we have to show that

$$
\forall t>0, \forall x \in \mathbb{R}, \quad \int_{0}^{+\infty} j_{\alpha}(x \xi) e^{-t \xi^{2}} \xi^{2 \alpha+1} d \xi=\frac{\Gamma(\alpha+1)}{2 t^{\alpha+1}} e^{-\frac{x^{2}}{4 t}}
$$

ii) We obtain the result using the following relation :

$$
\forall \lambda \in \mathbb{R}, \frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} e^{\lambda \cos \theta} \sin ^{2 \alpha}(\theta) d \theta=j_{\alpha}(i \lambda)
$$

The following properties of the generalized heat kernel $G^{\alpha, n, d}$ can be easily established using the Lemma 2.
Proposition 16. i) We have

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{d+1}, G^{\alpha, n, d}(t, x, y)=T_{x}^{\alpha, d, n}\left(\phi_{t}^{\alpha, d, n}\right)(-y) \tag{4.7}
\end{equation*}
$$

where $\phi_{t}^{\alpha, d, n}, t>0$, be the function defined by the relation (4.4).
ii) For all $t>0$ and $x, y \in \mathbb{R}^{d+1}$, we have

$$
\begin{equation*}
G^{\alpha, n, d}(t, x, y)=\frac{C_{\alpha+2 n, d}}{(2 t)^{\alpha+2 n+\frac{d}{2}+1}} y_{d+1}^{2 n} e^{-\frac{\|x\|^{2}+\|y\|^{2}}{4 t}} \Lambda_{\alpha, d, n}\left(x, \frac{i y}{2 t}\right) \tag{4.8}
\end{equation*}
$$

iii) We have

$$
\begin{equation*}
\forall t>0, \forall y \in \mathbb{R}_{+}^{d+1}, \int_{\mathbb{R}_{+}^{d+1}} G^{\alpha, n, d}(t, x, y) d \mu_{\alpha+2 n, d}(x)=y_{d+1}^{2 n} \tag{4.9}
\end{equation*}
$$

iv) For a fixed $y \in \mathbb{R}_{+}^{d+1}$, the function $u:(x, t) \mapsto G^{\alpha, n, d}(t, x, y)$ solves on $\left.\mathbb{R}_{+}^{d+1} \times\right] 0,+\infty[$ the generalized heat equation :

$$
\Delta_{W}^{\alpha, d} u(x, t)=\frac{\partial}{\partial t} u(x, t)
$$

Definition 10. The generalized heat semigroup $\mathscr{H}_{t}^{\alpha, d, n}, t>0$, is the integral operator given for f in $L_{\alpha}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ by :

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \mathscr{H}_{t}^{\alpha, d, n} f(x):= \begin{cases}\int_{\mathbb{R}_{+}^{d+1}} G^{\alpha, n, d}(t, x, y) f(y) d \mu_{\alpha, d}(y), & \text { if } t>0 \\ f(x), & \text { if } t=0\end{cases}
$$

Proposition 17. i) Let $t>0$. We have

$$
\begin{equation*}
\forall x \in \mathbb{R}_{+}^{d+1}, \mathscr{H}_{t}^{\alpha, d, n} f(x)=f *_{\alpha, n} \phi_{t}^{\alpha, d, n}(x) \tag{4.10}
\end{equation*}
$$

where $\phi_{t}^{\alpha, d, n}$ is the function given by the relation (4.4).
ii) Let $f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. We have

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}_{+}^{d+1}, \mathscr{F}_{W}^{\alpha, d, n}\left[\mathscr{H}_{t}^{\alpha, d, n} f\right](\lambda)=e^{-t\|\lambda\|^{2}} \mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda) \tag{4.11}
\end{equation*}
$$

Proof. i) It is an immediate consequence of the relation (4.7).
ii) Let $f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Using the relations (4.5), (4.10) and (2.26), we obtain the result.

Proposition 18. i) Let $f \in \mathscr{G}_{n, *}$. Then $u(x, t)=\mathscr{H}_{t}^{\alpha, d, n} f(x)$ solves on $\left.\mathbb{R}_{+}^{d+1} \times\right] 0,+\infty[$, the following system :

$$
\begin{cases}\left(\Delta_{W}^{\alpha, d, n}-\frac{\partial}{\partial t}\right) u(x, t) & =0 \\ u(x, 0) & =f(x) .\end{cases}
$$

ii) Let $s \in \mathbb{R}$. The integral transform $\mathscr{H}_{t}^{\alpha, d, n}, t>0$, is a bounded linear operator from $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ into $L_{\alpha}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have :

$$
\begin{equation*}
\left\|\mathscr{H}_{t}^{\alpha, d, n} f\right\|_{\alpha, n, 2} \leq e^{\frac{s^{2}}{4 t}}\|f\|_{\mathscr{H}_{\alpha, n}^{s}}, f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right) \tag{4.12}
\end{equation*}
$$

Proof. i) The assertion follows from Proposition 16 iv).
ii) Let $f \in \mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Using the relations (2.17) and (4.11), we have

$$
\begin{aligned}
\left\|\mathscr{H}_{t}^{\alpha, d, n} f\right\|_{\alpha, 0,2}^{2} & =C_{\alpha+2 n, d}^{2}\left\|\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{H}_{t}^{\alpha, d, n} f\right)\right\|_{\alpha+2 n, 0,2}^{2} \\
& =C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} e^{-2 t\|\lambda\|^{2}}\left|\mathscr{F}_{W}^{\alpha, d, n}(f)(\lambda)\right|^{2} d \mu_{\alpha+2 n, d}(\lambda) \\
& \leq \sup _{\lambda \in \mathbb{R}_{+}^{d+1}}\left[e^{-2 s\|\lambda\|-2 t\|\lambda\|^{2}}\right]\|f\|_{\mathscr{H}_{\alpha, n}^{s}}^{2}=e^{\frac{s^{2}}{2 t}}\|f\|_{\mathscr{H}_{\alpha, n}^{s}}^{2} .
\end{aligned}
$$

Thus the proof is finished.
4.2. Pseudo-differential associated with the Generalized Weinstein operator. Notations. We need the following notations :

- For $r \geq 0$, we designate by \mathscr{S}^{r}, the space of C^{∞}-function $a: \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \rightarrow \mathbb{C}$ such that for each compact set $K \subset \mathbb{R}^{d+1}$ and each $\beta, \gamma \in \mathbb{N}$, there exists a constant $C=C(K, \beta, \gamma)$ satisfying :

$$
\begin{equation*}
\forall(x, \xi) \in K \times \mathbb{R}^{d+1},\left|D_{\xi}^{\beta} D_{x}^{\gamma} a(x, \xi)\right| \leq C e^{r\|\xi\|} \tag{4.13}
\end{equation*}
$$

- For $r, l \in \mathbb{R}$ with $l>0$, we denote by $\mathscr{S}^{r, l}$, the space consits of all C^{∞}-function $a: \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \rightarrow \mathbb{C}$ such that for each $L>0$ and $\beta, \gamma \in \mathbb{N}$, there exist a positive constant $C=C(r, l, \gamma)$ satisfying the relation :

$$
\begin{equation*}
\forall(x, \xi) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1},\left|D_{\xi}^{\beta} D_{x}^{\gamma} a(x, \xi)\right| \leq C L^{|\beta|}|\beta|!e^{r\|\xi\|} e^{-l\|x\|} \tag{4.14}
\end{equation*}
$$

Definition 11. The pseudo-differential operator $A\left(a, \Delta_{W}^{\alpha, d, n}\right)$ associated with $a(x, \xi) \in$ \mathscr{S}^{r} is defined for $u \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ by :

$$
\begin{equation*}
\left[A\left(a, \Delta_{W}^{\alpha, d, n}\right) u\right](x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \Lambda_{\alpha, d, n}(-x, \xi) a(x, \xi) \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi) d \mu_{\alpha+2 n, d}(\xi) \tag{4.15}
\end{equation*}
$$

Theorem 5. If $a(x, \xi) \in \mathscr{S}^{r}$, then its associated pseudo-differential operator $A\left(a, \Delta_{W}^{\alpha, d}\right)$ is a well-defined mapping from $\mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ into $C^{\infty}\left(\mathbb{R}^{d+1}\right)$.

Proof. Let $a(x, \xi) \in \mathscr{S}^{r}$. From the relation (4.13), for any compact set $K \subset \mathbb{R}^{d+1}$ and any $\gamma \in \mathbb{N}$, we have

$$
\begin{equation*}
\forall(x, \xi) \in K \times \mathbb{R}^{d+1},\left|D_{x}^{\gamma} a(x, \xi)\right| \leq C e^{r\|\xi\|} \tag{4.16}
\end{equation*}
$$

Let $u \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ and $x \in K$, using the relations (4.16), (2.9) and the CauchySchwartz inequality, we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{d+1}}\left|a(x, \xi) \Lambda_{\alpha, d, n}(-x, \xi) \mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)\right| d \mu_{\alpha+2 n, d}(\xi) \\
& \leq C x_{d+1}^{2 n} \int_{\mathbb{R}_{+}^{d+1}} e^{r\|\xi\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(\xi)\right| d \mu_{\alpha+2 n, d}(\xi) \\
& \leq \frac{C}{C_{\alpha+2 n, d}} x_{d+1}^{2 n}\left(\int_{\mathbb{R}_{+}^{d+1}} e^{2(r-s)\|\xi\|} d \mu_{\alpha+2 n, d}(\xi)\right)^{\frac{1}{2}}\|u\|_{\mathscr{H}_{\alpha, n}^{s}}<+\infty
\end{aligned}
$$

where $s>r$.
This relation proves that $A\left(a, \Delta_{W}^{\alpha, d}\right)(u)$ is well-defined and continuous on \mathbb{R}_{+}^{d+1}. Consequently, in vertue of Leibniz formula, we obtain the result.

The next lemma plays an important role in this section.
Lemma 3. Let $a(x, \xi) \in \mathscr{S}^{r, l}$. For $L>0$ there exist $C>0$ and $0<t<\frac{1}{L d}$ such that :

$$
\begin{equation*}
\left|\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(\xi)\right| \leq C e^{r\|y\|} e^{-t\|\xi\|} \tag{4.17}
\end{equation*}
$$

where C is a constant depending on r, t, α, d, n and l.
Proof. The result can be obtained by a simple calculation by using the same technique as in Theorem 3.4 of [10].

The following theorem gives an alternative form of $A\left(a, \Delta_{W}^{\alpha, d}\right)$ which will be useful in the sequel.
Theorem 6. Let $a(x, \lambda) \in \mathscr{S}^{r, l}$. Then, the pseudo-differential operator $A\left(a, \Delta_{W}^{\alpha, d}\right)$ admits the following representation :

$$
\begin{align*}
& \text { (4.18) }\left[A\left(a, \Delta_{W}^{\alpha, d}\right) u\right](x)=C_{\alpha+2 n, d}^{2} \int_{\mathbb{R}_{+}^{d+1}} \Lambda_{\alpha, d, n}(-x, z) \times \tag{4.18}\\
& {\left[\int_{\mathbb{R}_{+}^{d+1}} \mathscr{M}_{n, z}^{-1} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y) y_{d+1}^{2 n} d \mu_{\alpha, d}(y)\right] d \mu_{\alpha+2 n, d}(z)}
\end{align*}
$$

for all $u \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$ where all involved integrals are absolutely convergent.
Proof. From the relation (4.17), for all $y, z \in \mathbb{R}_{+}^{d+1}$, we obtain :

$$
\begin{equation*}
\left|\mathscr{M}_{n, z}^{-1} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z)\right| \leq C_{1} e^{r\|y\|} y_{d+1}^{2 n} T_{y}^{\alpha+2 n, d}\left(e^{-t\|\xi\|}\right)(z) \tag{4.19}
\end{equation*}
$$

where C_{1} is a constant depending on r, t, α, d, n and l.
On the other hand since $u \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\forall y \in \mathbb{R}_{+}^{d+1},\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| \leq C_{2} e^{-k\|y\|}, k>0 \tag{4.20}
\end{equation*}
$$

Now using the relations (4.19) and (4.20), we get :
$\left|\mathscr{M}_{n, z}^{-1} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| \leq C_{3} e^{(r-k)\|y\|} y_{d+1}^{2 n} T_{y}^{\alpha+2 n, d}\left(e^{-t\|\xi\|}\right)(z)$.
Then for $k>r$ and $t>0$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{M}_{n, z}^{-1} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| y_{d+1}^{2 n} d \mu_{\alpha, d}(y) \\
& \leq C_{3} \int_{\mathbb{R}_{+}^{d+1}} e^{(r-k)\|y\|} T_{y}^{\alpha+2 n, d}\left(e^{-t\|\xi\|}\right)(z) d \mu_{\alpha+2 n, d}(y) \\
& \leq C_{3} \varphi *_{\alpha+2 n, 0} \psi(z)
\end{aligned}
$$

where

$$
\forall x \in \mathbb{R}_{+}^{d+1}, \varphi(x)=e^{(r-k)\|x\|} \text { and } g(x)=e^{-t\|x\|}
$$

Therefore the function :

$$
z \mapsto \int_{\mathbb{R}_{+}^{d+1}}\left|\mathscr{M}_{n, z}^{-1} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| y_{d+1}^{2 n} d \mu_{\alpha, d}(y)
$$

belongs to $L_{\alpha+2 n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. So, the result follows by applying the inverse theorem.
Now, we are in a situation to establish the fundamental result of this section given by the following result.

Theorem 7. Let $s>0, a(x, \lambda) \in \mathscr{S}^{r, l}$ and $A\left(x, \Delta_{W}^{\alpha, d, n}\right)$ be the associated pseudo-differential operator. Then $A\left(a, \Delta_{W}^{\alpha, d, n}\right)$ maps continuously from $\mathscr{H}_{\alpha, n}^{s+r}\left(\mathbb{R}_{+}^{d+1}\right)$ to $\mathscr{H}_{\alpha, n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$. Moreover, for all $u \in \mathscr{G}_{n, *}\left(\mathbb{R}^{d+1}\right)$, we have

$$
\begin{equation*}
\left\|A\left(a, \Delta_{W}^{\alpha, d, n}\right) u\right\|_{\mathscr{H}_{\alpha, n}^{s}} \leq k_{s}\|u\|_{\mathscr{H}_{\alpha, n}^{s+r}} \tag{4.21}
\end{equation*}
$$

Proof. Let $s>0$. We consider the function φ_{s} given by :

$$
\varphi_{s}(z)=e^{s\|z\|} \int_{\mathbb{R}_{+}^{d+1}} \mathscr{M}_{n, z}^{-1} \mathscr{M}_{n, y} T_{y}^{\alpha, d, n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y) d \mu_{\alpha, d}(y)
$$

Using the relation (2.18), we obtain

$$
\varphi_{s}(z)=e^{s\|z\|} \int_{\mathbb{R}_{+}^{d+1}} T_{y}^{\alpha+2 n, d}\left(\mathscr{F}_{W}^{\alpha, d, n}\left(\mathscr{M}_{n} a(., y)\right)\right)(z) \mathscr{F}_{W}^{\alpha, d, n}(u)(y) d \mu_{\alpha+2 n, d}(y)
$$

Now, from the relations (2.19) and (4.17), we have

$$
\begin{aligned}
\left|\varphi_{s}(z)\right| & \leq C e^{s\|z\|} \int_{\mathbb{R}_{+}^{d+1}} e^{r\|y\|} T_{y}^{\alpha+2 n, d}\left(e^{-t\|\xi\|}\right)(z)\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| d \mu_{\alpha+2 n, d}(y) \\
& \leq C \int_{\mathbb{R}_{+}^{d+1}} e^{(r+s)\|y\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(y)\right| T_{y}^{\alpha+2 n, d}\left(e^{(s-t)\|\xi\|}\right)(z) d \mu_{\alpha+2 n, d}(y) \\
& \leq C f *_{\alpha+2 n, 0} g(z)
\end{aligned}
$$

where for all $x \in \mathbb{R}_{+}^{d+1}$

$$
f(x)=e^{(s-t)\|x\|} \text { and } g(x)=e^{(r+s)\|x\|}\left|\mathscr{F}_{W}^{\alpha, d, n}(u)(x)\right|
$$

It is clear that $g \in L_{\alpha+2 n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and for $t>s, f \in L_{\alpha+2 n}^{1}\left(\mathbb{R}_{+}^{d+1}\right)$. Then from the relation (2.25), we deduce that $f *_{\alpha+2 n, 0} g \in L_{\alpha+2 n}^{2}\left(\mathbb{R}_{+}^{d+1}\right)$ and we have

$$
\left\|f *_{\alpha+2 n, 0} g\right\|_{\alpha+2 n, 2} \leq\|f\|_{\alpha+2 n, 1}\|g\|_{\alpha+2 n, 2} .
$$

So, we get
$\left\|A\left(a, \Delta_{W}^{\alpha, d, n}\right) u\right\|_{\mathscr{H}_{\alpha, n}^{s}}=C_{\alpha+2 n, d}\left\|\varphi_{s}\right\|_{\alpha+2 n, 2} \leq C C_{\alpha+2 n, d}\left\|f *_{\alpha, n} g\right\|_{\alpha+2 n, 2} \leq k_{s}\|u\|_{\mathscr{H}_{\alpha, n}^{s+r}}$
where

$$
k_{s}=C\|f\|_{\alpha+2 n, 1}=C \int_{\mathbb{R}_{+}^{d+1}} e^{(s-t)\|y\|} d \mu_{\alpha+2 n, d}(y)
$$

Which achieves the proof.

References

[1] A. Aboulez, A. Achak, R. Daher and E. Loualid, Harmonic analysis associated with the generalized Weinstein operator. International.J. of Analysis and Applications. Vol.9, Nr 1, (2015), p. 19-28.
[2] H. Ben Mohamed, N. Bettaibi and S.H. Jah. Sobolev type spaces associated with the Weinstein operator, Int. Journal of Math. Analysis, Vol.5, Nr.28, (2011), p.13531373.
[3] H. Ben Mohamed, B. Ghribi Weinstein-Sobolev spaces of exponential type and applications . Acta Mathematica Sinica, English Series,Vol.29, Nr.3,(2013), p.591-608.
[4] H. Ben Mohamed, A. Gasmi and N. Bettaibi. Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets. An. St. Univ. Ovidius Constanta. Vol. 1, Nr1, (2016), p. 1-19.
[5] H. Ben Mohamed. On the Weinstein equations in spaces $\mathscr{D}_{\alpha, d}^{p}$ type. International Journal of Open Problems in Complex Analysis. Vol.9, Nr 1, (2017), p. 39-59.
[6] K. El-Hussein. Fourier transform and Plancherel Theorem for Nilpotent Lie Group. International Journal of Mathematics Trends and Technology. Vol. 4 Issue 11, (2013), p. 288-294.
[7] I. Aliev. Investigation on the Fourier-Bessel harmonic analusis, Doctoral Dissertation, Baku 1993 (in Russian).
[8] I.A. Aliev and B. Rubin. Parabolic potentials and wavet transform with the generalized translation. Studia Math. 145 (2001) Nr1, p. 1-16.
[9] I.A. Aliev and B. Rubin. Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions. Anal. Appl. (Singap) Nr 1 (2003), p. 81-109.
[10] S. Lee, Generalized Sobolev spaces of exponential type, Kangweon-Kyungki Math. J. Vol.8, Nr 1 (2000) p. 73-86.
[11] J. Löfström and J. Peetre. Approximation theorems connected with generalized translations. Math. Ann. Nr 181 (1969), p. 255-268.
[12] D. H. Pahk and B. H. Kang, Sobolev spaces in the generlized distribution spaces of Beurling type, Tsukuba J. Math. Vol. 15, (1991) p.325-334.
[13] R. S. Pathak, Generalized Sobolev spaces and pseudo-differential operators on spaces of ultradistributions, Structure of solutions of diffential equations, Edited y M.Morimoto and T. Kawai, World Scientific, Singafore (1996) p. 343-368.
[14] K. Stempak. La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R. Acad.Sci. Paris Sér. I303 (1986), p. 15-18.
[15] K. Trimèche. Generalized Wavet and Hypergroups. Gordon and Breach, New York, 1997.
[16] A.Saoudi. A Variation of L^{p} Uncertainty Principles in Weinstein Setting. Indian J.Pure Appl. Math., 51(4),(2020), p. 1697-1712.

