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ABSTRACT. In this paper we present a brief history and the basic
ideas of the generalized Weinstein operator A%}d’" which general-
izes the Weinstein operator A{'/‘I}d. In n=0 we regain the Weinstein
operator has several applications in pure and applied mathemat-
ics especially in fluid mechanics. We study the Sobolev spaces of
exponential type 7, (Riﬂ) associated with the generalized We-
instein and investigate their properties, Sobolev spaces are named
after the Russian mathematician Sergei Sobolev. Using the theory
of reproducing kernels (which was written in 1942-1943), we intro-
duce a class of symbols of exponential type and their associated
pseudodifferential operators related to the generalized Weinstein
operator A{',“[’,d’" and finally, we give some applications to these
spaces.

Keywords: Sobolev Spaces, Generalized Weinstein operator, Generalized Weinstein
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1. INTRODUCTION
The generalized Weinstein operator A%}d’" studied by various authors defined
on Riﬂ =R? x ]0, +oo|, by :
d+1872 2+1 0 4n (o +n)
P ox? Tar1 OTgi1 xfl_H

a,d,n
(1.1) A%D™ -

where n € N and a > —1.

The expression above can also be written in the form Aff[}d’" = Ag+ L, where
A, is the Laplacian for the d first variables and L, , is the second- order singular
differentiel operator on the half line given by :

0? 2041 9 4n(a+n)

2 2
05, Ta41 OTgy1 g
1

La,n =
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In n=0 we regain the Weinstein operator A{',‘[}d = A%}d’o, mostly referred to as
the Laplace-Bessel differential operator is now known as an important operator
in analysis. The relevant harmonic analysis associated with the Bessel differential
operator L, = Lq o goes back to S. Bochner, J. Delsarte, B.M. Levitan and has been
studied by many other authors such as J. Lofstrom and J. peetre [11], K.Stempak
[14], K. Trimeche [15], I.A. Aliev and B. Rubin [8]. (See [2], [3], [4], [5], [6] & [16] )
The generalized Weinstein kernel A, 45, is the function given by :

Va,y€ CY Apan (2,y) = $3ﬁ1€_i<x/’y/>]’a+2n(l’d+1yd+1),
where x = (2/,2441), @' = (21,22, ...,24) and j, is the normalized Bessel function
of index a defined by :
. - —1)"
(1.2) VEE C, jul6) = T(a+ 1S —— )

n=0

§

nll'(n+a+1) (5)%

Using the Weinstein kernel A, g, we define the Weinstein transform ﬁ‘?{,’d’" by :

YA e REL, 205" (F)(N) = / (@) Aaan (@, Ndpia,a(x), fe LR 1y a(2))

R4
where [, 4 is the measure on Riﬂ given by :
(1.3) dpie,q(z) = x?i‘j‘ildac.

The Weinstein transform, referred to as the Fourier-Bessel transform, has been in-
vestigated by I.A. Aliev [7] and others. (See [2], [3], [4], [5], [9] and [16] ).

We denote by 4, . (R%*1) the space, which is constituted of functions ¢ € &, . (R**+1)
such that

klzll|\ g g1
Vh, k>0, Nh’k(ap) = sup € | ‘/‘//” #(2)]
r € RiHL Rl
we NdJrl
where .#,,, is the map defined by :
Vo € RETY 4, (f) (x) = 220, f (2).
For s € R, we define the generalized Sobolev-Weinstein space of exponential type
of order s, that will be denoted %ﬁn(Riﬂ), as the set of all u € ¢, , ( the dual of
4, .) such that Z5"" (u) is a function and

< 00.

2
Aita+2n,d ()\)] < 00.

||UH%O?” = [/d+1 628H/\” ’ﬁﬁ/jd,n(u) ()\)
, R

The space j‘fcin(Rﬁlfl) provided with the norm ||| »z: = is a Banach space.
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The contents of this paper is as follows :

In the second section, we recapitulate some results related to the harmonic anal-
ysis associated with the generalized Weinstein operator A%}d’".

In the section 3, we study the Sobolev spaces of exponential type 7, (R‘fl)

associated with the operator A%}d’" and investigate their properties.

In the last section, using the theory of reproducing kernels, some applications are
given for the spaces 7, (Riﬂ). Moreover, we introduce certain classes of symbols
of exponential type and study their associated pseudodifferential operators related
to the operator A‘of‘}d’”.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of
the harmonic analysis associated with the generalized Weinstein operator A%}d’"
given by (1.1).

In what follows, we need the following notations :

e ©.(R¥1), the space of continuous functions on R¥*!, even with respect to the
last variable.

o &, (RIH1) the space of €*°-functions on R¥*! even with respect to the last
variable.

o 7, (R%1) the Schwartz space of rapidly decreasing functions on R!, even with
respect to the last variable.

e 7.(R¥1) | the space of ¥*°-functions on R¥*! which are of compact support,
even with respect to the last variable.

o J,(C¥1), the space of entire functions on C?*!, even with respect to the last
variable, rapidly decreasing and of exponential type.

o My, the map defined by :

Vo € RYM, Ay (f) () = 2Tty f (2).

where z = (2/,x441) and 2’ = (1,22, ..., 4)
. Lg’n(R‘ﬁl), 1 < p < +o0, the space of measurable functions on Riﬂ such that

1

Hf”am,p = [f]R‘Hl ‘*//l 1f( )lpd:uoﬂr?n:d(x)} ’ < +o00, if 1 < p < 400,
[ fllon,co = ess sup |7 f ()| < +o,
x€R+

where (14,4 is the measure given by the relation (1.3).

o L (RET) = Ly oRE) and [ fllap = I flla,0p0 1 < p < +o0.

&, (RIY, 9, *(Rd“) and .7}, .(R4t1) repespectively stand for the subspace of
& (R 9, (Rd“) and .7, (Rd+1) consisting of functions f such that

ok f

8xd+1

Vk e {l,..,2n — 1}, (',0) = f(z',0) = 0.
For all f € La)n(R‘fl), we define the Weinstein transform 75" by :
VAR, FN () () = f(@) Ao dn (@, A)dpia,a(z)

d+1
RY
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where Ay 4, is the generalized Weinstein kernel given by :

Vr,y€e cHtt, Aodn (T,y) = xﬁile o' >]a+2n($d+1yd+1)

x = (¢/,2441), ¥ = (z1,22,...,24) and j, is the normalized Bessel function of
index « defined by the relation (1.2).
Let us begin by the following definition and result.

Lemma 1. ( see [1] )

i) The map A, is an isomorphism from & (RY) (resp. S (R*T1)) onto &, . (RIT)
(resp. S (RETL)) .

ii) For all f € &(RITY), we have

(21) La,n o %’n (f) = %n o La+2n (f) .
iii) For all f € & (RYHY), we have

(2:2) NG oty (f) = M 0 NG ().
i) For all f € &(RIY) and g € D (RYTY), we have

(2.3) AL (f) (2) g (2) dpta gl / £ (@) A% g () dptg a().

Rd+1
i
Definition 1. The generalized Weinstein kernel Mg q,n is the function given by :

(2.4) Vo, ye CHL, Mg g (2,y) = 2321 ) jo o (@ar1yarn),

where x = (’,x4+1), ¥’ = (X1, %2, ...,xq) and j, is the normalized Bessel function

of index « defined by the relation (1.2).

It is easy to see that the generalized Weinstein kernel A, 4., has a unique exten-
tion to C4t1 x C4*! and satisifies the following properties.

Proposition 1. i) The function © — Aq qn(x,y) satisifies the differentiel equation
a,d,n 2
(2.5) A" (Magan(59)) (2) = = [yl Aadn(2,y).

i) For all z, y € C¥*1, we have

1
—i n a+2n—3
(26) Aa,d,d (x, y) = Qq+2n€ < >.’E§+1 / (]_ — t2) 2 COS(t.’Ed+1yd+1)dt
0
where a,, is the constant given by :
' (a+1)
Vil (a+3)

iii) For all B € N+ 2 € RTM and 2 € C4*L, we have

(2.7) g =

(2.8) D2 A an(w, 2)| < 23ty )P exp((|] || Tm 2[)),
where
D= i 8=t 4
L= an =p1+ ... d+1-
920200
In particular, we have
(2.9) Vr,y € Rd+1a |Aa,dn(z,y)] < xd-o—l
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Definition 2. The generalized Weinstein transform ﬁf{,’d’" is given for f € Lan(Rfl)
by :

(2.10) YA€ RIT FHE(FN) = F@) Ao dn (@, Nt a(z).

d+1
RY

a,d,n

Remark 1. The generalized Weinstein transform %, can be written in the form

ago.dn _ gat2n,d —1
(2.11) Fw = Fy oM,
where f‘f{,’d = ﬁ&,’d’o is the classical Weinstein transform.

Some basic properties of the transform ﬁg;d’" are summarized in the following
results. For the proofs, we refer to [1].

Proposition 2. ( see [1] )
i) Let m € N and f € S, .(R¥HY), for all x € RET, we have

12)  F ()" ] @) = (U7 el E () @),
i) Let f € S (RY) and m € N. For all A € R4 Jwe have
(2.13) (25m™)" [ 5™ (1)) ) = T (P fYN)

where P, (z) = (—1)™ ||=*™.

32
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Theorem 1. (see [1] )
i) Let f € L. ,(RE™). If F3"(f) € L5, (RT™), then we have

(2.14)
)= Gl [, ZH 0D 0) At )asanaly), € R
where C, 4 is the constant given by :
(2.15) Cog = —— .
(27)2 20T (a + 1)

ii) The Weinstein transform 9{,){,’ "™ i3 a topological isomorphism from yn,*(Rd'*'l)
onto .7, (R41) and from 2, .(R4*1) onto 7, (C4H1).

Theorem 2. ( see [1] ).

i) For all f,g € .7, «(R¥*!), we have the following Parseval formula
(2.16)

[ F@a@ e @) = o [ 5 (N (@) Ndas 20N
R++1 ]R++
where Cy q is the constant given by the relation (2.15).

ii) ( Plancherel formula ).
For all f € .7, .(R*1), we have :

2 _ 2
(2.17) /Rd;l |f(@)]" dpa,a(®) = Chian.a /Rdjl

iii) ( Plancherel Theorem ) :
The transform F; @& extends uniquely to an isometric isomorphism from L2 (RE, dpg,alz))
onto L2(REH, C2+2n aQttaton,a(x)).

2 (AN diosana(h).

Definition 3. The translation operator T®%" 1 € Ri‘“, associated with the
operator ASy™™ is defined on Ep(RETY) by

(2.18) vy € RE T f (y) = aifty A Ty P20t f (y)
where
(2.19)
ao [T . \2a
T f (y) = ?/ f (x/ T, \/Th1 Tt Vi T 2T 1Y cos 9) (sin0)** do
0

o +y =(@14+y1,..sTa + ya) and a, is the constant given by (2.7).

The following proposition summarizes some properties of the generalized Wein-
stein translation operator.

Proposition 3. ( see [1] )

i) Let f € Lg’n(IR‘frl)7 1<p< +ooand x € Ri“. Then T4 f belongs to
Lg,n(Riﬂ) and we have

(2.20) T flamp < 232l fllan.p-

ii) The functiont v Ay an (t, ), X € CTHL) satisfies on Rffrl the following product
formula:

(221) V$, ye Ri+1a Aa,d,n (iL’, )‘) Aa,dm (y’ )‘) = Tg’dm [Aa,d,n ('7 )‘)] (y) .

33
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iii) Let f € F, (R¥1Y) and 2 € R, we have
(2.22) VA € R 2o (T% £) (N) = Aayan (—2, X) Zi®™™ (F) (V).

w) Let f € S (R, for all z,y € REH we have
(2.23)

TS ) = O [ At (00 At (=5 2) F5 () (V) diszn a ()

R
Definition 4. The generalized Weinstein convolution product of

fig€ L}l,n(Riﬂ) is given by :

(2.24) Vo € R, foram g (2) = /Rd+1 T3 (<y) 9 (y) dpta,a(y)-
+
Proposition 4. (see [1] )
i) Let p,q,r € [1, +00] such that % + % — % = 1. Then for dll f € LZW(R‘f‘l)
and g € Lg,n(Ri+1)) the function f %4 n g € LQW(RTJ) and we have

(2.25) I *am gllan.r < [ llan.pllgllan.q-
it) For all f,g € Lt ,(RTY), f*ang € L, (RET) and we have
(2:26) TV [ ram 9) = T (HFG ).

Notation. We denoted by .7/, (resp. .}, ) the strong dual of the space .%% (R*™1), (resp. .7, . (R4T1)) .

Definition 5. The generalized Fourier- Weinstein transform of a distribution u €
S is defined by :

(2.27) Vo € SR, (Fip®" (1), 9) = (u, Fip"" (@)
The following proposition is as an immediate consequence of Theorem 1.

Proposition 5. The transform fa‘,’d’” is a topological isomorphism from .. onto
Remark 2. Let m € N and u € .7, ,, we have

(2.28) 9{;{,’d’" [///n(A%}d’")mu} =(-n" ||x|\2m93¢d’"(%nu)
where
(2.29) Y6 € Fnw (RTY), (AR, ) = (u, AF"9).

3. THE GENERALIZED WEINSTEIN-SOBOLEV SPACES OF EXPONENTIAL TYPE

In this section, we introduce and study the Sobolev spaces of exponential type
associated with the generalized Weinstein operator A{',‘[}d’".
Notation. We denote by :
G, (RITL) the set of all functions ¢ € &, .(R?*1) such that

HMelor ()]

Vh, k>0, N"*(p) = sup A

x € RIF1
U c NdJrl

< +o00.

The topology of ¥, .(R4T1) is defined by the above seminorms.
We have the following useful result.

34
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Theorem 3. The transform ﬁ‘f{,’d’n is a topological isomorphism from %, .(R4T1) onto
G, (RH1) = %, (R41),

Proof. The result follows from the relations (2.11) and the fact that.Z3 > is an
isomorphism from %, (R%*1) onto itself. O

Notation. We denote by ¢ , the strong dual of the space %, ,(R4).
Definition 6. The Weinstein transform of a distribution S € 4! is defined by :
(3.1) V6 € G (R, (FHOS), 6) = (S, Ty (6)):
Proposition 6. Let m € N and T € 4/, we have

Tt [(agtmymT] = (m gPn (@)
Proof. The result is a direct consequence of the relations (2.12) and (3.1). O

Definition 7. For s € R and 1 < p < +oo, we define the space Woi’,’l’(R‘frl) as the
set of all u € 9! such that F5"" (u) is a function and

=

« n p
(32)  ullyzr = Cavand /Rd“ ersIAl ‘yw’d’ (u) (N)| dpatona(N)| < +oo.
+

The norm on Wjﬁ(Riﬂ) is given by ||U||9f;n :
For p =2, we provide the space «ﬁ,n(Riﬂ) = Wasg (Riﬂ) with the scalar product

33) (W ohan = Cloana [, I IFG @O FG™ () s al©)
+
and the norm

1
ull s = (u, )30,
:}fgin(RiH) is the generalized Sobolev-Weinstein space of exponential type of order
s. For n = 0, we regain the classical Sobolev-Weinstein space ﬁ;o‘(Riﬂ) given in

[3] and fa‘,’d = f‘?{,’d’o is the classical Weinstein transform.( See [2], [3], [10], [12]
and [13] ).

Proposition 7. Let s € R and 1 <p < +o0c0. The space W;’ﬁ(Riﬂ) provided with

the norm ||.||.s.» is a Banach space.

Proof. Tt is clear that the space LP(RZ!, erPsINldyu, o, 4 (2)) is complete. On

the other hand f‘?{/’d’" is a topological isomorphism from ¥, onto itself %, . This
achieves the proof. O

We proceed as [3], we obtain the following results.
Proposition 8. i) For all s € R, we have
G (RTTY) C 2, (REF).

it) We have
%O,n(RiJrl) = Li+2n(Ri+1)'

iit) For all s,t € R, t > s, the space WJ:E(RT’l) is continuously contained in
VR,

35
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\TLULN LAV ZI1UL) VY LULIND L IULIN AUNL OV DU LIV 0L AANULLD I

i) Let P be a linear partial differential operator with constant coefficients, s € R,
u € %ﬁn(Ri+1) and t < s.
Then P (u) € %’H(Riﬂ) and the map v — P(v) is continuous on t%”of’n(RiH).

v) Let Q(D) = ZamDm be a differential operator of infinite order such that

meN
there exist constants C > 0 and r > 0 satisfying :

m

(3.4) VYmeN, |an| < C’T—‘.
m!

Ifue %ﬁn(Riﬂ), then Q (u) € t%”oigr(R‘iH) and the map :
Q : %’H(Riﬂ) — %ﬁf‘;r(Riﬂ) is continuous.

Proposition 9. Lett € R. The operator Vy : %ﬁn(Ri‘H) — ﬁy;t(Ri‘H) defined
for all x € ]Ri“ by :

(35) Viu(r) = Clion4 /R oy VI A G g (=2, ) F35" (0) (€) dptaan.al€)

is an isomorphism.

Proof. Letu € /2, (RT™). Then, the function & — e(s~Dl¢letv 1+|‘g|‘2ﬂ3‘,’d‘”(u) €3]
belongs to L2, ,, (RT") and we have

VE € RIF, i (Vo) (€) = VP Zdn ) ()
Thus

2
/]R " 2= ‘ Fodn () (/\)‘ dtaton.d (N
it

2
_ 2 a,d,n
:/Rd+1 2= Il +2t/ T+l gZWd (u) ()\)‘ dprot2n.a (N)
+
2
< i / oo @25 ) )] dtarana (V).
4

with k; = sup
d+1
AeRE

Thenwe deduce that Viu € %”Of’;t(RiH) and we have

|:62t(\/w—|>\|):| < e,

Hvt“Hﬁ;;ﬁ < el ||u||3f;ﬂ ‘
On the other hand, let v € e%’f)i;t(R‘j_H) and put
u= [Ft] 7 (VIR g )
From the definition of the operator V;, we have V;u = v and we get

2
/Rd+1 25l ‘f&;dvn(u) ()\)‘ dhtosond (\) = /
<

R4
2
< sup [e2t(||x|—\/1+|x|| )] X/
R

d+1
AERY

2 2
(VIR | g () ) o (V)

2
2O Z0" (0) (V) dptarana (V) < oo.

d+1
+

36
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Then, u € ,9fofm(Ri+1) and we obtain
lull s < e [ W] s
Hence the operator V; is an isomorphism. O

The following theorem deals with the dual (Jfoin(RiH))/ of %”oin(RiH) and
gives a relation between (7, (Riﬂ))/ and J7, (RE).

Theorem 4. The dual of %ﬁn(Ri‘H) can be identified with %’j;,f(R‘f‘l). The
relation of the identification is as follows :

B9 (00oan = Cliana [ | Fo " WOFH 0 dtoszna(6)

RGT
with uw € A2 ,(RYTY) and v € A3 (RETH).
Proof. Using the same technique as in Theorem 3.10 of [3], we obtain the result. O

Proposition 10. Let s1,s,s2 € R, satisfying s1 < s < so. Then, for all € > 0,
there exists a nonnegative constant C. such that for all u € W;)’S(R‘f'l), we have

(37) lullyzg < Celully gy +¢ llull s

Proof. Let s1,82 € R, 51 < sg and s € |s1,s2[. Then there exists ¢ € ]0, 1] such
that s = (1 —t) s1 + tso.
Using the Holder’s inequlity, we get

1—-t i
lullyzg < lullyye x lullyes

e

B 1—t t
< (61%* ||U||7//5.1,;”> X (EHUHW;W)

< Ce llull e + € llull 0
where C, = B O

Proposition 11. Let s € R, m € N and ¢ > 0. If #u € Q%”j,n(RiH) then
M, (A%}d’"> ue A (RET) and we have

d\ T om 2m
it (857) " @) e < (22) .

a,n

Proof. Let ¢ >0, me N, se€Rand u € %’jj,n(RiH).
From (2.28), we obtain

/Ri“ e “%l"’dm V/" (Ag‘}dm>m “} (/\)‘2 dptatan,d (A)

2
= /RdJrl H)\H4m 62(57€)H>‘” ’ﬁ&;d,n(%nu) ()\)‘ dua+2n,d ()\)
+

2m

4m 9
< <> / s ]y‘sﬂ"(///nu) (A)‘ dftatana (N) < +00.
RYH

ge

37


ssrg 5
Text Box
37

ssrg 5
Text Box
HASSEN BEN MOHAMED, MOHAMED MOKTAR CHAFFAR / IJMTT, 67(3), 28-44, 2021



HASSEN BEN MOHAMED, MOHAMED MOKTAR CHAFFAR / IJMTT, 67(3), 28-44, 2021

Then 4, (A%}d’”>m (u) € 2,5 (RETY) and we have

2m

m 2m
It (8557)" ) e < (22) et

ce an’

Definition 8. Letu € .7, . (R*™!),we define the operator (—A{',‘[}d’")% by :
(3.8)

Vo e RE, (ARS") Fu(r) = C§+2n,d/ €11 Aa d.n (=2, &) F5 "™ () (€)dHars2n,a(6)-

d+1
RY

sl a,d,ny L a,dny1]™ .
Proposition 12. Let P((—Ay"")2) = Z A, [(—AV[} ’ )2} be a fractional We-
meN
instein Laplace operators of infinite order satisfying : there exist positive constants

C and r such that

(3.9) Vm e N, |am| < O%.

Ifue #SP(RED), then P((—AWY™)2)u € #5,"P(RET) and we have
IP(=AF"") P ullyero < Cllullyzs.

Proof. As an immediate consequence of the the condition (3.9), we have

Ve e R, P (IEN)] < cerllél,
Thus we deduce the desired result. O

Proposition 13. Let t,s € R. The operator exp(t(—A%}d’")%) defined by :

Vo € REF, exp(t(-AF" ") u(e) = C2 o /R sor TIFE (W) () Aot (—2. &) dptar2n.a(E)
+

is an isomorphism from Wjﬁ(Ri"'l) onto V/(f’;t’p(Ri"'l).
Proof. Let t,s € R and u € V/Ofﬁ(R‘ﬁl). It is easy to see that
'd,
[l exp(t(=Ap™")

Thus the proof is immediate. O

Nl=

Jullyerer = llullyzz-

Proposition 14. Let s > 0. Then each v € J ; (Rf‘l) can be represented as an
infinite sum of fractional Weinstein Laplace operators of square integrable function

v, in other words,
_ s Aa,d,n % m

Proof. Let u € %}f(Riﬂ), s > 0. Then, the function & — eIl 25" (u) (€)
belongs to L? (Rf‘l).
So, from the Plancheral theorem, there exists v € L2 +2n(Ri+1), such that

_ W) (©)

> e

meN

ve e REFL 250 (v) (€)
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Then
it (©) = Y = El™ FHt" () (€)
meN
- Z gt (o) ] @,
which achieves the proof. O

4. APPLICATIONS
4.1. The reproducing kernels.

Proposition 15. For s > 0, the Hilbert space cﬁ‘fcfm(Rf'l) admits the reproducing
kernel :
(4.1)

VI', Yy e Ri+1, @?’d)n(xa y) = ng+2n,d Ad+1 eizsl‘/\”Aa,d,n(_x, A))Aa,d,n(_yv A)dﬂa+2n,d()\)~
+

That is :

i) For every y €
s d

belongs to %,R(R++1).

i1) For every f € %’in(R‘iﬂ), we have

Yy € RE, (f, 29" (Ly))sa = f(¥).

Proof. i) Let y € Riﬂ and s > 0, the function \ +— e=28IMIA, ;.. (y, \) belongs
to L. (R N L2, (RY). Then, from the relation (2.17), the function z —
0%4"(z,y) belongs to Lim(R’fl) and we have

Riﬂ, the distribution given by the function x +— ©%%"(x y)

(4.2) YA e R, ot [090m (L y)] (A) = e 2NN, 40 (—y, \).

Then ©%%"(.,y) € A, (RT™).
i) Let f € 2, (R{T") and y € RT™. Using the relations (3.3), (4.2) and ( 2.14),
we obtain

(£, 054 (s = Cyoma / ) ) R (9 Niltrs .0 (V)
—f(y

Definition 9. The generalized heat kernel G*™4 is given by :
(4.3)

2
Vt > O,Vm,y S RdJrlv Ga’n’d(tvmay) = ng—&-?n,d/d_*_leit‘l&” Aa,d,n(xa'g)Aa,d,n(*yvf)dy’aJrQn,d(g)'
R+

The following Lemma will be useful later

Lemma 2. Let t > 0, we define the function ¢3“" by :

C. [E1]
d, +2n,d n o —
(4.4) vz € R 6" (2) = WZ‘ZH .
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i) We have
(4.5) VA € R Zodn(godmy ()) = e HIAIR,
ii) We have
(4.6)
C el + (v 1
d+1 a,d,n a,d,n __ Yoat2nd  op e _7y
v,y € R, Tdn (gt (y) = e e

Proof. 1) To see the result, we have to show that

Vi >0, Vz € R, / Joo (2€) €71 €20 dg = % o
0

ii) We obtain the result using the following relation :

[(a+1) /ﬂ,\ 0 o2 -
VAeR, ———5~ e ¢in“* (0) df = j, (iN) .
Norrd) (0) a0 = ju (52)

[l

The following properties of the generalized heat kernel G*™% can be easily es-
tablished using the Lemma 2.

Proposition 16. i) We have
(4.7) Yo,y € R GRnd(t, g, y) = T (6747 (—y)

where ¢4 > 0, be the function defined by the relation (4.4).
i) For allt > 0 and x,y € R4 we have

on _ lel?+llvl)? 1y

Ca n
(48) Ga’n’d(t, X, y) = +2n,d at Aa,d,n(xa Qt)

(o) 2 g e Ve
ii1) We have

(4.9) vt >0, vy € R{, /MG“’”’d(t, 2, Y) ot 2n,a(x) = Y3
RY
w) For a fized y € R, the function u : (z,t) — G¥™4(t,2,y) solves on
REH x]0, +oo| the generalized heat equation :

A%z, t) = %u(x, t).

Definition 10. The generalized heat semigroup jﬁa’d’",t > 0, is the integral op-
erator given for f in L? (Rfrl) by :

L Gt dpie.a(y), if t>0
Vo e RYM, A f (2) = { fRT (&2 9) ) (W)dpa.aly), i

f(x), if t=0.
Proposition 17. i) Let t > 0. We have
(4.10) Vo € REFL S f(2) = fram 670" (2).
where ¢ is the function given by the relation (4.4).

it) Let f € %ﬁn(R‘ﬁl). We have
(A1) VAERE Ftn [0 () = eI () ().
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Proof. 1) It is an immediate consequence of the relation (4.7).
ii) Let f € %’H(Riﬂ). Using the relations (4.5), (4.10) and (2.26), we obtain the
result. O

Proposition 18. i) Let f € %,... Thenu(x,t) = A" f (x) solves on RE %10, +o0,
the following system :

{(A@“}d’"gt)u(x,t) =0
u(z,0) = flz).

it) Let s € R. The integral transform tha’d’", t > 0, is a bounded linear operator
from %{j’n(Riﬂ) into L2(R%Y) and we have :

2
(4.12) A5 fllamz < €5 1 e, | € AW (RETD.

Proof. i) The assertion follows from Proposition 16 iv).
ii) Let f € g%ﬁ_f,n(RiH). Using the relations (2.17) and (4.11), we have

,d, ,d, ',
17 F12 0.0 = 2z al ™™ (H54" ) Wsamos

2 / o212
- Ya+2n,d
d+1
R+

< sup [ef%l\/\llﬂtlwlz} 12, = e
 erit? o

d 2
Zi () O] dbtarzna (V)

£l .
Thus the proof is finished. |

4.2. Pseudo-differential associated with the Generalized Weinstein oper-
ator. Notations. We need the following notations :

e For 7 > 0, we designate by .#", the space of C*°—function a : R! x R — C
such that for each compact set K C R?*! and each 3,7 € N, there exists a constant
C =C(K,pB,) satistying :

(4.13) V(x, &) € K x RIFL,

D?D;a (z, 5)‘ < Cerliel,

e For r,1 € R with I > 0, we denote by .#"™!, the space consits of all C*°—function
a : R¥L x R4 5 C such that for each L > 0 and 3,7 € N, there exist a positive
constant C' = C (r,1,7) satisfying the relation :

(414) V(ﬁ,f) c Rd-‘rl % ]ROH-I7 ‘D?Dga ((E, é‘)‘ < C’L‘BI ‘5||6T|‘§He—l”$”

Definition 11. The pseudo-differential operator A (a, A%}d’"> associated with a (x, &) €
" is defined for u € G, .(RITY) by :
(4.15)

[4 (0. 85 0] (@) = €2 [ At €)a (2,6) F5" (1) (€) dtars2n €)

d
R+

Theorem 5. If a(z,£) € 7, then its associated pseudo-differential operator
A (a, Ag“}d) is a well-defined mapping from 4, .(R4T) into C>° (RI+1) .
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Proof. Let a(x,£) € .". From the relation (4.13), for any compact set K C R4+!
and any v € N, we have

(4.16) V(z,6) € K x R™, |DYa(z, €)| < Cerliél,

Let u € 9, (R and = € K, using the relations (4.16), (2.9) and the Cauchy-
Schwartz inequality, we obtain

Lo 80 a0, @) (O] ditrs0.0 ()

< Cﬁgil /RM-1 erlel ’g‘g‘v’d’"(u) (5)’ dpiaran,d (&)
4

1
C - 2

<< ( Lo e (5)) lull ey < +o0

+

a+2n,d

where s > 7.
This relation proves that A (a, A{',‘[}d) (u) is well-defined and continuous on Rfﬁl.

Consequently, in vertue of Leibniz formula, we obtain the result. O
The next lemma plays an important role in this section.

Lemma 3. Let a(z,£) € "L For L > 0 there exist C > 0 and

1
0<t<msuchthat.

(4.17) FEO (Mna () ()| < Cerlvlletlel,
where C' is a constant depending on r,t,a,d,n and [.

Proof. The result can be obtained by a simple calculation by using the same tech-
nique as in Theorem 3.4 of [10]. O

The following theorem gives an alternative form of A (a, A%}d) which will be
useful in the sequel.

r . . .d
Theorem 6. Leta(z, \) € .. Then, the pseudo-differential operator A (a, A )

admits the following representation :

(4.18) [A (a, A;‘ﬁ) u} (@) = C2 o4 /R o Aan(=2,2)x
+

[ o AT AT M () () T ) 0) 5 <y>] dptosana (2)
+

for all u € ¥, .(R4TY) where all involved integrals are absolutely convergent.

Proof. From the relation (4.17), for all y, z € R‘fl, we obtain :
(419) [T 2, F3™" (Ml ) ()] < CrerWlyin, Totnd (el (z)

where (] is a constant depending on 7, ¢, ,d,n and [.
On the other hand since u € ¥, . (R%*1), we have

(4.20) vy € REHL T (u) (y)‘ < CoeFWI k> 0.
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Now using the relations (4.19) and (4.20), we get :

n,z y

’ﬁflTQ,dm%ﬂyg;d’n (Mypal(.,y)) (2) y‘?dﬂ (u) (y)‘ < Cge(r’k)”y”y?lilT;‘+2"’d (e*t\lﬁ\l) (2).

Then for k > r and t > 0, we have

/d+1
]R+

< Cy /R e ek (e70) (=) dptasana (v)
+

S 0350 *a+2n,0 7/1 (’Z)

where

AT M TG (M () (2) Fi " ) )| v e ()

Vo € R o (x) = eIl and g (z) = eI,

Therefore the function :

M I, T (na () (2) g™ (w) (y) | y3% 1 dptaa (y)

n,zty

g

R4T
belongs to L}, Ton (Rf‘l). So, the result follows by applying the inverse theorem. [

Now, we are in a situation to establish the fundamental result of this section
given by the following result.

Theorem 7. Let s > 0, a(z, \) € /™! and A(w, A%}d’") be the associated
pseudo-differential operator. Then A (a, A%}d’") maps continuously from 51" (R‘f‘l)

to %ﬂn(Ri+l). Moreover, for all u € 9, .(R¥*Y), we have

(4.21) HA (0, A3") uH < Ky |[ul] ypoir -
A am
Proof. Let s > 0. We consider the function ¢, given by :

ps () = eIl My kil T M T (Ma (9)) (2) Fip™" (W) (9) dpaa ()

d+1
RY

Using the relation (2.18), we obtain
ps (2) = el / T (F (M (L)) (2) F" (W) (9) dptasana (9)
¢
Now, from the relations (2.19) and (4.17), we have

e () < Ceel [ ergsan (c=i01) o) [ 735 ) ) it s 0

Rd+1
%
<o, elrto)llll ‘ FoAm () (y)‘ Toc+2nd (e<s—t>||sn) (2) dptaszn.a (y)

T
é Cf *a+2n,0 g (Z)

where for all x € R‘fl

(&) = 1 and g () = = | ) ().
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It is clear that g € L2 ,,, (RE™") and for t > s, f € LY, (R{™") . Then from the
relation (2.25), we deduce that f *a12,09 € L2, o, (Riﬂ) and we have

||f *a42n,0 gHa+2n72 < ||f||a+2n,1||9||a+2n,2-

So, we get
|4 (@ a5 ) ul . = Casznallesllaszne < CCusamal Framgllarans < ksl sz
where |
b= Cll oz = C [ e Wit 0).
Which achieves the proof. : O
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