GENERALIZED WEINSTEIN AND SOBOLEV SPACES

HASSEN BEN MOHAMED DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, GABES

MOHAMED MOKTAR CHAFFAR
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY
PARIS-EST UNIVERSITY (UPEC) CRETEIL, FRANCE

ABSTRACT. In this paper we present a brief history and the basic ideas of the generalized Weinstein operator $\triangle_W^{\alpha,d,n}$ which generalizes the Weinstein operator $\triangle_W^{\alpha,d}$. In n=0 we regain the Weinstein operator has several applications in pure and applied mathematics especially in fluid mechanics. We study the Sobolev spaces of exponential type $\mathscr{H}^s_{\alpha,n}\left(\mathbb{R}^{d+1}_+\right)$ associated with the generalized Weinstein and investigate their properties, Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Using the theory of reproducing kernels (which was written in 1942-1943), we introduce a class of symbols of exponential type and their associated pseudodifferential operators related to the generalized Weinstein operator $\triangle_W^{\alpha,d,n}$ and finally, we give some applications to these spaces.

Keywords: Sobolev Spaces, Generalized Weinstein operator, Generalized Weinstein transform, Weinstein, Kernel Reproducing Theory, pseudodifferential operator.

1. INTRODUCTION

The generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ studied by various authors defined on $\mathbb{R}^{d+1}_+ = \mathbb{R}^d \times]0, \ +\infty[$, by :

(1.1)
$$\Delta_W^{\alpha,d,n} = \sum_{i=1}^{d+1} \frac{\partial^2}{\partial x_i^2} + \frac{2\alpha + 1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} - \frac{4n(\alpha + n)}{x_{d+1}^2}$$

where $n \in \mathbb{N}$ and $\alpha > -\frac{1}{2}$.

The expression above can also be written in the form $\Delta_W^{\alpha,d,n} = \Delta_d + L_{\alpha,n}$ where Δ_d is the Laplacian for the d first variables and $L_{\alpha,n}$ is the second- order singular differential operator on the half line given by:

$$L_{\alpha,n} = \frac{\partial^2}{\partial x_{d+1}^2} + \frac{2\alpha + 1}{x_{d+1}} \frac{\partial}{\partial x_{d+1}} - \frac{4n\left(\alpha + n\right)}{x_{d+1}^2}.$$

In n=0 we regain the Weinstein operator $\Delta_W^{\alpha,d} = \Delta_W^{\alpha,d,0}$, mostly referred to as the Laplace-Bessel differential operator is now known as an important operator in analysis. The relevant harmonic analysis associated with the Bessel differential operator $L_{\alpha} = L_{\alpha,0}$ goes back to S. Bochner, J. Delsarte, B.M. Levitan and has been studied by many other authors such as J. Löfström and J. peetre [11], K.Stempak [14], K. Trimèche [15], I.A. Aliev and B. Rubin [8]. (See [2], [3], [4], [5], [6] & [16]) The generalized Weinstein kernel $\Lambda_{\alpha,d,n}$ is the function given by:

$$\forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha,d,n}(x,y) = x_{d+1}^{2n} e^{-i\langle x',y' \rangle} j_{\alpha+2n}(x_{d+1}y_{d+1}),$$

where $x = (x', x_{d+1}), x' = (x_1, x_2, ..., x_d)$ and j_{α} is the normalized Bessel function of index α defined by :

(1.2)
$$\forall \xi \in \mathbb{C}, \ j_{\alpha}(\xi) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n+\alpha+1)} (\frac{\xi}{2})^{2n}.$$

Using the Weinstein kernel $\Lambda_{\alpha,d,n}$, we define the Weinstein transform $\mathscr{F}_W^{\alpha,d,n}$ by:

$$\forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}} f(x) \Lambda_{\alpha,d,n}(x,\lambda) d\mu_{\alpha,d}(x), \ f \in L^1(\mathbb{R}^{d+1}_+, \mu_{\alpha,d}(x))$$

where $\mu_{\alpha,d}$ is the measure on \mathbb{R}^{d+1}_+ given by :

(1.3)
$$d\mu_{\alpha,d}(x) = x_{d+1}^{2\alpha+1} dx.$$

The Weinstein transform, referred to as the Fourier-Bessel transform, has been investigated by I.A. Aliev [7] and others. (See [2], [3], [4], [5], [9] and [16]). We denote by $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ the space, which is constituted of functions $\varphi \in \mathscr{E}_{n,*}(\mathbb{R}^{d+1})$ such that

$$\forall h, \ k > 0, \ N^{h,k}(\varphi) = \sup_{\begin{subarray}{c} x \in \mathbb{R}^{d+1} \\ \mu \in \mathbb{N}^{d+1} \end{subarray}} \left[\frac{e^{k\|x\|} |\partial^{\mu} \mathscr{M}_{n}^{-1} \varphi(x)|}{h^{|\mu|} \mu!} \right] < \infty.$$

where \mathcal{M}_n , is the map defined by :

$$\forall x \in \mathbb{R}^{d+1}_+, \ \mathcal{M}_n(f)(x) = x_{d+1}^{2n} f(x).$$

For $s \in \mathbb{R}$, we define the generalized Sobolev-Weinstein space of exponential type of order s, that will be denoted $\mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, as the set of all $u \in \mathscr{G}'_{n,*}$ (the dual of $\mathscr{G}_{n,*}$) such that $\mathscr{F}^{\alpha,d,n}_W(u)$ is a function and

$$\left\|u\right\|_{\mathscr{H}_{\alpha,n}^{s}}=\left[\int_{\mathbb{R}_{+}^{d+1}}e^{2s\left\|\lambda\right\|}\left|\mathscr{F}_{W}^{\alpha,d,n}(u)\left(\lambda\right)\right|^{2}d\mu_{\alpha+2n,d}\left(\lambda\right)\right]^{\frac{1}{2}}<\infty.$$

The space $\mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$ provided with the norm $\|.\|_{\mathscr{H}^s_{\alpha,n}}$ is a Banach space.

The contents of this paper is as follows:

In the second section, we recapitulate some results related to the harmonic analysis associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$.

In the section 3, we study the Sobolev spaces of exponential type $\mathcal{H}_{\alpha,n}^{s}\left(\mathbb{R}_{+}^{d+1}\right)$ associated with the operator $\Delta_W^{\alpha,d,n}$ and investigate their properties.

In the last section, using the theory of reproducing kernels, some applications are given for the spaces $\mathscr{H}_{\alpha,n}^s(\mathbb{R}^{d+1}_+)$. Moreover, we introduce certain classes of symbols of exponential type and study their associated pseudodifferential operators related to the operator $\triangle_W^{\alpha,d,n}$.

2. Preliminaries

In this section, we shall collect some results and definitions from the theory of the harmonic analysis associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$ given by (1.1).

In what follows, we need the following notations:

- $\mathscr{C}_*(\mathbb{R}^{d+1})$, the space of continuous functions on \mathbb{R}^{d+1} , even with respect to the last variable.
- $\mathscr{E}_*(\mathbb{R}^{d+1})$, the space of \mathscr{C}^{∞} -functions on \mathbb{R}^{d+1} , even with respect to the last
- $\mathscr{S}_*(\mathbb{R}^{d+1})$, the Schwartz space of rapidly decreasing functions on \mathbb{R}^{d+1} , even with respect to the last variable.
- $\mathscr{D}_*(\mathbb{R}^{d+1})$, the space of \mathscr{C}^{∞} -functions on \mathbb{R}^{d+1} which are of compact support, even with respect to the last variable.
- $\mathcal{H}_*(\mathbb{C}^{d+1})$, the space of entire functions on \mathbb{C}^{d+1} , even with respect to the last variable, rapidly decreasing and of exponential type.
- \mathcal{M}_n , the map defined by :

$$\forall x \in \mathbb{R}_{+}^{d+1}, \ \mathscr{M}_{n}\left(f\right)\left(x\right) = x_{d+1}^{2n} f\left(x\right).$$

where $x = (x', x_{d+1})$ and $x' = (x_1, x_2, ..., x_d)$ • $L^p_{\alpha, n}(\mathbb{R}^{d+1}_+)$, $1 \le p \le +\infty$, the space of measurable functions on \mathbb{R}^{d+1}_+ such that

$$\begin{split} \|f\|_{\alpha,n,p} & = & \left[\int_{\mathbb{R}^{d+1}_+} |\mathcal{M}_n^{-1} f(x)|^p d\mu_{\alpha+2n,d}(x) \right]^{\frac{1}{p}} < +\infty, \text{ if } 1 \leq p < +\infty, \\ \|f\|_{\alpha,n,\infty} & = & \text{ess} \sup_{x \in \mathbb{R}^{d+1}_+} \left| \mathcal{M}_n^{-1} f(x) \right| < +\infty, \end{split}$$

- where $\mu_{\alpha,d}$ is the measure given by the relation (1.3). $L^p_{\alpha}(\mathbb{R}^{d+1}_+) := L^p_{\alpha,0}(\mathbb{R}^{d+1}_+)$ and $\|f\|_{\alpha,p} := \|f\|_{\alpha,0,p}, \ 1 \le p \le +\infty$. $\mathscr{E}_{n,*}(\mathbb{R}^{d+1}), \ \mathscr{D}_{n,*}(\mathbb{R}^{d+1})$ and $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ repespectively stand for the subspace of $\mathscr{E}_*(\mathbb{R}^{d+1}), \ \mathscr{D}_*(\mathbb{R}^{d+1})$ and $\mathscr{S}_*(\mathbb{R}^{d+1})$ consisting of functions f such that

$$\forall k \in \{1, ..., 2n-1\}, \ \frac{\partial^k f}{\partial x_{d+1}^k}(x', 0) = f(x', 0) = 0.$$

For all $f \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$, we define the Weinstein transform $\mathscr{F}^{\alpha,d,n}_W$ by :

$$\forall \lambda \in \mathbb{R}_{+}^{d+1}, \ \mathscr{F}_{W}^{\alpha,d,n}\left(f\right)\left(\lambda\right) = \int_{\mathbb{R}^{d+1}} f(x) \Lambda_{\alpha,d,n}(x,\lambda) d\mu_{\alpha,d}(x)$$

where $\Lambda_{\alpha,d,n}$ is the generalized Weinstein kernel given by :

$$\forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha,d,n}(x,y) = x_{d+1}^{2n} e^{-i\langle x',y' \rangle} j_{\alpha+2n}(x_{d+1}y_{d+1}),$$

 $x = (x', x_{d+1}), x' = (x_1, x_2, ..., x_d)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.2).

Let us begin by the following definition and result.

Lemma 1. (see [1])

- i) The map M_n is an isomorphism from $\mathscr{E}_*(\mathbb{R}^{d+1})$ (resp. $\mathscr{S}_*(\mathbb{R}^{d+1})$) onto $\mathscr{E}_{n,*}(\mathbb{R}^{d+1})$ (resp. $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$).
- ii) For all $f \in \mathscr{E}_*(\mathbb{R}^{d+1})$, we have

$$(2.1) L_{\alpha,n} \circ \mathscr{M}_n(f) = \mathscr{M}_n \circ L_{\alpha+2n}(f).$$

iii) For all $f \in \mathscr{E}_*(\mathbb{R}^{d+1})$, we have

(2.2)
$$\Delta_{W}^{\alpha,d,n} \circ \mathscr{M}_{n}(f) = \mathscr{M}_{n} \circ \Delta_{W}^{\alpha+2n}(f).$$

iv) For all $f \in \mathcal{E}_*(\mathbb{R}^{d+1})$ and $g \in \mathcal{D}_{n,*}(\mathbb{R}^{d+1})$, we have

(2.3)
$$\int_{\mathbb{R}^{d+1}_{\perp}} \Delta_{W}^{\alpha,d,n}(f)(x) g(x) d\mu_{\alpha,d}(x) = \int_{\mathbb{R}^{d+1}_{\perp}} f(x) \Delta_{W}^{\alpha,d,n} g(x) d\mu_{\alpha,d}(x).$$

Definition 1. The generalized Weinstein kernel $\Lambda_{\alpha,d,n}$ is the function given by :

$$(2.4) \forall x, y \in \mathbb{C}^{d+1}, \ \Lambda_{\alpha,d,n}(x,y) = x_{d+1}^{2n} e^{-i\langle x',y' \rangle} j_{\alpha+2n}(x_{d+1}y_{d+1}),$$

where $x = (x', x_{d+1}), x' = (x_1, x_2, ..., x_d)$ and j_{α} is the normalized Bessel function of index α defined by the relation (1.2).

It is easy to see that the generalized Weinstein kernel $\Lambda_{\alpha,d,n}$ has a unique extention to $\mathbb{C}^{d+1} \times \mathbb{C}^{d+1}$ and satisfies the following properties.

Proposition 1. i) The function $x \mapsto \Lambda_{\alpha,d,n}(x,y)$ satisfies the differential equation

(2.5)
$$\Delta_W^{\alpha,d,n}\left(\Lambda_{\alpha,d,n}(.,y)\right)(x) = -\|y\|^2 \Lambda_{\alpha,d,n}(x,y).$$

ii) For all $x, y \in \mathbb{C}^{d+1}$, we have

(2.6)
$$\Lambda_{\alpha,d,d}(x,y) = a_{\alpha+2n} e^{-i\langle x',y'\rangle} x_{d+1}^{2n} \int_0^1 (1-t^2)^{\alpha+2n-\frac{1}{2}} \cos(tx_{d+1}y_{d+1}) dt$$

where a_{α} is the constant given by:

(2.7)
$$a_{\alpha} = \frac{2\Gamma\left(\alpha + 1\right)}{\sqrt{\pi}\Gamma\left(\alpha + \frac{1}{2}\right)}.$$

iii) For all $\beta \in \mathbb{N}^{d+1}$, $x \in \mathbb{R}^{d+1}_+$ and $z \in \mathbb{C}^{d+1}$, we have

$$(2.8) |D_z^{\beta} \Lambda_{\alpha,d,n}(x,z)| \le x_{d+1}^{2n} ||x||^{|\beta|} \exp(||x|| ||\operatorname{Im} z||),$$

where

$$D_z^{\beta} = \frac{\partial^{\beta}}{\partial z_1^{\beta_1} ... \partial z_{d+1}^{\beta_{d+1}}} \text{ and } |\beta| = \beta_1 + ... + \beta_{d+1}.$$

In particular, we have

(2.9)
$$\forall x, y \in \mathbb{R}^{d+1}_+, |\Lambda_{\alpha,d,n}(x,y)| \le x_{d+1}^{2n}.$$

Definition 2. The generalized Weinstein transform $\mathscr{F}_W^{\alpha,d,n}$ is given for $f \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$ by :

$$(2.10) \forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(f)(\lambda) = \int_{\mathbb{R}^{d+1}_+} f(x) \Lambda_{\alpha,d,n}(x,\lambda) d\mu_{\alpha,d}(x).$$

Remark 1. The generalized Weinstein transform $\mathscr{F}_W^{\alpha,d,n}$ can be written in the form :

(2.11)
$$\mathscr{F}_{W}^{\alpha,d,n} = \mathscr{F}_{W}^{\alpha+2n,d} \circ \mathscr{M}_{n}^{-1}$$

where $\mathscr{F}_W^{\alpha,d}=\mathscr{F}_W^{\alpha,d,0}$ is the classical Weinstein transform.

Some basic properties of the transform $\mathscr{F}_W^{\alpha,d,n}$ are summarized in the following results. For the proofs, we refer to [1].

Proposition 2. (see [1])

i) Let $m \in \mathbb{N}$ and $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, for all $x \in \mathbb{R}^{d+1}_+$, we have

$$(2.12) \mathscr{F}_{W}^{\alpha,d,n} \left[\left(\triangle_{W}^{\alpha,d,n} \right)^{m} f \right](x) = (-1)^{m} \|x\|^{2m} \mathscr{F}_{W}^{\alpha,d,n}(f)(x).$$

ii) Let $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ and $m \in \mathbb{N}$. For all $\lambda \in \mathbb{R}^{d+1}_+$, we have

(2.13)
$$\left(\triangle_W^{\alpha,d,n} \right)^m \left[\mathscr{M}_n \mathscr{F}_W^{\alpha,d,n}(f) \right] (\lambda) = \mathscr{M}_n \mathscr{F}_W^{\alpha,d,n}(P_m f)(\lambda)$$

where $P_m(x) = (-1)^m ||x||^{2m}$.

Theorem 1. (see [1])

i) Let $f \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$. If $\mathscr{F}^{\alpha,d,n}_W(f) \in L^1_{\alpha+2n}(\mathbb{R}^{d+1}_+)$, then we have (2.14)

$$f(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \mathscr{F}_W^{\alpha,d,n}(f)(y) \Lambda_{\alpha,d,n}(-x,y) d\mu_{\alpha+2n,d}(y), \ a.e \ x \in \mathbb{R}^{d+1}_+$$

where $C_{\alpha,d}$ is the constant given by :

(2.15)
$$C_{\alpha,d} = \frac{1}{(2\pi)^{\frac{d}{2}} 2^{\alpha} \Gamma(\alpha+1)}.$$

ii) The Weinstein transform $\mathscr{F}_W^{\alpha,d,n}$ is a topological isomorphism from $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$ onto $\mathscr{S}_*(\mathbb{R}^{d+1})$ and from $\mathscr{D}_{n,*}(\mathbb{R}^{d+1})$ onto $\mathscr{H}_*(\mathbb{C}^{d+1})$.

Theorem 2. (see [1]).

i) For all $f, g \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, we have the following Parseval formula (2.16)

$$\int_{\mathbb{R}^{d+1}_{\perp}} f(x)\overline{g(x)} d\mu_{\alpha,d}(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_{\perp}} \mathscr{F}_W^{\alpha,d,n}(f)(\lambda) \overline{\mathscr{F}_W^{\alpha,d,n}(g)(\lambda)} d\mu_{\alpha+2n,d}(\lambda)$$

where $C_{\alpha,d}$ is the constant given by the relation (2.15).

ii) (Plancherel formula).

For all $f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$, we have :

(2.17)
$$\int_{\mathbb{R}^{d+1}_{\perp}} |f(x)|^2 d\mu_{\alpha,d}(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_{\perp}} \left| \mathscr{F}_W^{\alpha,d,n}(f)(\lambda) \right|^2 d\mu_{\alpha+2n,d}(\lambda).$$

iii) (Plancherel Theorem) : The transform $\mathscr{F}_W^{\alpha,d,n}$ extends uniquely to an isometric isomorphism from $L^2(\mathbb{R}^{d+1}_+,\ d\mu_{\alpha,d}(x))$ onto $L^2(\mathbb{R}^{d+1}_+,\ C^2_{\alpha+2n,d}d\mu_{\alpha+2n,d}(x))$.

Definition 3. The translation operator $T_x^{\alpha,d,n}$, $x \in \mathbb{R}^{d+1}_+$, associated with the operator $\Delta_W^{\alpha,d,n}$ is defined on $\mathcal{E}_{n,*}(\mathbb{R}^{d+1}_+)$ by:

$$(2.18) \qquad \forall y \in \mathbb{R}^{d+1}_+, \ T^{\alpha,d,n}_x f\left(y\right) = x^{2n}_{d+1} \mathscr{M}_n T^{\alpha+2n,d}_x \mathscr{M}_n^{-1} f\left(y\right)$$

where

(2.19)

$$T_x^{\alpha,d} f(y) = \frac{a_{\alpha}}{2} \int_0^{\pi} f\left(x' + y', \sqrt{x_{d+1}^2 + y_{d+1}^2 + 2x_{d+1}y_{d+1}\cos\theta}\right) (\sin\theta)^{2\alpha} d\theta$$

 $x' + y' = (x_1 + y_1, ..., x_d + y_d)$ and a_α is the constant given by (2.7).

The following proposition summarizes some properties of the generalized Weinstein translation operator.

Proposition 3. (see [1]) i) Let $f \in L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$, $1 \leq p \leq +\infty$ and $x \in \mathbb{R}^{d+1}_+$. Then $T^{\alpha,d,n}_x f$ belongs to $L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$(2.20) ||T_x^{\alpha,d,n}f||_{\alpha,n,p} \le x_{d+1}^{2n} ||f||_{\alpha,n,p}.$$

ii) The function $t \mapsto \Lambda_{\alpha,d,n}(t,\lambda)$, $\lambda \in \mathbb{C}^{d+1}$, satisfies on \mathbb{R}^{d+1}_+ the following product formula:

$$(2.21) \forall x, y \in \mathbb{R}^{d+1}_+, \ \Lambda_{\alpha,d,n}(x,\lambda) \ \Lambda_{\alpha,d,n}(y,\lambda) = T_x^{\alpha,d,n} \left[\Lambda_{\alpha,d,n}(.,\lambda) \right] (y).$$

iii) Let
$$f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$$
 and $x \in \mathbb{R}^{d+1}_+$, we have

$$(2.22) \forall \lambda \in \mathbb{R}^{d+1}_{+}, \ \mathscr{F}^{\alpha,d,n}_{W}\left(T^{\alpha,d,n}_{x}f\right)(\lambda) = \Lambda_{\alpha,d,n}\left(-x,\lambda\right)\mathscr{F}^{\alpha,d,n}_{W}\left(f\right)(\lambda).$$

iv) Let
$$f \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1})$$
, for all $x, y \in \mathbb{R}^{d+1}_+$, we have (2.23)

$$T_{x}^{\alpha,d,n}f\left(y\right) = C_{\alpha+2n,d}^{2} \int_{\mathbb{R}^{d+1}_{+}} \Lambda_{\alpha,d,n}\left(-x,\lambda\right) \Lambda_{\alpha,d,n}\left(-y,\lambda\right) \mathscr{F}_{W}^{\alpha,d,n}\left(f\right)\left(\lambda\right) d\mu_{\alpha+2n,d}(\lambda).$$

Definition 4. The generalized Weinstein convolution product of $f, g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$ is given by:

(2.24)
$$\forall x \in \mathbb{R}^{d+1}_{+}, \ f *_{\alpha,n} g(x) = \int_{\mathbb{R}^{d+1}_{+}} T_{x}^{\alpha,d,n} f(-y) g(y) d\mu_{\alpha,d}(y).$$

Proposition 4. (see [1])

i) Let $p,q,r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} = 1$. Then for all $f \in L^p_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and $g \in L^q_{\alpha,n}(\mathbb{R}^{d+1}_+)$, the function $f *_{\alpha,n} g \in L^r_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$(2.25) ||f *_{\alpha,n} g||_{\alpha,n,r} \le ||f||_{\alpha,n,p} ||g||_{\alpha,n,q}.$$

ii) For all
$$f,g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$$
, $f *_{\alpha,n} g \in L^1_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

(2.26)
$$\mathscr{F}_{W}^{\alpha,d,n}(f*_{\alpha,n}g) = \mathscr{F}_{W}^{\alpha,d,n}(f)\mathscr{F}_{W}^{\alpha,d,n}(g).$$

Notation. We denoted by \mathscr{S}'_* , (resp. $\mathscr{S}'_{n,*}$) the strong dual of the space $\mathscr{S}_*(\mathbb{R}^{d+1})$, (resp. $\mathscr{S}_{n,*}(\mathbb{R}^{d+1})$).

Definition 5. The generalized Fourier-Weinstein transform of a distribution $u \in \mathcal{S}'_*$ is defined by :

(2.27)
$$\forall \phi \in \mathscr{S}_{n,*}(\mathbb{R}^{d+1}), \ \langle \mathscr{F}_{W}^{\alpha,d,n}(u), \phi \rangle = \langle u, \mathscr{F}_{W}^{\alpha,d,n}(\phi) \rangle.$$

The following proposition is as an immediate consequence of Theorem 1.

Proposition 5. The transform $\mathscr{F}_{W}^{\alpha,d,n}$ is a topological isomorphism from \mathscr{S}'_{*} onto $\mathscr{S}'_{n,*}$.

Remark 2. Let $m \in \mathbb{N}$ and $u \in \mathscr{S}'_{n,*}$, we have

(2.28)
$$\mathscr{F}_{W}^{\alpha,d,n}\left[\mathscr{M}_{n}(\Delta_{W}^{\alpha,d,n})^{m}u\right] = (-1)^{m} \|x\|^{2m} \mathscr{F}_{W}^{\alpha,d,n}(\mathscr{M}_{n}u)$$

where

(2.29)
$$\forall \phi \in \mathscr{S}_{n,*}\left(\mathbb{R}^{d+1}\right), \ \langle \Delta_W^{\alpha,d,n} u, \ \phi \rangle = \langle u, \ \Delta_W^{\alpha,d,n} \phi \rangle.$$

3. The generalized Weinstein-Sobolev spaces of exponential type

In this section, we introduce and study the Sobolev spaces of exponential type associated with the generalized Weinstein operator $\Delta_W^{\alpha,d,n}$.

Notation. We denote by :

 $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ the set of all functions $\varphi \in \mathscr{E}_{n,*}(\mathbb{R}^{d+1})$ such that

$$\forall h, \ k > 0, \ N^{h,k}(\varphi) = \sup_{\begin{subarray}{c} x \in \mathbb{R}^{d+1} \\ \mu \in \mathbb{N}^{d+1} \end{subarray}} \left[\frac{e^{k\|x\|} |\partial^{\mu} \mathcal{M}_{n}^{-1} \varphi(x)|}{h^{|\mu|} \mu!} \right] < +\infty.$$

The topology of $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ is defined by the above seminorms. We have the following useful result.

Theorem 3. The transform $\mathscr{F}_W^{\alpha,d,n}$ is a topological isomorphism from $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ onto $\mathscr{G}_*(\mathbb{R}^{d+1}) := \mathscr{G}_{0,*}(\mathbb{R}^{d+1})$.

Proof. The result follows from the relations (2.11) and the fact that $\mathscr{F}_W^{\alpha+2n,d}$ is an isomorphism from $\mathscr{G}_*(\mathbb{R}^{d+1})$ onto itself.

Notation. We denote by $\mathscr{G}'_{n,*}$ the strong dual of the space $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$.

Definition 6. The Weinstein transform of a distribution $S \in \mathscr{G}'_*$ is defined by :

(3.1)
$$\forall \phi \in \mathscr{G}_{n,*}(\mathbb{R}^{d+1}), \ \langle \mathscr{F}_{W}^{\alpha,d,n}(S), \ \phi \rangle = \langle S, \ \mathscr{F}_{W}^{\alpha,d,n}(\phi) \rangle.$$

Proposition 6. Let $m \in \mathbb{N}$ and $T \in \mathscr{G}'_*$, we have

$$\mathscr{F}_{W}^{\alpha,d,n}\left[\left(\Delta_{W}^{\alpha,d,n}\right)^{m}T\right]=\left(-1\right)^{m}\left\Vert \xi\right\Vert ^{2m}\mathscr{F}_{W}^{\alpha,d,n}\left(T\right).$$

Proof. The result is a direct consequence of the relations (2.12) and (3.1).

Definition 7. For $s \in \mathbb{R}$ and $1 \leq p < +\infty$, we define the space $\mathscr{W}_{\alpha,n}^{s,p}(\mathbb{R}^{d+1}_+)$ as the set of all $u \in \mathscr{G}'_*$ such that $\mathscr{F}_W^{\alpha,d,n}(u)$ is a function and

$$(3.2) \quad \|u\|_{\mathscr{W}^{s,p}_{\alpha,n}} = \left[C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} e^{ps\|\lambda\|} \left| \mathscr{F}^{\alpha,d,n}_W(u) \left(\lambda\right) \right|^p d\mu_{\alpha+2n,d} \left(\lambda\right) \right]^{\frac{1}{p}} < +\infty.$$

The norm on $\mathcal{W}_{\alpha,n}^{s,p}(\mathbb{R}^{d+1}_+)$ is given by $\|u\|_{\mathcal{H}_{\alpha,n}^s}$.

For p=2, we provide the space $\mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+):=\mathscr{W}^{s,2}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ with the scalar product

$$(3.3) \qquad \langle u, v \rangle_{s,\alpha,n} = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_{\perp}} e^{2s\|\xi\|} \mathscr{F}_W^{\alpha,d,n}(u)(\xi) \overline{\mathscr{F}_W^{\alpha,d,n}(v)(\xi)} d\mu_{\alpha+2n,d}(\xi)$$

and the norm

$$||u||_{\mathscr{H}_{\alpha,n}^s} = \langle u, u \rangle_{s,\alpha,n}^{\frac{1}{2}}.$$

 $\mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$ is the generalized Sobolev-Weinstein space of exponential type of order s. For n=0, we regain the classical Sobolev-Weinstein space $\mathscr{H}^{s,\alpha}_{\mathscr{G}_{*}}(\mathbb{R}^{d+1}_{+})$ given in [3] and $\mathscr{F}^{\alpha,d}_{W}=\mathscr{F}^{\alpha,d,0}_{W}$ is the classical Weinstein transform.(See [2], [3], [10], [12] and [13]).

Proposition 7. Let $s \in \mathbb{R}$ and $1 \le p < +\infty$. The space $\mathcal{W}_{\alpha,n}^{s,p}(\mathbb{R}^{d+1}_+)$ provided with the norm $\|.\|_{\mathcal{W}_{\alpha,n}^{s,p}}$ is a Banach space.

Proof. It is clear that the space $L^p(\mathbb{R}^{d+1}_+, e^{ps||\lambda||}d\mu_{\alpha+2n,d}(x))$ is complete. On the other hand $\mathscr{F}_W^{\alpha,d,n}$ is a topological isomorphism from \mathscr{G}'_* onto itself $\mathscr{G}'_{n,*}$. This achieves the proof.

We proceed as [3], we obtain the following results.

Proposition 8. i) For all $s \in \mathbb{R}$, we have

$$\mathscr{G}_{n,*}(\mathbb{R}^{d+1}) \subset \mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+).$$

ii) We have

$$\mathscr{H}^{0}_{\alpha,n}(\mathbb{R}^{d+1}_{+}) = L^{2}_{\alpha+2n}(\mathbb{R}^{d+1}_{+}).$$

iii) For all $s,t \in \mathbb{R}$, t > s, the space $\mathcal{W}_{\alpha,n}^{t,p}(\mathbb{R}_+^{d+1})$ is continuously contained in $\mathcal{W}_{\alpha,n}^{s,p}(\mathbb{R}_+^{d+1})$.

GENERALIZED METROTETI VID DODOFEA DI VOED

iv) Let P be a linear partial differential operator with constant coefficients, $s \in \mathbb{R}$, $u \in \mathscr{H}^{s}_{\alpha.n}(\mathbb{R}^{d+1}_{+})$ and t < s.

Then $P(u) \in \mathscr{H}^{t}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$ and the map $v \mapsto P(v)$ is continuous on $\mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$.

v) Let $Q(D) = \sum_{m \in \mathbb{N}} a_m D^m$ be a differential operator of infinite order such that

there exist constants C > 0 and r > 0 satisfying:

$$(3.4) \forall m \in \mathbb{N}, \ |a_m| \le C \frac{r^m}{m!}.$$

If $u \in \mathcal{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, then $Q(u) \in \mathcal{H}^{s-r}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and the map: $Q: \mathcal{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+) \to \mathcal{H}^{s-r}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ is continuous.

Proposition 9. Let $t \in \mathbb{R}$. The operator $\nabla_t : \mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+) \to \mathscr{H}^{s-t}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ defined for all $x \in \mathbb{R}^{d+1}_+$ by :

(3.5)
$$\nabla_t u(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} e^{t\sqrt{1+\|\xi\|^2}} \Lambda_{\alpha,d,n}(-x,\xi) \mathscr{F}_W^{\alpha,d,n}(u)(\xi) d\mu_{\alpha+2n,d}(\xi)$$

is an isomorphism.

Proof. Let $u \in \mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Then, the function $\xi \mapsto e^{(s-t)\|\xi\|}e^{t\sqrt{1+\|\xi\|^2}}\mathscr{F}^{\alpha,d,n}_W(u)$ (ξ) belongs to $L^2_{\alpha+2n}(\mathbb{R}^{d+1}_+)$ and we have

$$\forall \xi \in \mathbb{R}^{d+1}_{+}, \ \mathscr{F}_{W}^{\alpha,d,n}\left(\nabla_{t}u\right)\left(\xi\right) = e^{t\sqrt{1+\|\xi\|^{2}}}\mathscr{F}_{W}^{\alpha,d,n}\left(u\right)\left(\xi\right).$$

Thus

$$\begin{split} \int_{\mathbb{R}^{d+1}_{+}} e^{2(s-t)\|\lambda\|} \left| \mathscr{F}_{W}^{\alpha,d,n}(\nabla u) \left(\lambda\right) \right|^{2} d\mu_{\alpha+2n,d} \left(\lambda\right) \\ &= \int_{\mathbb{R}^{d+1}_{+}} e^{2(s-t)\|\lambda\|+2t\sqrt{1+\|\lambda\|^{2}}} \left| \mathscr{F}_{W}^{\alpha,d,n}(u) \left(\lambda\right) \right|^{2} d\mu_{\alpha+2n,d} \left(\lambda\right) \\ &\leq k_{t} \int_{\mathbb{R}^{d+1}_{+}} e^{2s\|\lambda\|} \left| \mathscr{F}_{W}^{\alpha,d,n}(u) \left(\lambda\right) \right|^{2} d\mu_{\alpha+2n,d} \left(\lambda\right), \end{split}$$

with
$$k_t = \sup_{\lambda \in \mathbb{R}^{d+1}_+} \left[e^{2t \left(\sqrt{1 + \|\lambda\|^2} - \|\lambda\| \right)} \right] \le e^{2|t|}$$
.

Thenwe deduce that $\nabla_t u \in \mathscr{H}^{s-t}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\|\nabla_t u\|_{\mathscr{H}^{s-t}_{\alpha,n}} \le e^{|t|} \|u\|_{\mathscr{H}^{s}_{\alpha,n}}.$$

On the other hand, let $v \in \mathcal{H}_{\alpha,n}^{s-t}(\mathbb{R}^{d+1}_+)$ and put

$$u = \left[\mathscr{F}_{W}^{\alpha,d,n}\right]^{-1} \left(e^{-t\sqrt{1+\|\lambda\|^{2}}}\mathscr{F}_{W}^{\alpha,d,n}(v)\right).$$

From the definition of the operator ∇_t , we have $\nabla_t u = v$ and we get

$$\int_{\mathbb{R}^{d+1}_{+}}e^{2s\|\lambda\|}\left|\mathscr{F}_{W}^{\alpha,d,n}(u)\left(\lambda\right)\right|^{2}d\mu_{\alpha+2n,d}\left(\lambda\right)=\int_{\mathbb{R}^{d+1}_{+}}e^{2\left(s\|\lambda\|-t\sqrt{1+\|\lambda\|^{2}}\right)}\left|\mathscr{F}_{W}^{\alpha,d,n}(v)\left(\lambda\right)\right|^{2}d\mu_{\alpha+2n,d}\left(\lambda\right)$$

$$\leq \sup_{\lambda \in \mathbb{R}^{d+1}_+} \left[e^{2t \left(\|\lambda\| - \sqrt{1 + \|\lambda\|^2} \right)} \right] \times \int_{\mathbb{R}^{d+1}_+} e^{2(s-t)\|\lambda\|} \left| \mathscr{F}_W^{\alpha,d,n}(v) \left(\lambda \right) \right|^2 d\mu_{\alpha + 2n,d} \left(\lambda \right) < \infty.$$

Then, $u \in \mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we obtain

$$||u||_{\mathscr{H}_{\alpha,n}^s} \leq e^{|t|} ||\nabla_t u||_{\mathscr{H}_{\alpha,n}^{s-t}}.$$

Hence the operator ∇_t is an isomorphism.

The following theorem deals with the dual $(\mathcal{H}_{\alpha,n}^s(\mathbb{R}^{d+1}_+))'$ of $\mathcal{H}_{\alpha,n}^s(\mathbb{R}^{d+1}_+)$ and gives a relation between $(\mathcal{H}_{\alpha,n}^s(\mathbb{R}^{d+1}_+))'$ and $\mathcal{H}_{\alpha,n}^{-s}(\mathbb{R}^{d+1}_+)$.

Theorem 4. The dual of $\mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ can be identified with $\mathscr{H}^{-s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$. The relation of the identification is as follows:

$$(3.6) \langle u, v \rangle_{0,\alpha,n} = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \mathscr{F}_W^{\alpha,d,n}(u)(\xi) \overline{\mathscr{F}_W^{\alpha,d,n}(v)(\xi)} d\mu_{\alpha+2n,d}(\xi),$$

with $u \in \mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and $v \in \mathscr{H}^{-s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$.

Proof. Using the same technique as in Theorem 3.10 of [3], we obtain the result. \Box

Proposition 10. Let $s_1, s, s_2 \in \mathbb{R}$, satisfying $s_1 < s < s_2$. Then, for all $\varepsilon > 0$, there exists a nonnegative constant C_{ε} such that for all $u \in \mathcal{W}_{\alpha,n}^{s,p}(\mathbb{R}^{d+1}_+)$, we have

(3.7)
$$||u||_{\mathcal{W}^{s,p}_{\alpha,p}} \leq C_{\varepsilon} ||u||_{\mathcal{W}^{s_{1},p}_{\alpha,p}} + \varepsilon ||u||_{\mathcal{W}^{s_{2},p}_{\alpha,p}}.$$

Proof. Let $s_1, s_2 \in \mathbb{R}$, $s_1 < s_2$ and $s \in]s_1, s_2[$. Then there exists $t \in]0$, 1[such that $s = (1-t)s_1 + ts_2$.

Using the Hölder's inequaity, we get

$$\begin{split} \|u\|_{\mathscr{W}^{s,p}_{\alpha,n}} &\leq \|u\|_{\mathscr{W}^{s_1,p}_{\alpha,n}}^{1-t} \times \|u\|_{\mathscr{W}^{s_2,p}_{\alpha,n}}^{t} \\ &\leq \left(\varepsilon^{\frac{-t}{1-t}} \|u\|_{\mathscr{W}^{s_1,p}_{\alpha,n}}\right)^{1-t} \times \left(\varepsilon \|u\|_{\mathscr{W}^{s_2,p}_{\alpha,n}}\right)^{t} \\ &\leq C_{\varepsilon} \|u\|_{\mathscr{W}^{s_1,p}_{\alpha,n}} + \varepsilon \|u\|_{\mathscr{W}^{s_2,p}_{\alpha,n}} \end{split}$$

where $C_{\varepsilon} = \varepsilon^{\frac{-t}{1-t}}$.

Proposition 11. Let $s \in \mathbb{R}$, $m \in \mathbb{N}$ and $\varepsilon > 0$. If $\mathcal{M}_n u \in \mathcal{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$ then $\mathcal{M}_n \left(\Delta_W^{\alpha,d,n}\right)^m u \in \mathcal{H}^{s-\varepsilon}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\|\mathscr{M}_n \left(\Delta_W^{\alpha,d,n}\right)^m (u)\|_{\mathscr{H}_{\alpha,n}^{s-\varepsilon}} \leq \left(\frac{2m}{\varepsilon e}\right)^{2m} \|\mathscr{M}_n u\|_{\mathscr{H}_{\alpha,n}^{s}}.$$

Proof. Let $\varepsilon > 0$, $m \in \mathbb{N}$, $s \in \mathbb{R}$ and $u \in \mathcal{H}_{\alpha,n}^{s}(\mathbb{R}_{+}^{d+1})$. From (2.28), we obtain

$$\begin{split} \int_{\mathbb{R}^{d+1}_{+}} e^{2(s-\varepsilon)\|\lambda\|} \left| \mathscr{F}_{W}^{\alpha,d,n} \left[\mathscr{M}_{n} \left(\Delta_{W}^{\alpha,d,n} \right)^{m} u \right] (\lambda) \right|^{2} d\mu_{\alpha+2n,d} (\lambda) \\ &= \int_{\mathbb{R}^{d+1}_{+}} \|\lambda\|^{4m} e^{2(s-\varepsilon)\|\lambda\|} \left| \mathscr{F}_{W}^{\alpha,d,n} (\mathscr{M}_{n} u) (\lambda) \right|^{2} d\mu_{\alpha+2n,d} (\lambda) \\ &\leq \left(\frac{2m}{\varepsilon e} \right)^{4m} \int_{\mathbb{R}^{d+1}} e^{2s\|\lambda\|} \left| \mathscr{F}_{W}^{\alpha,d,n} (\mathscr{M}_{n} u) (\lambda) \right|^{2} d\mu_{\alpha+2n,d} (\lambda) < +\infty. \end{split}$$

Then $\mathscr{M}_n\left(\Delta_W^{\alpha,d,n}\right)^m(u)\in\mathscr{H}^{s-\varepsilon}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$\|\mathscr{M}_n\left(\Delta_W^{\alpha,d,n}\right)^m(u)\|_{\mathscr{H}_{\alpha,n}^{s-\varepsilon}} \leq \left(\frac{2m}{\varepsilon e}\right)^{2m} \|\mathscr{M}_n u\|_{\mathscr{H}_{\alpha,n}^{s}}.$$

Definition 8. Let $u \in \mathscr{S}_{n,*}\left(\mathbb{R}^{d+1}\right)$, we define the operator $(-\Delta_W^{\alpha,d,n})^{\frac{1}{2}}$ by : (3.8)

$$\forall x \in \mathbb{R}^{d+1}_+, (-\Delta_W^{\alpha,d,n})^{\frac{1}{2}} u(x) = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}} \|\xi\| \Lambda_{\alpha,d,n}(-x,\xi) \mathscr{F}_W^{\alpha,d,n}(u)(\xi) d\mu_{\alpha+2n,d}(\xi).$$

Proposition 12. Let
$$P((-\Delta_W^{\alpha,d,n})^{\frac{1}{2}}) = \sum_{m \in \mathbb{N}} a_m \left[(-\Delta_W^{\alpha,d,n})^{\frac{1}{2}} \right]^m$$
 be a fractional We-

instein Laplace operators of infinite order satisfying: there exist positive constants C and r such that

$$(3.9) \forall m \in \mathbb{N}, \ |a_m| \le C \frac{r^m}{m!}.$$

If $u \in \mathcal{W}^{s,p}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, then $P((-\Delta^{\alpha,d,n}_W)^{\frac{1}{2}})u \in \mathcal{W}^{s-r,p}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$||P((-\Delta_W^{\alpha,d,n})^{\frac{1}{2}})u||_{\mathscr{W}_{\alpha,n}^{s-r,p}} \le C||u||_{\mathscr{W}_{\alpha,n}^{s,p}}.$$

Proof. As an immediate consequence of the condition (3.9), we have

$$\forall \xi \in \mathbb{R}^{d+1}_+, |P(\|\xi\|)| \le Ce^{r\|\xi\|}.$$

Thus we deduce the desired result.

Proposition 13. Let $t, s \in \mathbb{R}$. The operator $\exp(t(-\Delta_W^{\alpha,d,n})^{\frac{1}{2}})$ defined by :

$$\forall x \in \mathbb{R}^{d+1}_+, \ \exp(t(-\Delta^{\alpha,d,n}_W)^{\frac{1}{2}})u(x) = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} e^{t\|\xi\|} \mathscr{F}^{\alpha,d,n}_W(u)(\xi) \Lambda_{\alpha,d,n}(-x,\xi) d\mu_{\alpha+2n,d}(\xi) d\mu_{\alpha+$$

is an isomorphism from $\mathscr{W}^{s,p}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ onto $\mathscr{W}^{s-t,p}_{\alpha,n}(\mathbb{R}^{d+1}_+)$.

Proof. Let $t, s \in \mathbb{R}$ and $u \in \mathcal{W}_{\alpha,n}^{s,p}(\mathbb{R}^{d+1}_+)$. It is easy to see that

$$\|\exp(t(-\Delta_W^{\alpha,d,n})^{\frac{1}{2}})u\|_{\mathcal{W}^{s-t,p}_{\alpha,n}} = \|u\|_{\mathcal{W}^{s,p}_{\alpha,n}}.$$

Thus the proof is immediate.

Proposition 14. Let s > 0. Then each $u \in \mathcal{H}_{\alpha,n}^{-s}(\mathbb{R}_+^{d+1})$ can be represented as an infinite sum of fractional Weinstein Laplace operators of square integrable function v, in other words,

$$u = \sum_{m \in \mathbb{N}} \frac{s^m}{m!} \left[(-\Delta_W^{\alpha,d,n})^{\frac{1}{2}} \right]^m v.$$

Proof. Let $u \in \mathscr{H}^{-s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, s > 0. Then, the function $\xi \mapsto e^{-s\|\xi\|}\mathscr{F}^{\alpha,d,n}_W(u)\left(\xi\right)$ belongs to $L^2_\alpha(\mathbb{R}^{d+1}_+)$.

So, from the Plancheral theorem, there exists $v \in L^2_{\alpha+2n}(\mathbb{R}^{d+1}_+)$, such that

$$\forall \xi \in \mathbb{R}_{+}^{d+1}, \ \mathscr{F}_{W}^{\alpha,d,n}(v)\left(\xi\right) = \frac{\mathscr{F}_{W}^{\alpha,d,n}(u)\left(\xi\right)}{\sum_{w \in \mathbb{N}} \frac{s^{m}}{m!} \left\|\xi\right\|^{m}}.$$

Then

$$\begin{split} \mathscr{F}_{W}^{\alpha,d,n}(u)\left(\xi\right) &= \sum_{m \in \mathbb{N}} \frac{s^{m}}{m!} \left\|\xi\right\|^{m} \mathscr{F}_{W}^{\alpha,d,n}(v)\left(\xi\right) \\ &= \sum_{m \in \mathbb{N}} \frac{s^{m}}{m!} \mathscr{F}_{W}^{\alpha,d,n} \left[\left(\left(-\Delta_{W}^{\alpha,d}\right)^{\frac{1}{2}}\right)^{m} v\right]\left(\xi\right), \end{split}$$

which achieves the proof.

4. Applications

4.1. The reproducing kernels.

Proposition 15. For s > 0, the Hilbert space $\mathscr{H}_{\alpha,n}^s(\mathbb{R}^{d+1}_+)$ admits the reproducing kernel:

(4.1)

$$\forall x, y \in \mathbb{R}^{d+1}_+, \Theta^{\alpha,d,n}_s(x,y) = C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}} e^{-2s||\lambda||} \Lambda_{\alpha,d,n}(-x,\lambda) \Lambda_{\alpha,d,n}(-y,\lambda) d\mu_{\alpha+2n,d}(\lambda).$$

i) For every $y \in \mathbb{R}^{d+1}_+$, the distribution given by the function $x \mapsto \Theta^{\alpha,d,n}_s(x,y)$ belongs to $\mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$.

ii) For every $f \in \mathscr{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_+)$, we have

$$\forall y \in \mathbb{R}^{d+1}_+, \langle f, \Theta^{\alpha,d,n}_s(.,y) \rangle_{s,\alpha} = f(y).$$

Proof. i) Let $y \in \mathbb{R}^{d+1}_+$ and s > 0, the function $\lambda \mapsto e^{-2s||\lambda||} \Lambda_{\alpha,d,n}(y,\lambda)$ belongs to $L^1_{\alpha,n}(\mathbb{R}^{d+1}_+) \cap L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Then, from the relation (2.17), the function $x \mapsto \Theta^{\alpha,d,n}_s(x,y)$ belongs to $L^2_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and we have

$$(4.2) \forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}_W^{\alpha,d,n}\left[\Theta_s^{\alpha,d,n}(.,y)\right](\lambda) = e^{-2s||\lambda||} \Lambda_{\alpha,d,n}(-y,\lambda).$$

Then $\Theta_s^{\alpha,d,n}(.,y) \in \mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$.

ii) Let $f \in \mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$ and $y \in \mathbb{R}^{d+1}_+$. Using the relations (3.3), (4.2) and (2.14), we obtain

$$\langle f, \Theta_s^{\alpha,d,n}(.,y) \rangle_{s,\alpha,n} = C_{\alpha+2n,d}^2 \int_{\mathbb{R}^{d+1}_+} \mathscr{F}_W^{\alpha,d,n}(f)(\lambda) \Lambda_{\alpha,d,n}(-y,\lambda) d\mu_{\alpha+2n,d}(\lambda)$$
$$= f(y).$$

Definition 9. The generalized heat kernel $G^{\alpha,n,d}$ is given by :

$$\forall t > 0, \forall x, y \in \mathbb{R}^{d+1}, \ G^{\alpha, n, d}(t, x, y) = C_{\alpha + 2n, d}^2 \int_{\mathbb{R}^{d+1}_+} e^{-t \|\xi\|^2} \Lambda_{\alpha, d, n}(x, \xi) \Lambda_{\alpha, d, n}(-y, \xi) d\mu_{\alpha + 2n, d}(\xi).$$

The following Lemma will be useful later

Lemma 2. Let t > 0, we define the function $\phi_t^{\alpha,d,n}$ by :

(4.4)
$$\forall x \in \mathbb{R}^{d+1}, \ \phi_t^{\alpha,d,n}(x) = \frac{C_{\alpha+2n,d}}{(2t)^{\alpha+2n+\frac{d}{2}+1}} x_{d+1}^{2n} e^{-\frac{\|x\|^2}{4t}}.$$

39

i) We have

$$(4.5) \qquad \forall \lambda \in \mathbb{R}^{d+1}_+, \ \mathscr{F}^{\alpha,d,n}_W(\phi^{\alpha,d,n}_t)(\lambda) = e^{-t\|\lambda\|^2}.$$

ii) We have

(4.6)

$$\forall x, y \in \mathbb{R}^{d+1}, \ T_x^{\alpha,d,n}\left(\phi_t^{\alpha,d,n}\right)(y) = \frac{C_{\alpha+2n,d}}{(2t)^{\alpha+2n+\frac{d}{2}+1}} y_{d+1}^{2n} e^{-\frac{\|x\|^2 + \|y\|^2}{4t}} \Lambda_{\alpha,d,n}(x, -\frac{iy}{2t}).$$

Proof. i) To see the result, we have to show that

$$\forall t > 0, \ \forall x \in \mathbb{R}, \ \int_0^{+\infty} j_{\alpha}(x\xi) e^{-t\xi^2} \xi^{2\alpha+1} d\xi = \frac{\Gamma(\alpha+1)}{2t^{\alpha+1}} e^{-\frac{x^2}{4t}}.$$

ii) We obtain the result using the following relation:

$$\forall \lambda \in \mathbb{R}, \ \frac{\Gamma\left(\alpha+1\right)}{\sqrt{\pi}\Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} e^{\lambda \cos \theta} \sin^{2\alpha}\left(\theta\right) d\theta = j_{\alpha}\left(i\lambda\right).$$

The following properties of the generalized heat kernel $G^{\alpha,n,d}$ can be easily established using the Lemma 2.

Proposition 16. i) We have

(4.7)
$$\forall x, y \in \mathbb{R}^{d+1}, \ G^{\alpha, n, d}(t, x, y) = T_x^{\alpha, d, n} \left(\phi_t^{\alpha, d, n}\right) (-y)$$

where $\phi_t^{\alpha,d,n}$, t>0, be the function defined by the relation (4.4). ii) For all t>0 and $x,y\in\mathbb{R}^{d+1}$, we have

(4.8)
$$G^{\alpha,n,d}(t,x,y) = \frac{C_{\alpha+2n,d}}{(2t)^{\alpha+2n+\frac{d}{2}+1}} y_{d+1}^{2n} e^{-\frac{\|x\|^2 + \|y\|^2}{4t}} \Lambda_{\alpha,d,n}(x,\frac{iy}{2t}).$$

iii) We have

(4.9)
$$\forall t > 0, \ \forall y \in \mathbb{R}^{d+1}_+, \ \int_{\mathbb{R}^{d+1}_+} G^{\alpha,n,d}(t,x,y) d\mu_{\alpha+2n,d}(x) = y_{d+1}^{2n}.$$

iv) For a fixed $y \in \mathbb{R}^{d+1}_+$, the function $u:(x,t)\mapsto G^{\alpha,n,d}(t,x,y)$ solves on $\mathbb{R}^{d+1}_+ \times]0,+\infty[$ the generalized heat equation :

$$\Delta_W^{\alpha,d} u(x,t) = \frac{\partial}{\partial t} u(x,t).$$

Definition 10. The generalized heat semigroup $\mathcal{H}_t^{\alpha,d,n}, t > 0$, is the integral operator given for f in $L^2_{\alpha}(\mathbb{R}^{d+1}_+)$ by :

$$\forall x \in \mathbb{R}^{d+1}_+, \ \mathscr{H}^{\alpha,d,n}_t f(x) := \begin{cases} \int_{\mathbb{R}^{d+1}_+} G^{\alpha,n,d}(t,x,y) f(y) d\mu_{\alpha,d}(y), & if \quad t > 0 \\ f(x), & if \quad t = 0. \end{cases}$$

Proposition 17. i) Let t > 0. We have

$$(4.10) \qquad \forall x \in \mathbb{R}^{d+1}_+, \ \mathscr{H}^{\alpha,d,n}_t f(x) = f *_{\alpha,n} \phi^{\alpha,d,n}_t (x).$$

where $\phi_t^{\alpha,d,n}$ is the function given by the relation (4.4).

ii) Let $f \in \mathcal{H}^{s}_{\alpha,n}(\mathbb{R}^{d+1}_{+})$. We have

$$(4.11) \qquad \forall \lambda \in \mathbb{R}^{d+1}_{+}, \ \mathscr{F}^{\alpha,d,n}_{W} \left[\mathscr{H}^{\alpha,d,n}_{t} f \right] (\lambda) = e^{-t \|\lambda\|^{2}} \mathscr{F}^{\alpha,d,n}_{W} (f) (\lambda).$$

Proof. i) It is an immediate consequence of the relation (4.7).

ii) Let $f \in \mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Using the relations (4.5), (4.10) and (2.26), we obtain the result.

Proposition 18. i) Let $f \in \mathcal{G}_{n,*}$. Then $u(x,t) = \mathcal{H}_t^{\alpha,d,n} f(x)$ solves on $\mathbb{R}_+^{d+1} \times]0, +\infty[$, the following system:

$$\begin{cases} (\Delta_W^{\alpha,d,n} - \frac{\partial}{\partial t})u(x,t) &= 0\\ u(x,0) &= f(x). \end{cases}$$

ii) Let $s \in \mathbb{R}$. The integral transform $\mathscr{H}^{\alpha,d,n}_t$, t > 0, is a bounded linear operator from $\mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$ into $L^2_{\alpha}(\mathbb{R}^{d+1}_+)$ and we have :

(4.12)
$$\| \mathcal{H}_{t}^{\alpha,d,n} f \|_{\alpha,n,2} \leq e^{\frac{s^{2}}{4t}} \| f \|_{\mathcal{H}_{\alpha,n}^{s}}, \ f \in \mathcal{H}_{\alpha,n}^{s}(\mathbb{R}^{d+1}_{+}).$$

Proof. i) The assertion follows from Proposition 16 iv).

ii) Let $f \in \mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Using the relations (2.17) and (4.11), we have

$$\begin{split} \|\mathscr{H}^{\alpha,d,n}_t f\|^2_{\alpha,0,2} &= C^2_{\alpha+2n,d} \|\mathscr{F}^{\alpha,d,n}_W \left(\mathscr{H}^{\alpha,d,n}_t f\right)\|^2_{\alpha+2n,0,2} \\ &= C^2_{\alpha+2n,d} \int_{\mathbb{R}^{d+1}_+} e^{-2t\|\lambda\|^2} \left|\mathscr{F}^{\alpha,d,n}_W (f) \left(\lambda\right)\right|^2 d\mu_{\alpha+2n,d} \left(\lambda\right) \\ &\leq \sup_{\lambda \in \mathbb{R}^{d+1}_+} \left[e^{-2s\|\lambda\|-2t\|\lambda\|^2} \right] \|f\|^2_{\mathscr{H}^s_{\alpha,n}} &= e^{\frac{s^2}{2t}} \|f\|^2_{\mathscr{H}^s_{\alpha,n}}. \end{split}$$

Thus the proof is finished.

4.2. Pseudo-differential associated with the Generalized Weinstein operator. Notations. We need the following notations:

• For $r \geq 0$, we designate by \mathscr{S}^r , the space of C^{∞} -function $a: \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \to \mathbb{C}$ such that for each compact set $K \subset \mathbb{R}^{d+1}$ and each $\beta, \gamma \in \mathbb{N}$, there exists a constant $C = C(K, \beta, \gamma)$ satisfying:

$$(4.13) \qquad \forall (x,\xi) \in K \times \mathbb{R}^{d+1}, \ \left| D_{\xi}^{\beta} D_{x}^{\gamma} a\left(x,\ \xi\right) \right| \leq C e^{r\|\xi\|}.$$

• For $r, l \in \mathbb{R}$ with l > 0, we denote by $\mathscr{S}^{r,l}$, the space consits of all C^{∞} -function $a: \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \to \mathbb{C}$ such that for each L > 0 and $\beta, \gamma \in \mathbb{N}$, there exist a positive constant $C = C(r, l, \gamma)$ satisfying the relation :

$$(4.14) \forall (x,\xi) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}, \ \left| D_{\xi}^{\beta} D_{x}^{\gamma} a(x,\xi) \right| \leq C L^{|\beta|} |\beta|! e^{r||\xi||} e^{-l||x||}.$$

Definition 11. The pseudo-differential operator $A\left(a, \Delta_W^{\alpha,d,n}\right)$ associated with $a\left(x, \xi\right) \in \mathscr{S}^r$ is defined for $u \in \mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ by : (4.15)

$$\left[A\left(a,\Delta_{W}^{\alpha,d,n}\right)u\right](x)=C_{\alpha+2n,d}^{2}\int_{\mathbb{R}^{d+1}_{+}}\Lambda_{\alpha,d,n}(-x,\xi)a\left(x,\xi\right)\mathscr{F}_{W}^{\alpha,d,n}(u)\left(\xi\right)d\mu_{\alpha+2n,d}\left(\xi\right).$$

Theorem 5. If $a(x,\xi) \in \mathscr{S}^r$, then its associated pseudo-differential operator $A\left(a, \ \Delta_W^{\alpha,d}\right)$ is a well-defined mapping from $\mathscr{G}_{n,*}(\mathbb{R}^{d+1})$ into $C^{\infty}\left(\mathbb{R}^{d+1}\right)$.

Proof. Let $a(x,\xi) \in \mathscr{S}^r$. From the relation (4.13), for any compact set $K \subset \mathbb{R}^{d+1}$ and any $\gamma \in \mathbb{N}$, we have

$$(4.16) \qquad \forall (x,\xi) \in K \times \mathbb{R}^{d+1}, \ |D_x^{\gamma} a(x,\xi)| \le Ce^{r\|\xi\|}.$$

Let $u \in \mathcal{G}_{n,*}(\mathbb{R}^{d+1})$ and $x \in K$, using the relations (4.16), (2.9) and the Cauchy-Schwartz inequality, we obtain

$$\int_{\mathbb{R}^{d+1}_{+}} \left| a(x,\xi) \Lambda_{\alpha,d,n}(-x,\xi) \mathscr{F}_{W}^{\alpha,d,n}(u)(\xi) \right| d\mu_{\alpha+2n,d}(\xi)
\leq C x_{d+1}^{2n} \int_{\mathbb{R}^{d+1}_{+}} e^{r\|\xi\|} \left| \mathscr{F}_{W}^{\alpha,d,n}(u)(\xi) \right| d\mu_{\alpha+2n,d}(\xi)
\leq \frac{C}{C_{\alpha+2n,d}} x_{d+1}^{2n} \left(\int_{\mathbb{R}^{d+1}_{+}} e^{2(r-s)\|\xi\|} d\mu_{\alpha+2n,d}(\xi) \right)^{\frac{1}{2}} \|u\|_{\mathscr{H}_{\alpha,n}^{s}} < +\infty$$

where s > r

This relation proves that $A\left(a, \ \Delta_W^{\alpha,d}\right)(u)$ is well-defined and continuous on \mathbb{R}^{d+1}_+ . Consequently, in vertue of Leibniz formula, we obtain the result.

The next lemma plays an important role in this section.

Lemma 3. Let $a(x,\xi) \in \mathscr{S}^{r,l}$. For L > 0 there exist C > 0 and $0 < t < \frac{1}{Ld}$ such that :

$$\left|\mathscr{F}_{W}^{\alpha,d,n}\left(\mathscr{M}_{n}a\left(.,y\right)\right)\left(\xi\right)\right| \leq Ce^{r\|y\|}e^{-t\|\xi\|},$$

where C is a constant depending on r, t, α, d, n and l.

Proof. The result can be obtained by a simple calculation by using the same technique as in Theorem 3.4 of [10]. \Box

The following theorem gives an alternative form of $A\left(a, \Delta_W^{\alpha,d}\right)$ which will be useful in the sequel.

Theorem 6. Let $a(x, \lambda) \in \mathscr{S}^{r,l}$. Then, the pseudo-differential operator $A\left(a, \Delta_W^{\alpha,d}\right)$ admits the following representation:

$$\left[A\left(a,\Delta_{W}^{\alpha,d}\right)u\right](x) = C_{\alpha+2n,d}^{2} \int_{\mathbb{R}^{d+1}} \Lambda_{\alpha,d,n}(-x,z) \times dx$$

$$\left[\int_{\mathbb{R}^{d+1}_{\perp}}\mathscr{M}_{n,z}^{-1}T_{y}^{\alpha,d,n}\mathscr{M}_{n}\mathscr{F}_{W}^{\alpha,d,n}\left(\mathscr{M}_{n}a\left(.,y\right)\right)\left(z\right)\mathscr{F}_{W}^{\alpha,d,n}(u)\left(y\right)y_{d+1}^{2n}d\mu_{\alpha,d}\left(y\right)\right]d\mu_{\alpha+2n,d}\left(z\right)\right]d\mu_{\alpha+2n,d}\left(z\right)d\mu_{\alpha+$$

for all $u \in \mathcal{G}_{n,*}(\mathbb{R}^{d+1})$ where all involved integrals are absolutely convergent.

Proof. From the relation (4.17), for all $y, z \in \mathbb{R}^{d+1}_+$, we obtain :

$$(4.19) \left| \mathcal{M}_{n,z}^{-1} T_y^{\alpha,d,n} \mathcal{M}_n \mathcal{F}_W^{\alpha,d,n} \left(\mathcal{M}_n a(.,y) \right) (z) \right| \leq C_1 e^{r \|y\|} y_{d+1}^{2n} T_y^{\alpha+2n,d} \left(e^{-t \|\xi\|} \right) (z)$$

where C_1 is a constant depending on r, t, α, d, n and l. On the other hand since $u \in \mathscr{G}_{n,*}(\mathbb{R}^{d+1})$, we have

(4.20)
$$\forall y \in \mathbb{R}_{+}^{d+1}, \ \left| \mathscr{F}_{W}^{\alpha,d,n}(u)(y) \right| \leq C_{2} e^{-k\|y\|}, \ k > 0.$$

Now using the relations (4.19) and (4.20), we get:

$$\left|\mathcal{M}_{n,z}^{-1}T_{y}^{\alpha,d,n}\mathcal{M}_{n}\mathcal{F}_{W}^{\alpha,d,n}\left(\mathcal{M}_{n}a(.,y)\right)\left(z\right)\mathcal{F}_{W}^{\alpha,d,n}\left(u\right)\left(y\right)\right|\leq C_{3}e^{(r-k)\|y\|}y_{d+1}^{2n}T_{y}^{\alpha+2n,d}\left(e^{-t\|\xi\|}\right)\left(z\right).$$

Then for k > r and t > 0, we have

$$\int_{\mathbb{R}^{d+1}_{+}} \left| \mathcal{M}_{n,z}^{-1} T_{y}^{\alpha,d,n} \mathcal{M}_{n} \mathcal{F}_{W}^{\alpha,d,n} \left(\mathcal{M}_{n} a \left(., y \right) \right) (z) \mathcal{F}_{W}^{\alpha,d,n} (u) (y) \right| y_{d+1}^{2n} d\mu_{\alpha,d} (y)
\leq C_{3} \int_{\mathbb{R}^{d+1}_{+}} e^{(r-k)\|y\|} T_{y}^{\alpha+2n,d} \left(e^{-t\|\xi\|} \right) (z) d\mu_{\alpha+2n,d} (y)
\leq C_{3} \varphi *_{\alpha+2n,0} \psi (z)$$

where

$$\forall x \in \mathbb{R}^{d+1}_+, \ \varphi(x) = e^{(r-k)\|x\|} \text{ and } g(x) = e^{-t\|x\|}.$$

Therefore the function:

$$z \mapsto \int_{\mathbb{R}^{d+1}_{+}} \left| \mathscr{M}_{n,z}^{-1} T_{y}^{\alpha,d,n} \mathscr{M}_{n} \mathscr{F}_{W}^{\alpha,d,n} \left(\mathscr{M}_{n} a \left(.,y \right) \right) \left(z \right) \mathscr{F}_{W}^{\alpha,d,n} (u) \left(y \right) \right| y_{d+1}^{2n} d\mu_{\alpha,d} \left(y \right)$$

belongs to $L^1_{\alpha+2n}(\mathbb{R}^{d+1}_+)$. So, the result follows by applying the inverse theorem. \square

Now, we are in a situation to establish the fundamental result of this section given by the following result.

Theorem 7. Let s > 0, $a(x, \lambda) \in \mathscr{S}^{r,l}$ and $A\left(x, \Delta_W^{\alpha,d,n}\right)$ be the associated pseudo-differential operator. Then $A\left(a, \Delta_W^{\alpha,d,n}\right)$ maps continuously from $\mathscr{H}^{s+r}_{\alpha,n}(\mathbb{R}^{d+1}_+)$ to $\mathscr{H}^s_{\alpha,n}(\mathbb{R}^{d+1}_+)$. Moreover, for all $u \in \mathscr{G}_{n,*}(\mathbb{R}^{d+1}_+)$, we have

Proof. Let s > 0. We consider the function φ_s given by :

$$\varphi_{s}\left(z\right)=e^{s\left|\left|z\right|\right|}\int_{\mathbb{R}^{d+1}_{\perp}}\mathscr{M}_{n,z}^{-1}\mathscr{M}_{n,y}T_{y}^{\alpha,d,n}\mathscr{M}_{n}\mathscr{F}_{W}^{\alpha,d,n}\left(\mathscr{M}_{n}a\left(.,y\right)\right)\left(z\right)\mathscr{F}_{W}^{\alpha,d,n}\left(u\right)\left(y\right)d\mu_{\alpha,d}\left(y\right).$$

Using the relation (2.18), we obtain

$$\varphi_{s}\left(z\right) = e^{s||z||} \int_{\mathbb{R}^{d+1}_{+}} T_{y}^{\alpha+2n,d}\left(\mathscr{F}_{W}^{\alpha,d,n}\left(\mathscr{M}_{n}a\left(.,y\right)\right)\right)\left(z\right) \mathscr{F}_{W}^{\alpha,d,n}\left(u\right)\left(y\right) d\mu_{\alpha+2n,d}\left(y\right)$$

Now, from the relations (2.19) and (4.17), we have

$$\begin{aligned} |\varphi_{s}\left(z\right)| &\leq Ce^{s||z||} \int_{\mathbb{R}^{d+1}_{+}} e^{r||y||} T_{y}^{\alpha+2n,d}\left(e^{-t||\xi||}\right)(z) \left|\mathscr{F}_{W}^{\alpha,d,n}(u)\left(y\right)\right| d\mu_{\alpha+2n,d}\left(y\right) \\ &\leq C \int_{\mathbb{R}^{d+1}_{+}} e^{(r+s)||y||} \left|\mathscr{F}_{W}^{\alpha,d,n}(u)\left(y\right)\right| T_{y}^{\alpha+2n,d}\left(e^{(s-t)||\xi||}\right)(z) d\mu_{\alpha+2n,d}\left(y\right) \\ &\leq Cf *_{\alpha+2n,0} g\left(z\right) \end{aligned}$$

where for all $x \in \mathbb{R}^{d+1}_+$

$$f\left(x\right) = e^{\left(s-t\right)\left|\left|x\right|\right|} \text{ and } g\left(x\right) = e^{\left(r+s\right)\left|\left|x\right|\right|} \left|\mathscr{F}_{W}^{\alpha,d,n}(u)\left(x\right)\right|.$$

It is clear that $g \in L^2_{\alpha+2n}\left(\mathbb{R}^{d+1}_+\right)$ and for t > s, $f \in L^1_{\alpha+2n}\left(\mathbb{R}^{d+1}_+\right)$. Then from the relation (2.25), we deduce that $f *_{\alpha+2n,0} g \in L^2_{\alpha+2n}\left(\mathbb{R}^{d+1}_+\right)$ and we have

$$||f *_{\alpha+2n,0} g||_{\alpha+2n,2} \le ||f||_{\alpha+2n,1} ||g||_{\alpha+2n,2}.$$

So, we get

$$\left\| A\left(a,\ \Delta_{W}^{\alpha,d,n}\right) u \right\|_{\mathscr{H}^{s}_{\alpha,n}} = C_{\alpha+2n,d} \|\varphi_{s}\|_{\alpha+2n,2} \leq CC_{\alpha+2n,d} \|f *_{\alpha,n} g\|_{\alpha+2n,2} \leq k_{s} \|u\|_{\mathscr{H}^{s+r}_{\alpha,n}}$$

where

$$k_{s} = C \|f\|_{\alpha+2n,1} = C \int_{\mathbb{R}^{d+1}_{\perp}} e^{(s-t)||y||} d\mu_{\alpha+2n,d}(y).$$

Which achieves the proof.

References

- [1] A. Aboulez, A. Achak, R. Daher and E. Loualid, Harmonic analysis associated with the generalized Weinstein operator. International. J. of Analysis and Applications. Vol. 9, Nr 1, (2015), p. 19-28.
- [2] H. Ben Mohamed, N. Bettaibi and S.H. Jah. Sobolev type spaces associated with the Weinstein operator, Int. Journal of Math. Analysis, Vol.5, Nr.28, (2011), p.1353-1373.
- [3] H. Ben Mohamed, B. Ghribi Weinstein-Sobolev spaces of exponential type and applications. Acta Mathematica Sinica, English Series, Vol. 29, Nr. 3, (2013), p. 591-608.
- [4] H. Ben Mohamed, A. Gasmi and N. Bettaibi. Inversion of the Weinstein intertwining operator and its dual using Weinstein wavelets. An. St. Univ. Ovidius Constanta. Vol. 1, Nr1, (2016), p. 1-19.
- [5] H. Ben Mohamed. On the *Weinstein* equations in spaces $\mathscr{D}^p_{\alpha,d}$ type. International Journal of Open Problems in Complex Analysis. Vol.9, Nr 1, (2017), p. 39-59.
- [6] K. El-Hussein. Fourier transform and Plancherel Theorem for Nilpotent Lie Group. International Journal of Mathematics Trends and Technology. Vol.4 Issue 11, (2013), p. 288-294.
- [7] I. Aliev. Investigation on the Fourier-Bessel harmonic analusis, Doctoral Dissertation, Baku 1993 (in Russian).
- [8] I.A. Aliev and B. Rubin. Parabolic potentials and wavet transform with the generalized translation. Studia Math. 145 (2001) Nr1, p. 1-16.
- [9] I.A. Aliev and B. Rubin. Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions. Anal. Appl. (Singap) Nr 1 (2003), p. 81-109.
- [10] S. Lee, Generalized Sobolev spaces of exponential type, Kangweon-Kyungki Math. J. Vol.8, Nr 1 (2000) p. 73-86.
- [11] J. Löfström and J. Peetre. Approximation theorems connected with generalized translations. Math. Ann. Nr 181 (1969), p. 255-268.
- [12] D. H. Pahk and B. H. Kang, Sobolev spaces in the generlized distribution spaces of Beurling type, Tsukuba J. Math. Vol. 15, (1991) p.325-334.
- [13] R. S. Pathak, Generalized Sobolev spaces and pseudo-differential operators on spaces of ultradistributions, Structure of solutions of differential equations, Edited y M.Morimoto and T. Kawai, World Scientific, Singafore (1996) p. 343-368.
- [14] K. Stempak. La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel. C.R. Acad.Sci. Paris Sér. I303 (1986), p. 15-18.
- [15] K. Trimèche. Generalized Wavet and Hypergroups. Gordon and Breach, New York, 1997.
- [16] A.Saoudi. A Variation of L^p Uncertainty Principles in Weinstein Setting. Indian J.Pure Appl. Math., 51(4),(2020), p. 1697-1712.