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Abstract — In this paper, the bifurcation theory is used to study the mass adjustment dynamic time-delay model with 

double time delay. Firstly, the delay decision is selected as the delay parameter to obtain the stability point and the critical 

value of maintaining stability, and the conditions for Hopf bifurcation are discussed. In addition, the Hopf bifurcation 

direction and the stability of periodic solutions are studied by using the central manifold theorem and the gauge theory, 

and the calculation formula is obtained. Finally, the validity of the conclusion is verified by numerical simulation with 

mathematical software. 

 

Keywords — Center manifold theorem, Double mass level, Hopf bifurcation, Normal form theory, Stability 

I. INTRODUCTION 

With the increasing improvement of national life and the gradual improvement of people's quality of life, consumers 

have a wider range of choices for consumption content. In addition to the price of products, consumers pay more attention 

to the product quality of manufacturers and the service quality of retailers.Therefore, the manufacturer's choice of product 

quality level and the retailer's adjustment of service quality level are of great practical significance. In terms of research 

content, many scholars mainly conducted unilateral static research on product quality level and service quality level, and 

few researches on dynamic aspects. Literature [4] introduces the dual quality level into the supply chain. As manufacturers 

or retailers make decisions on the next phase price with reference to the historical price, price risks and uncertainties can 

be effectively avoided. Therefore, manufacturers and retailers usually adopt a delay strategy when making decisions on 

product quality and service level, and make future development direction according to consumers' past demands. 

Therefore, the author studies the system stability of their dynamic time-delay model and the existence of Hopf branch. In 

this paper, the system stability and the existence of Hopf bifurcation of the dynamic two-delay model are studied by 

considering the differences between manufacturers and retailers. 

II. MODEL BUILDING 

According to literature [1], the dynamic process of product quality level Q and service quality level S is 
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Where Q is the quality level of the product and S is the service level of the retailer, vm and vr are the adjustment speed 

of product quality level and service quality level respectively, km and kr are cost coefficients of product quality level and 

service quality level, the rest of the retailer's costs are negligible, ω is the wholesale price a manufacturer pays to sell 
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goods to a retailer, P is the retail price that the retailer sells, C is the production cost per unit product,   is the sensitivity 

coefficient of the quality level,   is the sensitivity coefficient of service quality level. 

Based on the above basis, Literature [4] considered the quality adjustment dynamic model with time delay for retailers 

and manufacturers to obtain information 
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Considering that the market information obtained by the manufacturer and the retailer respectively not only has time 

delay, but also has different time delay, this paper presents a quality adjustment model with two time delays 
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Where 1 , 2  are respectively the pricing delay period of the manufacturer and the retailer. 

III. STABPLPTY AND LOCAL HOPF BIFURCATION ANALYSIS 

The stability and Hopf bifurcation of the positive equilibrium point (Q0，S0) of system (1) are discussed below. 

First, let the equilibrium point of system (1) be E (Q0，S0), then it satisfies the following equation: 
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solve the above equation, the positive equilibrium point is obtained, 
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Let 0)()( QtQtx  , and 0)()( StSty  . After linearizing the controlled system (1) at the equilibrium point, the 

linearization equation is 
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reduction to  
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among them 

)(01 cvQvka mmm   , 02 Qvka mm , 

)(01   PvSvkb rrr , 02 Svkb rr . 

The characteristic equation of the system (5) is 
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In order to study the stability and Hopf bifurcation of the equilibrium E of the system, we only need to discuss the 

distribution of the roots of the characteristic equation (6). If all the roots of the equation (6) have a negative real part, then 

the equilibrium E is asymptotically stable; if one root of the equation has a positive real part, then the equilibrium E is 

unstable. Since the dynamic properties of differential equations with multiple delays are very complex, the two time 

delays 
1  and 

2  of system (1) are discussed in the following cases. 

Case 1: 021   

Theorem 1. For system (5), 021  , if 0,0 2222  baba , the equilibrium E is stable. 

Proof. When 021  , the characteristic equation of system (6) becomes 

  .0)( 2222
2  baba                                    (7) 

Therefore, it is clear from the characteristic equation (7) that only when 0,0 2222  baba , both roots 

of equation (7) have negative real parts, and at 021  , the equilibrium point of the system is 

asymptotically stable. 

Case 2: 0,0 21    

Lemma 1. For system (5), if 0,0 21    is satisfied, then equation (7) has pure imaginary root  2i , where 
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Proof. When 00 21   ， ,the characteristic equation of system (5) becomes 

 .0)( 22
2222

2 
  ebaeba                             (10) 

First, we assume that )0( 22   i is a root of the characteristic equation (10), then it satisfies the following equation  

.0)()( 2222
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2
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ebaebaii                         (11) 

That is  

.0)sin(cos)sin(cos 22222222222222
2

2   ibaiibia           (12) 

The separation of the real and imaginary parts, it follows 
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From (13) we obtain 
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2  abba , equation (14) has positive roots 2  and 2  
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Therefore, there is a pure imaginary root  2i , which can be calculated from Equation (13) 
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This completes the proof. 

Lemma 2. Let ,},2,1,0{ 20220
   knmi k and let the corresponding 2 be 20 .  

Let )()()( 222  i is the root of the characteristic equation (10) and the conditions 0)( 20 
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Proof. By differentiating both sides of equation (10) with regard to 2 and applying the implicit function theorem, we 

have : 
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When )( 1H : 22 ba  , the transversal condition 0|)Re(
2
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d

d
 holds.  

The proof is completed. 

According to the above analysis and Hopf bifurcation theory, we get the following theorem. 

Theorem 2. For system (1), suppose that )( 1H is true.When 01  , ),0[ 202   , its positive equilibrium point E is 

asymptotically stable; at 202   , the positive equilibrium point is unstable;when 202   , system (1) shows a 

Hopf branch at the equilibrium point. 
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Case 3:   21  

Theorem 3. According to literature [4], under corresponding conditions, when ),0[ 0  , the positive equilibrium point 

of system (5) is locally asymptotically stable; When 0  , system (5) has a Hopf branch at the equilibrium point; When 

0  ;The positive equilibrium point of system (5) is unstable. 

Case 4: 00 21   ，  

Lemma 3. For system (5), if 00 21   ，  is satisfied, then the characteristic equation (6) has a pair of pure imaginary 

roots 11i , where 
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Proof. When 00 21   ， , The characteristic equation (6) can be reduced to 
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let )0( 11   i be the root of characteristic equation (6), plug it into the equation 
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So when j
11   , equation (6) has a pair of pure imaginary roots 11i . The proof is completed. 

Lemma 4. Let ),,2,1,0min{ 111  j
j  and let the corresponding 1  be 11 .  

Let )()()( 111  i  is the root of the characteristic equation (6) at 111    and the conditions 

0)( 11 
 

and 1111)(    are satisfied, then the transversely condition 0|)Re(
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Proof. By differentiating both sides of equation (6) with regard to 1 and applying the implicit function theorem, we have : 
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 is true, that is, the transversal condition is true. 

Done. 

According to the above analysis and Hopf bifurcation theory, we get the following theorem. 

Theorem 3. For system (1), when ),0[0 2021   ， ,assume that )( 2H are true.the following conclusions are true: 

when ),0[ 111   ，the equilibrium point E is asymptotically uniformly stable; when 111   , its positive equilibrium 

point is unstable; When 111   , it has Hopf branch at the positive equilibrium point. 

 

IV. DIRECTION AND STABILITY OF THE HOPF BIFURCATION 

In the analysis in the previous section, we have obtained the conditions for the system to generate Hopf bifurcation. In 

this section, we will use the normative theory and the central manifold theorem in literature [5-6] to give the calculation 

formula for the direction of Hopf bifurcation generated by the system (1) and the stability of the periodic solution of the 

bifurcation. 

First we consider the Taylor expansion of model (1) at equilibrium, let 00 )()(,)()( StStyQtQtx  ,so system (1) 

becomes: 
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among them 

)(01 cvQvka mmm   , 02 Qvka mm , mmvka 3 , 

)(01   PvSvkb rrr , 02 Svkb rr , rrvkb 3 . 

Assuming
*
211   )),0[( 202   ,   111 , then 0  represents that system (1) generates Hopf bifurcations 

at 11 . Let 0)()(0)()( 21  tytutxtu ， , linearize the time delay with scale 
11

t
t  , then system (1) is 

equivalent to the following functional differential equation form 
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Here    is a Delta function. The operators A and R are defined as follows: 
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Then equation (16) can be rewritten into the following form: 
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For ]1,0[C , we define the adjoint operator )0(*A of )0(A  as 
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we make 
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Since  ,,  AA , we have  
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therefore 0,* qq , this completes the proof. 

Next, we will use the method proposed by Hassard et al. to construct coordinates on the central epidemic 0C at 0 . 

Define 

( ) , tz t q u  ,                                        (30) 

and 
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( , ) ( ) 2Re{ ( ) ( )}.tW t u z t q                                   (31) 

On the center manifold 0C , we have  

( , ) ( ( ), ( ), )W t W z t z t  .                                   (32) 
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2 2
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q respectively. If 
tu  is real, then W is real, here we are dealing only with the real solution case, Since 0  , it is easy 

to see that 
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notice that ( ) ( ( ), ( ), )tu W z t z t zq zq     and 
 1111),1()( 1
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Comparing the coefficients of the above equation with those in (35), we have 
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In order to get the value of 
21g , we also need to compute 
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Comparing the coefficients of the above equation with those in (38), we have 
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When 0  , we have  
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Comparing the coefficients with (38), we have 
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using (41) and (45), we obtain 
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where 22
2

)1(
22

22
1

)1(
11 ),(,),( REEEREEE  are two two-dimensional vectors. 

According to the definition of (0)A and formula (41), we have 
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hence, we can get 
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by calculation, we have  



































5

1

1

11
2

21

2
2111

111
2

2
2

1111

1111

K

K

ieaa

ebbi
E

i

i










                  (49) 

and 
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Based on the above analysis, we next determine several important values of the properties of Hopf periodic solutions at 

the critical value 11 : 
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Theorem 4. In the case of system (1), the conclusion holds: 

(1) The direction of the Hopf bifurcation is determined by the parameter 
2 . If

2 0  (
2 0  ), the Hopf 

bifurcation is supercritical (subcritical) . 

(2) The value of 
2 determines the stability of Hopf bifurcation periodic solution. If

2 0  (
2 0  ), then the 

branching periodic solution is asymptotically stable (unstable). 

(3) The value of 
2T determines the period of the Hopf bifurcation periodic solution. If 02 T )0( 2 T , then the 

period of the periodic solution increases (decreases). 

V. NUMERICAL SIMULATION 

In this section, we verified the validity of the above theoretical analysis results by using mathematica, a mathematical 

software, for numerical simulation.  

When 00 21   ， , first we select the parameter: 5.0 , 8.0 , 7.0mk , 8.0rk , 3P , 2 , 

1c , 5.0 rx vv .Through calculation: 32.090874.41714.0 202000   ，，，SQ , and these coefficients 

satisfy )( 1H . If 202 4    is taken, system (1) is asymptotically stable at the equilibrium point, as shown in Fig. 1. 



Na Han & Yanhui Zhai / IJMTT, 67(3), 70-84, 2021 
 

83 

Take 202 90874.4   , system (1) generates Hopf  bifurcation at the equilibrium point, as shown in Fig. 2; As the 

value of 2  increases, system (1) is unstable at the equilibrium point. 
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Fig. 1 the equilibrium point is asymptotically stable with 42   
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Fig. 2 an unstable periodic solution appears at 90874.42   

When   21 , first we select the parameter: 4.0 ， 4.0 ， 2mk ， 2rk ， 123  cP ，， ， 

5.0 rx vv .Through calculation: 04.0314.72.02.0 0000   ，，，SQ . If 07    is taken, system (1) is 

asymptotically stable at the equilibrium point, as shown in Fig. 3.Take 09   , system (1) generates Hopf bifurcation 

at the equilibrium point, as shown in Fig. 4; As the value of   increases, system (1) is unstable at the equilibrium point. 
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Fig. 3 the equilibrium point is asymptotically stable with 7  
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Fig. 4 an unstable periodic solution appears at 9  

When 00 21   ， , first we select the parameter: 5.0 , 8.0 , 7.0mk , 8.0rk , 3P , 2 , 

1c , 5.0 rx vv .Through calculation: 5.61714.0 1100  ，，SQ , and these coefficients satisfy )( 2H . If 

111 5    is taken, system (1) is asymptotically stable at the equilibrium point, as shown in Fig. 5.Take 111 7   , 

system (1) generates Hopf bifurcation at the equilibrium point, as shown in Fig. 6; As the value of 1  increases, system 

(1) is unstable at the equilibrium point. 
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Fig. 5 the equilibrium point is asymptotically stable with 51   
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Fig. 6 an unstable periodic solution appears at 71   

 

VI. CONCLUSIONS 

Based on the dynamic time-delay model of double quality level, this paper studies the dynamic model of quality 

adjustment of supply chain with double time-delay, analyzes the stability of the system and the existence of Hopf branch 

by the eigenvalue method, and obtains the conditions of system stability. The research shows that, when 01  , 21   , 

01  , respectively, and each condition is satisfied, the relevant conclusions about the existence of unique positive 

equilibrium point and the stability of the system and the existence conditions of Hopf bifurcation are obtained. Then the 

stability of bifurcated periodic solutions and the bifurcated direction of Hopf bifurcated solutions are analyzed by using 

the central manifold theorem and the gauge method. Finally, mathematical software is used to verify the correctness of the 

results. Therefore, it can be known that the time delay parameters in the model should not be too large, otherwise the 

stability will be lost. That is to say, when referring to past information, although there is no necessary connection between 

the manufacturer and retailer in the selection of the long time of delay information, neither manufacturer nor retailer 

should choose the information that is too long, otherwise both parties will have adverse effects. 
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