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Stability And Hopf Bifurcation of A Double
Quality Level Supply Chain With Double Delay

Na Han *!, Yanhui Zhai"
123chool of mathematical science, TianGong University, Tianjin 300387, China

Abstract — In this paper, the bifurcation theory is used to study the mass adjustment dynamic time-delay model with
double time delay. Firstly, the delay decision is selected as the delay parameter to obtain the stability point and the critical
value of maintaining stability, and the conditions for Hopf bifurcation are discussed. In addition, the Hopf bifurcation
direction and the stability of periodic solutions are studied by using the central manifold theorem and the gauge theory,
and the calculation formula is obtained. Finally, the validity of the conclusion is verified by numerical simulation with
mathematical software.
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I. INTRODUCTION

With the increasing improvement of national life and the gradual improvement of people's quality of life, consumers
have a wider range of choices for consumption content. In addition to the price of products, consumers pay more attention
to the product quality of manufacturers and the service quality of retailers.Therefore, the manufacturer's choice of product
quality level and the retailer's adjustment of service quality level are of great practical significance. In terms of research
content, many scholars mainly conducted unilateral static research on product quality level and service quality level, and
few researches on dynamic aspects. Literature [4] introduces the dual quality level into the supply chain. As manufacturers
or retailers make decisions on the next phase price with reference to the historical price, price risks and uncertainties can
be effectively avoided. Therefore, manufacturers and retailers usually adopt a delay strategy when making decisions on
product quality and service level, and make future development direction according to consumers' past demands.
Therefore, the author studies the system stability of their dynamic time-delay model and the existence of Hopf branch. In
this paper, the system stability and the existence of Hopf bifurcation of the dynamic two-delay model are studied by
considering the differences between manufacturers and retailers.

Il. MODEL BUILDING

According to literature [1], the dynamic process of product quality level Q and service quality level S is
Q = VmQ[_ka + 77((0_ C)],
S =v,S[-k,S +6(P-w)].

Where Q is the quality level of the product and S is the service level of the retailer, vin and vy are the adjustment speed
of product quality level and service quality level respectively, km and ki are cost coefficients of product quality level and
service quality level, the rest of the retailer's costs are negligible, w is the wholesale price a manufacturer pays to sell
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goods to a retailer, P is the retail price that the retailer sells, C is the production cost per unit product, 7 is the sensitivity
coefficient of the quality level, & is the sensitivity coefficient of service quality level.

Based on the above basis, Literature [4] considered the quality adjustment dynamic model with time delay for retailers
and manufacturers to obtain information

Q =V, Q[k,Q(t —7) +n(w—c)],
S =v,S[-k,S(t—7)+O(P - ).

Considering that the market information obtained by the manufacturer and the retailer respectively not only has time
delay, but also has different time delay, this paper presents a quality adjustment model with two time delays

Q :VmQ[_ka(t_71)+77(w_C)]a (1)
S =v,S[-k,S(t—7,)+O0(P—-w)],
Where 71,7, are respectively the pricing delay period of the manufacturer and the retailer.
I1l. STABPLPTY AND LOCAL HOPF BIFURCATION ANALYSIS
The stability and Hopf bifurcation of the positive equilibrium point (Qo, So) of system (1) are discussed below.
First, let the equilibrium point of system (1) be E (Qo, So), then it satisfies the following equation:
VnQo[—KmQp +7(w—C)] =0, )
V,Sol—k; S + O(P — )] =0, @
solve the above equation, the positive equilibrium point is obtained,
w—C
Q, - n(@—c)
Knn
O(P — w) (3)
SO = k—

r

Let x(t)=Q(t)—Qy, and y(t)=S(t)—S,. After linearizing the controlled system (1) at the equilibrium point, the
linearization equation is

{X(t) = Vi (X(t) + Qo )[—Kpy (X(t —71) + Qg ) +77( - C)],

(0) =V, (Y(O) + So) K, (¥(t—72) + S6) + O(P — )], @
reduction to
X(t) = a X (t) + a,x(t —7y),
{y(t) = byy(t)+ b,y (t — 72), ®
among them
& =KV Qo +Vpm(@—c) , a; =KV Qo
b, =k, v, Sy +V,0(P-w), b, =—k,v,S,.
The characteristic equation of the system (5) is
22— 2(ae "t +hye ) +a,h,e M) = (6)
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In order to study the stability and Hopf bifurcation of the equilibrium E of the system, we only need to discuss the
distribution of the roots of the characteristic equation (6). If all the roots of the equation (6) have a negative real part, then
the equilibrium E is asymptotically stable; if one root of the equation has a positive real part, then the equilibrium E is
unstable. Since the dynamic properties of differential equations with multiple delays are very complex, the two time

delays 7, and 7, of system (1) are discussed in the following cases.

Casel: 7,=17,=0

Theorem 1. For system (5), 7, =7, =0, ifa, +b, <0,a,b, >0, the equilibrium E is stable.
Proof. When 7, = 7, =0, the characteristic equation of system (6) becomes
A2 —(ay +by)A+ayb, =0. (7)
Therefore, it is clear from the characteristic equation (7) that only when a, +b, <0,a,b, >0, both roots
of equation (7) have negative real parts, and at 7; =7, =0, the equilibrium point of the system is
asymptotically stable.
Case2: 73 =0,7,>0

Lemma 1. For system (5), if 7, =0,7, >0 Iis satisfied, then equation (7) has pure imaginary root +iw,, , where

- (az2 _bzz) * \/(az2 _b22)2 +4322b22

+ 1 . (0 3 +a 2(0
5 = —[arcsin(—2 > 2 22 Y+2kz], k=012, ©)
Wy, _bza)z —a2 b2

Proof. Whenz, =0, 7, >0 the characteristic equation of system (5) becomes

A2 = A(a, +be ™ 2) +ab,e 2 =0. (10)
First, we assume that A = i@, (@, > 0) is a root of the characteristic equation (10), then it satisfies the following equation

(iw,)? —iw,(ay +b,e %) +a,b,e ™ =0, (11)
That is
- (022 - iaza)z — ibza)z (COS a)2T2 - i Sln a)zfz) + a2b2 (COS a)z'l-z - | Sln a)zz'z) = 0 (12)

The separation of the real and imaginary parts, it follows

(13)

- [022 _bza)z Sln a)zfz + a2b2 COS(OZTZ = 0,

From (13) we obtain

w," + (8,2 —b,%)w,” —h,%a,? =0. (14)

Because of (322 —b22)2 +4b22a22 >0, equation (14) has positive roots @,, and @,_
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\/‘ (az2 - b22) + \/(322 - bzz)2 + 4a22b22
Wy, =
2

\/—(azz _bzz)—\/(azz _b22)2 +4322b22
C()zf =
2

Therefore, there is a pure imaginary root *i,, , which can be calculated from Equation (13)

3 .2
1 . 0, +a, @

75 = —I[arcsin(—*——2—-

Wp+ —b,w,” —a,"b,

)+ 2kz], k =012, -

This completes the proof.
Lemma 2. Let 75g = Min{z5; |k =0,2,-- } =173;, and let the corresponding @; be c, .

Let A(7,) = a(r,)+iw(r,) is the root of the characteristic equation (10) and the conditions @(7,3) =0 and

g . da .
@(7,9) = @, are satisfied, then the transversely condition Re(d—) ! l;—,>0 s true.
&)

Proof. By differentiating both sides of equation (10) with regard to 7, and applying the implicit function theorem, we

have :
-r 21 A= AT
da = ah, 872 —A%he "2 |
T=T; — — - T=T

dr, ©% 24+b,r,de 72 —a, —h,e 72 —ayb,re e

S0
[ di 1= 1200, COS o750 + 1Dy 050 T — 18, SIN Wy0T oo — 2050 SIN @y T — 8y COSWyaToo — 0y — 850,75
3 2 2 2 2 :
Re( da Yl == 2b,0,” SIN Wy T o9 — 0, @o0" + 850,50 COSW,0T o0 — 8y D@5, SIN Wy Ty
dr 7= b2 2 2p 2, 2
2 2 (o Ta Dy (g

3 2
Wy +8, Wy

2 l

> we know
b,y —a,"h,

because SiN@,q7,q =—

dd

dr,

6 4,2 2 2 4 2 2,2 2
20y +3my (3" —0,") +2b, @y + 3, @y (3" —b,%)

Re( )_1 |z':12 -

2 4 2.2 2v. 2 2
(b @y +a," 0y @y )(ay" + @y0")

.. da
When (H,): a, >b,, the transversal condition Re(d—) 1|T:,2>0 holds.
72

The proof is completed.
According to the above analysis and Hopf bifurcation theory, we get the following theorem.

Theorem 2. For system (1), suppose that (H,) is true.When7; =0, 7, €[0,7,9) , its positive equilibrium point E is

asymptotically stable; at 7, > 7,,, the positive equilibrium point is unstable;when 7, =7, system (1) shows a

Hopf branch at the equilibrium point.

73



Na Han & Yanhui Zhai / IJMTT, 67(3), 70-84, 2021

Case3d: 7y =7, =7

Theorem 3. According to literature [4], under corresponding conditions, when 7 €[0,7) , the positive equilibrium point
of system (5) is locally asymptotically stable; When 7 =7, system (5) has a Hopf branch at the equilibrium point; When
T > 7; The positive equilibrium point of system (5) is unstable.

Case4:70 >0, 7,>0
Lemma 3. For system (5), if 7; >0, 7, >0 is satisfied, then the characteristic equation (6) has a pair of pure imaginary

roots Tiay;, where

a)ll = iaz, 1= le = —i(ZJ”‘FS_ﬂ.jy(J = 011127'“)'
a, 2

Proof. When 7, >0, 7, >0, The characteristic equation (6) can be reduced to
(A—ae 1) (A—be™¥2)=0,
let A =iw (e > 0)be the root of characteristic equation (6), plug it into the equation
(i, —ape™ ") iy ~be™¥)=0,

then
i, —a,(Cosamyr; —isineyr) =0 or iw —b,(Cosmyr, —isinayr,) =0
the separation of the real and imaginary parts, it follows

Ct)l+a25|na)17120 a)]_+bzs|na)lT2:O
or
a, cosayry =0 b, cosayr, =0

we obtain

oy = £ay, 1 = 7] =—i[2jﬂ+3—”],(j 012+
a, 2

a)lz = ibz,Tz = T2j = —bi(ZJﬂ'—Fs?ﬂ.],(j = 0,1,2,“'),
2

Sowhen 7; = le , equation (6) has a pair of pure imaginary roots imy;. The proof is completed.

Lemmad4. Let 7q1 = min{z'lj |j =012,---), and let the corresponding @, be @;;.
Let A(ry) =a(r)+iw(ry) isthe root of the characteristic equation (6) at 7; =7;; and the conditions

di .
a(r11) =0 and w(7y1) =wy; are satisfied, then the transversely condition Re(d—) l|T:,1>O is true.
4

Proof. By differentiating both sides of equation (6) with regard to 7; and applying the implicit function theorem, we have :
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di, —a,A%e 71 4 Ja,h,e A1)
do; 7% 24+a,rde Mt —b,re M2 —a,e M —b,e 2 — (1, +7,)a,h,e A1)
then
da ., _ R, +R,1
Re(—) ™ | =55+
dz; 1" +1,
Among in

Ry = 18,71, SNy 1731 —D,7, COS @17, — A, COS@y 1714 —b, COS @y 7, — (711 +75) b, COS @y (741 +75)
R, = 2wy + w,8,711 COS @y 1711 + 0,7, SIN Wy 175 + @, SIN Wy 1711 + D, SIN @7, + (771 + 75) SiNwy (74 +75)

I} = @@, COS 71y + ry@5b, SNy (717 +73) | | = @nayb, Cosay (711 +75) — @118, Siney 7y .
Thus, when (H,):Ryl, +R,1; =0 is satisfied, Re(gl)’l |-, #0 Is true, that is, the transversal condition is true.
51

Done.

According to the above analysis and Hopf bifurcation theory, we get the following theorem.
Theorem 3. For system (1), whenz, >0, 7, €[0,7,,) ,assume that(H,) are true.the following conclusions are true:
when 7; €[0,71;), the equilibrium point E is asymptotically uniformly stable; when 7; =741, its positive equilibrium
point is unstable; When 7; = 744, it has Hopf branch at the positive equilibrium point.

IV. DIRECTION AND STABILITY OF THE HOPF BIFURCATION

In the analysis in the previous section, we have obtained the conditions for the system to generate Hopf bifurcation. In
this section, we will use the normative theory and the central manifold theorem in literature [5-6] to give the calculation
formula for the direction of Hopf bifurcation generated by the system (1) and the stability of the periodic solution of the

bifurcation.
First we consider the Taylor expansion of model (1) at equilibrium, let x(t) = Q(t) — Qp, y(t) = S(t) - S, so system (1)

becomes:
{)‘((t) = ayX(t) + ayx(t — ;) + agx(t)x(t — ;)
y(t) =by(t) +byy(t—7,) +bsy(t) y(t—7,)
that is
y(t) =by(t) +by(t—7,) +by(t)y(t—77)
X(t) = aX(t) + apX(t— 77) + AgX(t)X(t - 71) (15)
among them

a = _kamQO +Vm77(w_c) yay = _kamQO a3 = _kama
bl = _krVrSO +Vr9(P—C()) , b2 = _krVrSO , b3 = _krVr .

Assuming 7, > r; (z; €[0,750)), 7, =141+, then =0 represents that system (1) generates Hopf bifurcations

t
at 7y5. Let U (t) =x(t)—0, u,(t)=y(t)—0, linearize the time delay with scale t — — then system (1) is
11

equivalent to the following functional differential equation form
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u) =L, +F(u, ),
there

*

L, = (11 + 1)(Bigp(0) + Bop(——2) + B3op(~1))

11
and

2
F(o,u) = (r11 + 1) b3, (0)(/’1(—5

a3 (0)y (1)

where L, is a bounded operator of C'([~1,0}7%) 7% and ¢(0) = (¢,(0),9,(9))" C[-10],

0 b 0 b, 0 0
B, = B, = B, = .
L (al oj’ 2 (o oj’3 [az

0

By the Riesz representation theorem, there exists a bounded variation function 7(0, ), 8 €[-1,0], such that

L.p= fld (0, 1)9(0), €C.

In fact, we can choose

(711 +1)(By+ By +B3), 0=0,
T*

(711 + 1)(B; + By), 0e[-—2.0)
(6. 1)= o
(211 + 1) By, 0e(-1-2
11

0, 0=-1.

Here &(¢) is a Delta function. The operators A and R are defined as follows:

d(e(9) 0 <[-10),

de
[ a@@.we©).  0=o0.

A(u)p(0) =

0, 6 [-1,0),
o0 -{7, g0

Then equation (16) can be rewritten into the following form:

U = AU, +R(u)uy.
Where u, =u(t+80),6 €[-10).

For y eC'[0,1], we define the adjoint operator A"(0) of A(0) as

76
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dy(s)
s se (0],

A () =1
[L0@" 0w ), s=o.

For ¢(0) eCT-1,0) and w € C'[0,1], we define the bilinear inner product

<vio=i OpO-[ [ 7(E-0ldn@le)ds

where 77(6) =7(6,0) ‘

Lemma 5. Let x=0The eigenvectors q(6) =Ve'»™¥and q*(s) = DV *e!®+ are respectively the eigenvectors

corresponding to the eigenvalues iw;;7;; and —imy71; of A(0) and A*(0), and

<q*,q>=1 <q*,q>=0,

where

i T % * | T
V= (o) = (T, v = (o ) = (A
by +b,e 4

a, +aye

5 = [1+ plﬁf + z-ll(a-lpl + b]_,Bf) + Z'llbzll_)fe_imllrg + Tllazple_iw“rll]_l

(24)

(29)

Proof. Sinceiay7;,is the eigen value of A(0), they are also eigen values of A*(0). In order to determine the standard

form of the operator A(0), let's assume thatg(&)and q"(s) are eigen vectors corresponding to A(0) and A*(0)'s eigen

values 1wy 7y, and—iwyq 7y, respectively.

{A(O)CI(@) =iwy171,9(0)
A" (0)q"(s) = —iy71497 (8)

from (19) and (21), (26) can be written as

d .
g—f) =lwy71,9(0), 6 €[-1,0).

L(O)q(o) = _ia)llrllq(O), 0 =0.
Therefore,

q0) =q@)e" > ’,  0<[-10].
(0) = (9,(0),9,(0))" C?is a constant vector, which can be obtained from (17) and (26)

(B, +Bye % 4 Bye411]q(0) = iy471419(0)

we get

o1 i0)11'[1_1
q(0) = ( L j =| a, +a,e
1

77
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we make

i
V=(oD) = (—HaL_— )
a +a,e”

then

q(@) =Veiw117110
for non-zero vectors g (s),s € [0,1], we have

(B, +B, e ' + By e 11)q"(0) = —imyy7y19”(0) .

Similarly
o (o) [
q (0)=( 1 J= by +b,e 2
1
We make

So q*(s)=DV e @S,
Now let's evaluate <q*.q> and <q*,ﬁ> , from equation (25), we get

([@a)=a"a0-[ [ 0 -oxn@nas

_—T 0 0 —T _
_DV* V- j Ve g g)Ve@dde]
O=—17J&=0 (28)
oy (0 o io
=DIV' V| V' [dn@)e V]
— —T . —T
= D[\/’x< V —Z'Oe_m)OTOV* Bzv]
S0, let D =[L+ pyp; +713(Bu0y +byor) + 7ybs o €74 4758, @] we can obtain <q*,q> =1,
Since (v, Ap)= <A*t//, ga>, we have
- ia’11T11<q*a q> = <q*, Aq> = <A*q*, ﬁ> = <— o740, q> = ia)11111<q*, q> (29)

therefore <q*, ﬁ> =0, this completes the proof.

Next, we will use the method proposed by Hassard et al. to construct coordinates on the central epidemic Cyat 4 =0.
Define

z(t)=<q",u, >, (30)

and
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W(t,0) =u,(0) - 2Re{z(t)q(6)}- (1)

On the center manifold C,, we have
W(t,6) =W (z(1),Z(1),0)- (32)

2 2

Where W (z,7,6) =W20(6)%+W11(¢9)27 +W02(9)%+.~-
For central manifold Cy, zand z represent the local coordinates of the central epidemic in the directions of ¢ and

q_* respectively. If u, isreal, then W is real, here we are dealing only with the real solution case, Since =0, it is easy
to see that
2(t) =<q", i) =<a", (A(0) + R(0)) 4,)
=<q", Ay, >+<q", Ry, > (33)

=ioyr,2+7 " fo(2,2)

abbreviate (33) as follows

2(t) =ioyy1112+9(2,2) (34)
where
Z2 72
g(zj)zgzo?"‘gnzf"‘goz?""'" (35)
from (23) and (35), we have
—T
W _ 4, —Zq—iq _ AW -2Req” (0)f,(z,2)q(é), 0 [-10) (36)

AW -2 Re{q_*T 0)fo(z,2)q(@)}+ fy(z,2), 6=0

the above equation can be rewritten as

W =AW +H(z,Z,0). (37)
where
22 72
H(Z,Z,H):HZO(H)?+ Hn(e)z7+H02(e)7+---. (38)

On the other hand, on the central manifold C, there is

W =W,z +W,Z. (39)
Substitute Equations (33) and (35) for W, and Z into (39), respectively, we can get another expression of W
W =iyy73 Woo (0)2° o373 W (0)Z° +- - (40)

comparing the coefficients of the above equation with those of (38) and (41), we get

(A—2iwyy7111 )Wy (0) = —H 0 (0)
AW, (0) =-H1,(0) (41)
(A+2iwyy7111)Wp, (0) = —H,(0)
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notice that u,(6) =W (z(t), Z(t),6) + zq+2zq and q(0) =L p;)" e"*™“ we have

w® (z,Z,60) Pr i 9 - P i
u,(0) = OPT g T el 4 g) T erleundf 42
() (WQ)(z,z,e) 1 1 42

therefore, we can obtain

2 52
i o z - z
y(t+0) = zpe' 1 1 7 peiund +W20(1) (@) > +W,,® (9) 2z +W02(1) @) - e

. . 2 =2
X(t+6) = ze'rd 4 gemiownd Ly, ) (@)Z7 + Wy, @ ()22 +Wp,? (9)% .

obviously

2 52
= z _ 7
Q) =zp+Zp; +W20(1) (O)? +W11(1) (0)zz +W02(1) (0) - toee,

. . 2 -2
o (1) = zpe” M 4 Z preT N +W20(1) (-1 Z? +W11(1) -z +W02(1) (-1 Z? o,

2 =2
_ 2 Z 2 = 2 z
@,0)=2+7 +W20( )(O)?+Wll( )(O)zz +W02( )(0)7 +-e-,
* . . . . * 2 * * =2
P (—2) = ze7i 2 4 ooy, (-2 z W, (- 2222 WP (-2 LI
T11 1 2 11 7y 2
From (18), we obtain

fo(Z:E) = 711[

K,z% + K,2Z + K;7% + K, 2°Z
Ksz? + Koz + K;2% + Kgz?Z

where

Kl - a3plze*i(01ﬂ'11 . K2 = a3p1151(ei(011711 +e_i(011711) , K3 — asﬁlzei“’nfu s

1 1_ 1 1_ 1 —i 1
K, =asloWy, @ (1) + 2 W, (-1) + 2 P18 W, @ (0) + pye g, @ (0)]
Ks = b3e—ia>11T§ , Kg= bg(e—iwufz +e—iwnf§) , K, = bseiwuf; ,

* 1 * 1 . . . .
Kg = b3[\N11(2) (——12 )+—W20(2) (———12 )+—e|w“72W20(2) (0)+e 'w“TZWn(Z) 0)].
T, 2 T, 2

Since g (0)=D(p, 1), we obtain
9(z.2)=7"7(0) fy(2,2)

— [ Ki2?+ K2z + K22 + K, 2%
:z-llD(pl ’1) ! 2 2 - 3_2 ! 2=
Ksz®+KgzZ + K;Z° +Kgz°Z
=111 D[(7" Ky + K3)Z? +(," Ky + Kg)2Z + (51 Ky + K1) 2% + (5K + Kg)2%7]
Comparing the coefficients of the above equation with those in (35), we have
920 = 21'115(/31*K1 +Ks) 011 = z'115(/51*K2 +Kg)s

. . (43)
902 = 211D (01 K3 +K7), 9y =27,D (o1 Ky +Kp).
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In order to get the value of (,,, we also need to compute w, (9) and W, (@) For &e[-10), we have

H(z,2,6) =-2Re[q"" (0) fo (2, 2)a(0)]
ZZ 22
=—(920?+ 01122 + 9027+"')Q(9) (44)
72 22
—(T20 > +0112Z + oy > ++-)7q(0).
Comparing the coefficients of the above equation with those in (38), we have
Hzo (‘9) = —QZOQ(Q) - Gqu(g)a

_ (45)
Hll(e) = _gllq(e) - 0.4 (9)
When @=0, we have
H(z,2,0) = -2Re[T"" (0) fo (2, 2)q(0)] + fo(z,2)
22 _ 72
= —(920(0)7 +011(0)2Z + 902(0)7+-~)Q(0)
72 22 K,z? +K,zZ + K22 +K,2%Z
—(T0(0)— + T11(0)2Z + Gy, (0) — +---)G (0) + 1 2 8 a2
(920(0) 5 911(0) 902(0) > )A(0) + 714 Ky22+ Kg2Z + K22 + Kg22z
Comparing the coefficients with (38), we have
_ Ky
H20(0) = —920d(0) — G200(0) + 2744 K
5
K (46)
H11(0) = ~03,0(0) - 32,(0) + m(sz
6
using (41) and (45), we obtain
W, () = 1920 q(o)eiwllrllﬁ + [ ﬁ(O)e_i“’“’“‘g 4 EleZia)nTllH’
1711 11711 @)

W,4,(0) = _ 19 q(O)ei”MTug +Ig¢q(0)e*iaﬁml€ +E,
@y1711 1Ty

where E, = (E®,E?) e R?,E, = (ES, EZ) e R?are two two-dimensional vectors.

According to the definition of A(0) and formula (41), we have

j_old (W50 (0) = 2iwy1711W,0 (0) — H 0 (0),

[ an@my (@ = -0,

and
: 0 oy 171,0
(el [ e “dn(©)a(0) =0,

: 0 —iwy 740 =
(dayml - [ e dn(0)a(0) =0,

hence, we can get

81



Na Han & Yanhui Zhai / IJMTT, 67(3), 70-84, 2021

-1

0 .. K
(2wl _I e? iy (0))E, = ZTM(KIJ'

0 K
(|, an@nE, = —m(Kz}

6

therefore, we have

i —bh — —2iaygryy K
T
—a, —a,e @171 2|a)11 K5 (48)
0 b, +b, K,
Ey=-713
a+a 0 0
by calculation, we have
. -1
i2 —b, —b,e 2@ K
E, = 21'11( a)IEZiwl . 1 2 ] ( lj (49)
—a, —a,e “m 2wy, Ks
and
-1
0 b, +b, K,
E,=-r 50
2 ll(a1+a1 0 J (KG (0)

Based on the above analysis, we next determine several important values of the properties of Hopf periodic solutions at

the critical value 77, :

i 2 1 2
C1(0):m(‘élzogn—zwlﬂ —§|902| )+%’
__Re{C,0)
Re{A'(r11)} (51)

B> =2Re{C,(0)},
T, = Im{CL O+ pp IM{ 2 (212 ))

1711

Theorem 4. In the case of system (1), the conclusion holds:
Q) The direction of the Hopf bifurcation is determined by the parameter 4,. If 4, >0 (g, <0), the Hopf

bifurcation is supercritical (subcritical) .
2 The value of g, determines the stability of Hopf bifurcation periodic solution. If 3, <0 (3, >0), then the

branching periodic solution is asymptotically stable (unstable).
(3) The value of T, determines the period of the Hopf bifurcation periodic solution. If T, >0 (T, <0), then the

period of the periodic solution increases (decreases).

V. NUMERICAL SIMULATION

In this section, we verified the validity of the above theoretical analysis results by using mathematica, a mathematical
software, for numerical simulation.
Whenz, =0, 7, >0, first we select the parameter:7=0.5, 8 =0.8, k,, =0.7, k, =08, P=3, 0 =2,
c=1, v, =v, =0.5. Through calculation: Q, = 0.714, Sy =1, 7,5 =4.90874, w,; =0.32, and these coefficients
satisfy (H,).If 7, =4 <17y, istaken, system (1) is asymptotically stable at the equilibrium point, as shown in Fig. 1.
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Take 7, =4.90874 =17,,, system (1) generates Hopf bifurcation at the equilibrium point, as shown in Fig. 2; As the
value of 7, increases, system (1) is unstable at the equilibrium point.

20
25
2.0 15
&
i By
% 15 L2
An
10 Y
10 LP
05 05
0.4 0.6 08 10 12 14
0 100 200 300 400 500

s(t)

Fig. 1 the equilibrium point is asymptotically stable with 7, =4

2.0
-
<
£ =15
&
<
i
k3

1.0

: -

0.0 05 1.0 15 20 25 0 100 200 300 400 500
st t

Fig. 2 an unstable periodic solution appears at 7, — 4.90874
When 7, =7, =7, first we select the parameter:n=04, =04, k,=2, k, =2, P=3 w=2, c=1,
v, =V, =0.5. Through calculation: Qy = 0.2, Sy =0.2, 77 =7.314, wy=0.04.1f 7=7<7, istaken, system (1) is
asymptotically stable at the equilibrium point, as shown in Fig. 3.Take 7 =9 > 7, system (1) generates Hopf bifurcation
at the equilibrium point, as shown in Fig. 4; As the value of 7 increases, system (1) is unstable at the equilibrium point.

s(t) a() s(t)

20 0 10

15

10

05 L/\/\/\/V\/V\W“ U\/\/VVWA—“
0.2 0.2
q(t) t t

1 2 3 4 100 200 300 400 100 200 300 400

Fig. 3 the equilibrium point is asymptotically stable withz =7
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1 2 3 100 200 300 400 500 100 200 300 400 500

Fig. 4 an unstable periodic solution appears at =9
Whenz, >0, 7, >0, first we select the parameter:7=0.5, #=0.8, k,, =0.7, k, =08, P=3, o =2,
c=1, v, =v, =0.5. Through calculation: Qy = 0.714, Sy =1, 7, =6.5, and these coefficients satisfy (H,) . If
7, =5 <1y, istaken, system (1) is asymptotically stable at the equilibrium point, as shown in Fig. 5.Take 7, =7 > 7y,
system (1) generates Hopf bifurcation at the equilibrium point, as shown in Fig. 6; As the value of 7; increases, system
(1) is unstable at the equilibrium point.
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Fig. 5 the equilibrium point is asymptotically stable with 7, =5
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1
05
q(t) t t
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Fig. 6 an unstable periodic solution appears at 7, =7

VI. CONCLUSIONS

Based on the dynamic time-delay model of double quality level, this paper studies the dynamic model of quality
adjustment of supply chain with double time-delay, analyzes the stability of the system and the existence of Hopf branch
by the eigenvalue method, and obtains the conditions of system stability. The research shows that, when 7, =0, 7 =7,,
7, #0, respectively, and each condition is satisfied, the relevant conclusions about the existence of unique positive
equilibrium point and the stability of the system and the existence conditions of Hopf bifurcation are obtained. Then the
stability of bifurcated periodic solutions and the bifurcated direction of Hopf bifurcated solutions are analyzed by using
the central manifold theorem and the gauge method. Finally, mathematical software is used to verify the correctness of the
results. Therefore, it can be known that the time delay parameters in the model should not be too large, otherwise the
stability will be lost. That is to say, when referring to past information, although there is no necessary connection between
the manufacturer and retailer in the selection of the long time of delay information, neither manufacturer nor retailer
should choose the information that is too long, otherwise both parties will have adverse effects.
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