k-Rooted Product of Two Graphs

${ }^{1}$ Rashmi S B ${ }^{2}$ Indrani Pramod Kelkar
${ }^{I}$ Department of Mathematics, Shridevi Institute of Engineering and Technology, VTU Belagavi, Tumakuru-572106, Karnataka,
India,
${ }^{2}$ Subject Admin, TCSiON, Hyderabad, India.

Abstract

: Extending the idea of rooted product of two graphs, a new operation on two graphs is introduced and some of its properties are studied. We call it k-rooted product and denote it as $G \circ^{k} H$, where k-copies of a rooted graph H are connected at the root to every vertex of the graph G in the resulting product graph.

Keywords: Rooted product graph, k-rooted product graphs.

I. Introduction

Throughout this paper, we consider a finite simple connected graph G that has no loops or multiple edges. The vertex and the edge sets of a graph G are denoted by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$, respectively. The rooted product graphs G o H was introduced by Godsil and Mckay in 1978 [4]. The rooted product of a graph G and a rooted graph H is defined as, take $|V(G)|$ copies of H, and for every vertex v_{i} of G, identify v_{i} with the root node of the i-th copy of H. The rooted product graph is denoted as $G o H$.

More formally, assuming that $V(G)=\left\{g_{1}, g_{2} \ldots, g_{m}\right\}, V(H)=\left\{h_{1}, h_{2} \ldots, h_{n}\right\}$. Let the root node of H be h_{1}, then the vertex and edge set of G o H are as follows,
$\mathrm{V}(\mathrm{GoH})=\left\{\left(g_{\mathrm{i}}, h_{\mathrm{j}}\right) / 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\right\}$ and

$$
\mathrm{E}(\mathrm{GoH})=\left\{\left(\left(g_{i}, h_{1}\right),\left(g_{\mathrm{k}}, h_{1}\right)\right) \text { if }\left(g_{\mathrm{i}}, g_{\mathrm{k}}\right) \in \mathrm{E}(\mathrm{G})\right\} \cup \mathrm{U}_{i=1}^{n}\left\{\left(\left(g_{i}, h_{j}\right),\left(g_{i}, h_{k}\right)\right) \text { if }\left(h_{j}, h_{k}\right) \in E(H)\right\} \text {, }
$$

Note that the rooted product $G o H$ is a subgraph of the cartesian product $G \times H$. The number of vertices and edges in rooted product graph are $\mid \mathrm{V}(\mathrm{G}$ o H$)\left|=|\mathrm{V}(\mathrm{G})|+|\mathrm{V}(\mathrm{G})|^{*}(|\mathrm{~V}(\mathrm{H})|-1)=|\mathrm{V}(\mathrm{G})| *\right| \mathrm{V}(\mathrm{H}) \mid$ and $\mid \mathrm{E}(\mathrm{G}$ o H$)|=|\mathrm{E}(\mathrm{G})|+|\mathrm{V}(\mathrm{G})| *| \mathrm{E}(\mathrm{H}) \mid$.

We extend this concept of rooted product, by attaching root of each of k-copies of rooted graph H at every vertex of G.

II. k-rooted product graph $G{ }^{\boldsymbol{*}} \boldsymbol{H}$

The k -rooted product of a graph G and a rooted graph H is defined as follows: Consider k-copies of rooted graph H and map it with every vertex v_{i} of G by identifying v_{i} with root node of each of the k -copies of H . This graph is denoted as $G \circ^{k} H$.

More formally, let G be a graph on m vertices and H be a graph on n vertices with vertex sets given as $V(G)=$ $\left\{g_{1}, g_{2} \ldots, g_{m}\right\}, V(H)=\left\{h_{1}, h_{2} \ldots, h_{n}\right\}$. Let the root node of H be h_{1}, then we define the vertex set of k-rooted product graph $G \circ^{k} H$ as, $V\left(G \circ^{k} H\right)=V_{R} \cup V_{N R}$, with root vertices set $V_{R}=\left\{\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right) ; i=1,2, \ldots \ldots . . m\right\}$ and non-root vertices set $\mathrm{V}_{\mathrm{NR}}=\left\{\left(g_{i}, h_{j}^{r}\right) / g_{i} \in G, h_{j}^{r} \in H^{r} ; \mathrm{i}=1,2, \ldots \ldots \mathrm{~m}, \mathrm{r}=1,2, \ldots \mathrm{k} \& \mathrm{j}=1,2, \ldots \ldots \mathrm{n}\right\}$ where $\left(g_{i}, h_{j}^{r}\right)$ is the j th vertex of rth copy of H attached at $g_{i} \in G$.

Illustration :

Fig. 1:k-rooted Product Graph $\boldsymbol{P}_{3}{ }^{\circ}{ }^{5} \boldsymbol{P}_{4}$

Next, the edge set of rooted product $G \circ^{k} H$ contains edges contributed from the graph G and edges contributed by each of the k -copies of H attached at each node of G . So edge set can be written as disjoint union of two sets, $E\left(G \circ^{k} H\right)=E_{1} \cup E_{2}$ where,

$$
\begin{gathered}
E_{1}=\left\{\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right),\left(g_{j}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right) ; \text { if }\left(g_{i}, g_{j}\right) \in E(G)\right\} \\
E_{2}=\cup_{r=1}^{k}\left\{\left(\left(g_{j}, h_{p}^{r}\right)\left(g_{j}, h_{q}^{r}\right) \text { if }\left(h_{p}, h_{q}\right) \in H\right\}\right.
\end{gathered}
$$

Proposition 2.1: The number of vertices and edges in k-rooted product graph $G \circ^{k} H$ is given by

1. $\left|V\left(G \circ^{k} H\right)\right|=|V(G)|+|V(G)| \cdot k(|V(H)|-1)$
2. $\left|E\left(G \circ^{k} H\right)\right|=|E(G)|+|V(G)| \cdot(k|E(H)|)$

Proof: From definition of k-rooted product graph vertex set we have, $V\left(G \circ^{k} H\right)=V_{R} \cup V_{N R}$ where root vertices set $\mathrm{V}_{\mathrm{R}}=\{$ $\left.\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right) ; i=1,2, \ldots \ldots . . m\right\}$ contains $|\mathrm{V}(\mathrm{G})|=\mathrm{m}$ vertices and non-root vertices set $\mathrm{V}_{\mathrm{NR}}=\left\{\left(g_{i}, h_{j}^{r}\right) / g_{i} \in G\right.$,
$\left.h_{j} \in H^{r} ; \mathrm{i}=1,2, \ldots . . \mathrm{m} \& \mathrm{j}=1,2, \ldots \ldots \mathrm{n}\right\}$ has $|\mathrm{V}(\mathrm{H})|-1$ vertices from each copy of H attached at g_{i} as root vertex is identified with the vertex g_{i}, giving total $k|V(H)|-1$ vertices at each vertex g_{i} hence total number of vertices in the k-rooted product $G \circ^{k} H$ is,

$$
\begin{equation*}
\left|V\left(G \circ^{k} H\right)\right|=|V(G)|+|V(G)| * k *[|V(H)|-1] \tag{1}
\end{equation*}
$$

Similarly, $E\left(G \circ^{k} H\right)=E_{1} \cup E_{2} \quad$ a disjoint union gives $\quad\left|E\left(G \circ^{k} H\right)\right|=\left|E_{1}\right|+\left|E_{2}\right| \quad$ Here we have $E_{1}=$ $\left\{\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right),\left(g_{j}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots h_{1}^{k}\right)\right.$; if $\left.\left(g_{i}, g_{j}\right) \in E(G)\right\}$ giving equal number of edges as in G so $\left|E_{1}\right|=$ $|E(G)|$. Next the edges contributed by k copies of H attached at each vertex of G included in $E_{2}=$ $\bigcup_{r=1}^{k}\left\{\left(\left(g_{j}, h_{p}^{r}\right)\left(g_{j}, h_{q}^{r}\right)\right.\right.$ if $\left.\left(h_{p}, h_{q}\right) \in H\right\}$, gives $\left|E_{2}\right|=|V(G)| * k|E(H)|$.

Thus, total number of edges in the k- rooted product $G \circ^{k} H$ is,

$$
\left|E\left(G \circ^{k} H\right)\right|=|E(G)|+|V(G)|[k E(H)] \text {--------------(2) }
$$

Proposition 2.2: The difference between number of vertices in k-rooted product graph $G \circ^{k} H$, the number of vertices in G and the difference between number of vertices in the rooted product graph $G \circ H$, the number of vertices in G, maintain a fixed ratio k .

Proof : We know that the number of vertices in $G \circ H$ is

$$
\begin{equation*}
|V(G \circ H)|=|V(G)|+|V(G)|[|V(H)|-1] \tag{3}
\end{equation*}
$$

Equation (1) and (3) gives,

$$
\begin{gathered}
\left|V\left(G \circ^{k} H\right)\right|-|V(G)|=k *[|V(G)|(|V(H)|-1)] \\
\left|V\left(G \circ^{k} H\right)\right|-|V(G)|=k *[|V(G \circ H)|-|V(G)|] \\
\frac{\left|V\left(G \circ \circ^{k} H\right)\right|-|V(G)|}{|V(G \circ H)|-|V(G)|}=k
\end{gathered}
$$

Proposition 2.3: The difference between number of edges in k-rooted product graph $G \circ^{k} H$, the number of edges in G and the difference between number of edges in the rooted product graph $G \circ H$, the number of edges in G , maintain a fixed ratio k .

Proof : We know that the number of edges in $G \circ H$ is
$|E(G \circ H)|=|E(G)|+|V(G)|[E(H)]$
Equation (2) and (4) gives,

$$
\begin{gathered}
\left|E\left(G \circ^{k} H\right)\right|-|E(G)|=k *|V(G)||E(G)| \\
\left|E\left(G \circ^{k} H\right)\right|-|E(G)|=k *[|E(G \circ H)|-|E(G)|] \\
\frac{\left|E\left(G \circ^{k} H\right)\right|-|E(G)|}{|E(G \circ H)|-|E(G)|}=k
\end{gathered}
$$

Proposition 2.4: If G and H are connected graphs then $G \circ^{k} H$ is a connected graph.
Proof: By the definition of the k-rooted graph $G \circ^{k} H$, root vertex h_{1} of each of the k-copies of the connected graph H is attached to each vertex of G . As G is a connected graph, and each copy of H is connected with vertices of G through the root vertex. Thus as G and H are connected, it follows that $G \circ^{k} H$ is a connected graph.

Proposition 2.5: The degree sequence of connected graph $G \circ^{k} H$ is,
$\left\{\left(d_{1}+k r_{i}\right)^{m_{1}},\left(d_{2}+k r_{i}\right)^{m_{2}}, \ldots\left(d_{t}+k r_{i}\right)^{m_{t}}, r_{1}{ }^{k n_{1}}, r_{2}{ }^{k n_{2}}, \ldots . r_{i}^{k\left(n_{i}-1\right)}, \ldots . r_{s}^{k n_{s}}\right\}$

Proof: Let $\mathrm{G}=\left\{g_{1}, g_{2}, g_{3}, \ldots \ldots g_{m}\right\}$ and $\mathrm{H}=\left\{h_{1}, h_{2}, h_{3}, \ldots \ldots h_{n}\right\}$ be two connected graphs with degree sequences $\left\{d_{1}{ }^{t_{1}}, d_{2}{ }^{t_{2}}, d_{3}^{t_{3}}, \ldots \ldots \ldots d_{p}^{t_{p}}\right\}$ and $\left\{r_{1}{ }^{s_{1}}, r_{2}{ }^{s_{2}}, r_{3}{ }^{s_{3}}, \ldots \ldots r_{q}{ }^{s_{q}}\right\}$ respectively. Where $t_{1}+t_{2}+\ldots \ldots \ldots \ldots .+t_{p}=m \& s_{1}+$ $s_{2}+\cdots+s_{q}=n$.

By the definition of k-rooted product graph, with the root node of H being h_{1}, we have, $V\left(G \circ^{k} H\right)=V_{R} \cup V_{N R}$, with root vertices set $\mathrm{V}_{\mathrm{R}}=\left\{\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right) ; i=1,2, \ldots \ldots . m\right\}$ and non-root vertices set $\mathrm{V}_{\mathrm{NR}}=\left\{\left(g_{i}, h_{j}^{r}\right) / g_{i} \in G, h_{j}^{r} \in\right.$ $\left.H^{r} ; \mathrm{i}=1,2, \ldots . \mathrm{m}, \mathrm{r}=1,2, \ldots \mathrm{k} \& \mathrm{j}=1,2, \ldots \ldots \mathrm{n}\right\}$ where $\left(g_{i}, h_{j}^{r}\right)$ is the jth vertex of rth copy of H attached at $g_{i} \in G$. The degree of vertices in V_{R} becomes, $\mathrm{d}\left(g_{i}, h_{1}^{1}, h_{1}^{2}, h_{1}^{3} \ldots \ldots . h_{1}^{k}\right)=d_{G}\left(g_{i}\right)+k d_{H}\left(h_{1}\right)$ \qquad

And the degree of vertices from V_{NR} becomes $\mathrm{d}\left(g_{i}, h_{j}^{r}\right)=\mathrm{d}\left(h_{j}\right)$
(1) And (2) together gives the degree sequence of k-rooted product graph as,
$d_{G}\left(G \circ^{k} H\right)=\left\{\left(d_{1}+k r_{i}\right)^{t_{1}},\left(d_{2}+k r_{i}\right)^{t_{2}}, \ldots \ldots\left(d_{p}+k r_{i}\right)^{t_{p}}, r_{1}{ }^{k s_{1}}, r_{2}{ }^{k s_{2}}, \ldots r_{i}^{k\left(s_{i}-1\right)}, \ldots . r_{q}{ }^{k s_{q}}\right\}$

Proposition 2.6: The girth of k-rooted product graph $G \circ^{k} H$ is
$\operatorname{girth}\left(G \circ^{k} H\right)=\operatorname{girth}(G \circ H)=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\}$

Proof: By definition girth of a graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles, its girth is defined to be infinity. By definition of the rooted product graph and k-rooted product graph, it is very obvious that girth $\left(G \circ^{k} H\right)=\operatorname{girth}(G \circ H)$. Also, while constructing the rooted product graph, there are no edges added either to part of G or each of the $k|V(G)|$ copies of H, length of shortest cycle depends on the girth of G and H, so we get following cases.

Case(i): If G and H both do not contain a cycle (or G,H are cycle free graphs)

The rooted product of $G o^{k} H$ does not have a cycle.

Hence Girth $\left(G \circ^{k} H\right)=$ Girth $(\mathrm{G})=$ Girth $(\mathrm{H})=\infty$

Case (ii): If $\operatorname{girth}(\mathbf{G})<\infty$ and $\operatorname{Girth}(\mathbf{H})=\infty$

The rooted product graph $G \circ^{k} H$ contains the cycle of smallest size same as in G , giving

$$
\operatorname{girth}\left(G \circ^{k} H\right)=\operatorname{girth}(\mathrm{G})=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\}
$$

Case(iii) : If girth(G)= ∞ and girth $(\mathbf{H})<\infty$

The rooted product graph $G \circ^{k} H$ has $k|V(G)|$ number of cycles from each copy of H , but with same size as in H , therefore $\operatorname{girth}\left(G o^{k} H\right)=\operatorname{girth}(H)=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\}$

Case(iv) : If $\operatorname{girth}(\mathbf{G})<\infty$ and $\operatorname{girth}(\mathbf{H})<\infty$

Subcase(i) : $\operatorname{girth}(\mathrm{G}) \leq \operatorname{girth}(\mathrm{H})$, then the smallest size cycle in $G \circ^{k} H$ is same as the smallest size cycle in G , so $\operatorname{girth}\left(G \circ^{k} H\right)=\operatorname{girth}(\mathrm{G})=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\}$

Subcase(ii) : girth $(\mathrm{G})>\operatorname{girth}(\mathrm{H})$ then as no edges are added to any copy of H , size of any cycle does not change so the smallest size cycle in $G \circ^{k} H$ is same as the size of $\mathrm{k}|\mathrm{V}(\mathrm{G})|$ smallest size cycles in each copy of H giving,

$$
\operatorname{girth}\left(G \circ^{k} H\right)=\operatorname{girth}(\mathrm{H})=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\}
$$

Hence combining all the above cases we get,

$$
\operatorname{girth}\left(G \circ^{k} H\right)=\operatorname{girth}(G \circ H)=\min \{\operatorname{girth}(G), \operatorname{girth}(H)\} .
$$

References

[1] Bonday J.A., U.S.R Murthy, Graph theory with applications, Macmillan press, London,(1976).
[2] Berge C, Graphs and Hyper graphs. North-Holland, Amsterdam(1973).
[3] Bresar B., Klavzar S, Rall D F, Dominating direct product graphs, Discrete Mathematics 307(2007) 1636-1642.
[4] Godsil C D, Mckay B D, A New graph product and its spectrum, Bulletin of the Australasian Mathematical Society 18(1)(1978) 21-28.
[5] Ore O, Theory of Graphs, Amer.Maths. Soc.Colloq.Pub.,38(1962).
[6] W. Imrich, S. Klavzar, Product graphs : Structure and recognition, Wiley,(2000).

