k-Rooted Product of Two Graphs

¹Rashmi S B ²Indrani Pramod Kelkar

¹Department of Mathematics, Shridevi Institute of Engineering and Technology, VTU Belagavi, Tumakuru-572106, Karnataka, India,

²Subject Admin, TCSiON, Hyderabad, India.

Abstract:

Extending the idea of rooted product of two graphs, a new operation on two graphs is introduced and some of its properties are studied. We call it k-rooted product and denote it as $G \circ^k H$, where k-copies of a rooted graph H are connected at the root to every vertex of the graph G in the resulting product graph.

Keywords: Rooted product graph, k-rooted product graphs.

I. Introduction

Throughout this paper, we consider a finite simple connected graph G that has no loops or multiple edges. The vertex and the edge sets of a graph G are denoted by V (G) and E(G), respectively. The rooted product graphs $G \circ H$ was introduced by Godsil and Mckay in 1978 [4]. The rooted product of a graph G and a rooted graph H is defined as, take |V(G)| copies of H, and for every vertex v_i of G, identify v_i with the root node of the *i*-th copy of H. The rooted product graph is denoted as $G \circ H$.

More formally, assuming that $V(G) = \{g_1, g_2, ..., g_m\}, V(H) = \{h_1, h_2, ..., h_n\}$. Let the root node of *H* be h_1 , then the vertex and edge set of G o H are as follows,

 $V(G \circ H) = \{(g_i, h_j) / 1 \le i \le m, 1 \le j \le n\}$ and

 $E(G \circ H) = \{((g_i, h_i), (g_k, h_i)) \text{ if } (g_i, g_k) \in E(G) \} \cup \bigcup_{i=1}^n \{((g_i, h_i), (g_i, h_k)) \text{ if } (h_i, h_k) \in E(H)\},\$

Note that the rooted product *G* o *H* is a subgraph of the cartesian product G x H. The number of vertices and edges in rooted product graph are $|V(G \circ H)| = |V(G)| + |V(G$

We extend this concept of rooted product, by attaching root of each of k-copies of rooted graph H at every vertex of G.

II. k-rooted product graph $G \circ^k H$

The k-rooted product of a graph G and a rooted graph H is defined as follows: Consider k-copies of rooted graph H and map it with every vertex v_i of G by identifying v_i with root node of each of the k-copies of H. This graph is denoted as $G \circ^k H$.

More formally, let G be a graph on m vertices and H be a graph on n vertices with vertex sets given as $V(G) = \{g_1, g_2, ..., g_m\}$, $V(H) = \{h_1, h_2, ..., h_n\}$. Let the root node of H be h_1 , then we define the vertex set of k-rooted product graph $G \circ^k H$ as, $V(G \circ^k H) = V_R \cup V_{NR}$, with root vertices set $V_R = \{(g_i, h_1^1, h_1^2, h_1^3, ..., h_1^k); i = 1, 2, ..., m\}$ and non-root vertices set $V_{NR} = \{(g_i, h_j^r) / g_i \in G, h_j^r \in H^r; i=1, 2, ..., m, r=1, 2, ..., k \& j=1, 2, ..., n\}$ where (g_i, h_j^r) is the jth vertex of rth copy of H attached at $g_i \in G$.

Illustration :

Fig. 1 : k-rooted Product Graph $P_3 \circ^5 P_4$

Next, the edge set of rooted product $G \circ^k H$ contains edges contributed from the graph G and edges contributed by each of the k-copies of H attached at each node of G. So edge set can be written as disjoint union of two sets, $E(G \circ^k H) = E_1 \cup E_2$ where,

$$\begin{split} E_1 &= \{ (g_i, h_1^1, h_1^2, h_1^3 \dots h_1^k), (g_j, h_1^1, h_1^2, h_1^3 \dots h_1^k); if(g_i, g_j) \in E(G) \} \\ & E_2 = \bigcup_{r=1}^k \{ ((g_j, h_p^r)(g_j, h_q^r)) if(h_p, h_q) \in H \} \end{split}$$

Proposition 2.1: The number of vertices and edges in k-rooted product graph $G \circ^k H$ is given by

- 1. $|V(G \circ^k H)| = |V(G)| + |V(G)| \cdot k(|V(H)| 1)$
- 2. $|E(G \circ^k H)| = |E(G)| + |V(G)| \cdot (k|E(H)|)$

Proof: From definition of k-rooted product graph vertex set we have, $V(G \circ^k H) = V_R \cup V_{NR}$ where root vertices set $V_{RR} = \{(g_i, h_1^1, h_1^2, h_1^3, \dots, h_1^k); i = 1, 2, \dots, m\}$ contains |V(G)| = m vertices and non-root vertices set $V_{NR} = \{(g_i, h_j^r) | g_i \in G, \dots, m\}$

 $h_j \in H^r$; i=1,2,....m & j=1,2,....n} has |V(H)|-1 vertices from each copy of H attached at g_i as root vertex is identified with the vertex g_i , giving total k|V(H)| - 1 vertices at each vertex g_i hence total number of vertices in the k-rooted product $G \circ^k H$ is,

$$|V(G \circ^{k} H)| = |V(G)| + |V(G)| * k * [|V(H)| - 1] - \dots (1)$$

Similarly, $E(G \circ^k H) = E_1 \cup E_2$ a disjoint union gives $|E(G \circ^k H)| = |E_1| + |E_2|$ Here we have $E_1 = \{(g_i, h_1^1, h_1^2, h_1^3 \dots h_1^k), (g_j, h_1^1, h_1^2, h_1^3 \dots h_1^k); if (g_i, g_j) \in E(G)\}$ giving equal number of edges as in G so $|E_1| = |E(G)|$. Next the edges contributed by k copies of H attached at each vertex of G included in $E_2 = \bigcup_{r=1}^k \{((g_j, h_p^r) (g_j, h_q^r) if (h_p, h_q) \in H\}$, gives $|E_2| = |V(G)| * k|E(H)|$.

Thus, total number of edges in the k-rooted product $G \circ^k H$ is,

 $|E(G \circ^{k} H)| = |E(G)| + |V(G)|[kE(H)] - \dots - (2)$

Proposition 2.2: The difference between number of vertices in k-rooted product graph $G \circ^k H$, the number of vertices in G and the difference between number of vertices in the rooted product graph $G \circ H$, the number of vertices in G, maintain a fixed ratio k.

Proof : We know that the number of vertices in $G \circ H$ is

 $|V(G \circ H)| = |V(G)| + |V(G)|[|V(H)| - 1]$ (3)

Equation (1) and (3) gives,

$$|V(G \circ^{k} H)| - |V(G)| = k * [|V(G)|(|V(H)| - 1)]$$
$$|V(G \circ^{k} H)| - |V(G)| = k * [|V(G \circ H)| - |V(G)|]$$
$$\frac{|V(G \circ^{k} H)| - |V(G)|}{|V(G \circ H)| - |V(G)|} = k$$

Proposition 2.3: The difference between number of edges in k-rooted product graph $G \circ^k H$, the number of edges in G and the difference between number of edges in the rooted product graph $G \circ H$, the number of edges in G, maintain a fixed ratio k.

Proof : We know that the number of edges in $G \circ H$ is

 $|E(G \circ H)| = |E(G)| + |V(G)|[E(H)]$ ------(4) Equation (2) and (4) gives,

$$|E(G \circ^{k} H)| - |E(G)| = k * |V(G)||E(G)|$$
$$|E(G \circ^{k} H)| - |E(G)| = k * [|E(G \circ H)| - |E(G)|]$$
$$\frac{|E(G \circ^{k} H)| - |E(G)|}{|E(G \circ H)| - |E(G)|} = k$$

Proposition 2.4: If G and H are connected graphs then $G \circ^k H$ is a connected graph.

Proof: By the definition of the k-rooted graph $G \circ^k H$, root vertex h_1 of each of the k-copies of the connected graph H is attached to each vertex of G. As G is a connected graph, and each copy of H is connected with vertices of G through the root vertex. Thus as G and H are connected, it follows that $G \circ^k H$ is a connected graph.

Proposition 2.5: The degree sequence of connected graph $G \circ^k H$ is, $\{(d_1 + kr_i)^{m_1}, (d_2 + kr_i)^{m_2}, ..., (d_t + kr_i)^{m_t}, r_1^{kn_1}, r_2^{kn_2}, ..., r_i^{k(n_i-1)}, ..., r_s^{kn_s}\}$

Proof: Let $G=\{g_1, g_2, g_3, \dots, g_m\}$ and $H=\{h_1, h_2, h_3, \dots, h_n\}$ be two connected graphs with degree sequences $\{d_1^{t_1}, d_2^{t_2}, d_3^{t_3}, \dots, d_p^{t_p}\}$ and $\{r_1^{s_1}, r_2^{s_2}, r_3^{s_3}, \dots, r_q^{s_q}\}$ respectively. Where $t_1 + t_2 + \dots + t_p = m \& s_1 + s_2 + \dots + s_q = n$.

By the definition of k-rooted product graph, with the root node of *H* being h_1 , we have, $V(G \circ^k H) = V_R \cup V_{NR}$, with root vertices set $V_R = \{(g_i, h_1^1, h_1^2, h_1^3 \dots h_1^k); i = 1, 2, \dots, m\}$ and non-root vertices set $V_{NR} = \{(g_i, h_j^r) | g_i \in G, h_j^r \in H^r; i=1,2,\dots,m, r=1,2,\dots,k \& j=1,2,\dots,n\}$ where (g_i, h_j^r) is the jth vertex of rth copy of H attached at $g_i \in G$. The degree of vertices in V_R becomes, $d(g_i, h_1^1, h_1^2, h_1^3 \dots h_1^k) = d_G(g_i) + k d_H(h_1)$ ------- (1)

And the degree of vertices from V_{NR} becomes $d(g_i, h_i^r) = d(h_i)$ -----(2)

(1) And (2) together gives the degree sequence of k-rooted product graph as, $d_G(G \circ^k H) = \{(d_1 + kr_i)^{t_1}, (d_2 + kr_i)^{t_2}, \dots, (d_p + kr_i)^{t_p}, r_1^{ks_1}, r_2^{ks_2}, \dots, r_i^{k(s_i-1)}, \dots, r_q^{ks_q}\}$

Proposition 2.6: The girth of k-rooted product graph $G \circ^k H$ is girth $(G \circ^k H) = \text{girth} (G \circ H) = \min\{girth(G), girth(H)\}$

Proof: By definition girth of a graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles, its girth is defined to be infinity. By definition of the rooted product graph and k-rooted product graph, it is very obvious that girth $(G \circ^k H) = \text{girth} (G \circ H)$. Also, while constructing the rooted product graph, there are no edges added either to part of G or each of the k|V(G)| copies of H, length of shortest cycle depends on the girth of G and H, so we get following cases.

Case(i) : If G and H both do not contain a cycle (or G,H are cycle free graphs)

The rooted product of $G \circ^k H$ does not have a cycle.

Hence Girth $(G \circ^k H)$ = Girth (G) = Girth $(H) = \infty$

Case (ii): If girth(G) $< \infty$ and Girth (H) = ∞

The rooted product graph $G \circ^k H$ contains the cycle of smallest size same as in G, giving

girth
$$(G \circ^k H)$$
 = girth (G) = min{girth(G), girth(H)}

Case(iii) : If girth(G) = ∞ and girth (H) < ∞

The rooted product graph $G \circ^k H$ has k|V(G)| number of cycles from each copy of H, but with same size as in H, therefore girth $(G \circ^k H) = girth(H) = min\{girth(G), girth(H)\}$

Case(iv) : If girth(G) $< \infty$ and girth (H) $< \infty$

Subcase(i) : girth(G) \leq girth (H), then the smallest size cycle in $G \circ^k H$ is same as the smallest size cycle in G, so girth($G \circ^k H$) = girth(G) = min{girth(G), girth(H)}

Subcase(ii) : girth(G) > girth (H) then as no edges are added to any copy of H, size of any cycle does not change so the smallest size cycle in $G \circ^k H$ is same as the size of k|V(G)| smallest size cycles in each copy of H giving,

girth(
$$G \circ^k H$$
) = girth(H) = min{girth(G), girth(H)}

Hence combining all the above cases we get,

girth
$$(G \circ^k H)$$
 = girth $(G \circ H)$ = min{girth(G), girth(H)}.

References

- [1] Bonday J.A., U.S.R Murthy, Graph theory with applications, Macmillan press, London, (1976).
- [2] Berge C, Graphs and Hyper graphs. North-Holland, Amsterdam(1973).
- [3] Bresar B., Klavzar S, Rall D F, Dominating direct product graphs, Discrete Mathematics 307(2007) 1636-1642.
- [4] Godsil C D, Mckay B D, A New graph product and its spectrum, Bulletin of the Australasian Mathematical Society 18(1)(1978) 21-28.
- [5] Ore O, Theory of Graphs, Amer.Maths. Soc.Colloq.Pub., 38(1962).
- [6] W. Imrich, S. Klavzar, Product graphs : Structure and recognition, Wiley,(2000).