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Abstract – Impacts of radiation on free-convection heat-mass transfering over a leaning surface is probed using Lie’s group. 

PDEs that model the liquid motion are reduced to ODEs together with the corresponding conditions on the boundary by 

symmetries. Approximate solution got by applying IV order R-K algorithm with trajectory shoot method exhibits  that both 

thermal&concentration boundary-layer thicknesses are downsized while rising Gr(thermal) number and Sc number. The 

opposite phenomena takes place whenever Gr(solutal) number rises. Further, it is witnessed that velocity&temperature rise 

whereas concentration reduces as radiation intensifies.    
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  I. INTRODUCTION  

Many scholars have shown utmost interest on heat-mass transport with radiation on an incompressible liquid which 

flows along a heated platform on considering the fact that this field had find numerous uses in engineering and industrial 

situations such as crude oil industry, boundary control in aerodynamics, geothermal applications and nuclear reactor cooling 

etc. Our analysis in this article depends on certain symmetries applied to a case of natural convection boundary-layer. By 

applying symmetry, the independent variables reduce in number and hence these solution methods have become trendy 
nowadays.   

Chen [1] made a deliberation on natural-convection flowing upon a leaning permeable surface for which wall 

temperature & concentration vary. He recorded a rise in velocity when magnetic field is present. Force of buoyancy has 

declined as angle of leaning lowers. Impacts of radiative and magnetic effects on free-convection mass-transfer  flowing 

upon a flat-plate are considered by Ibrahim et al:[2]. Further study on free-convective boundary-layer problem using Lie’s 

theory was done by Kalpakides&Balassas [3]. Similarity operations with their vast applications to PDEs were elaborately 

demonstrated by Yurusoy and Pakdemirli [4-6]. They had further discussed spiral group of transformations to obtain similarity 

solutions. These men have brought  exact analytic solutions of boundary-layer equations of a special non-Newtonian liquid 

over a stretch-sheet.  

MHD mixed-convection stagnating-point towards upright plate kept in penetrable surrounding with the transport of 

mass-energy influenced by Dufour-Soret parameters constrained with convective boundary condition is probed by 
Karthikeyan et al:[7]. Sivasankaran et al:[8] cast their effort on laminar, buoyant induced convection flowing and heat 

transport of Casson fluid in a square shaped porous box by simulation. Free convective flowing upon a plate embedded in a 

penetrating environment by symmetry groups was analyzed by Bhuvaneswari and Karthikeyan [9]. 

Until now, no investigation upon radiation heat-mass transfering on a leaned surface using Lie’s group is attempted.  

Hence this study is initiated for dealing the changes in velocity-concentration-temperature on the above mentioned flow by 

incorporating scaling operations.   

II. MATHEMATICAL ANALYSIS 

The physical context we consider here is that the heat-mass transfer by natural convection in boundary-layer 

streamline flowing of an incompressible viscous liquid along a leaning plate having an angle α to the vertical where 𝛼 < 90°. 
The warmth of the surface (𝑇𝑤) and that of the surrounding fluid (𝑇∞) are constant such that 𝑇𝑤 > 𝑇∞. The surface 

concentration (𝐶𝑤) and that of the surrounding fluid (𝐶∞) are constant such that 𝐶𝑤 > 𝐶∞.  The characteristics of the liquid are 

supposed to be constant. The mathematical formulation of this boundary-layer model is provided below: 
𝜕ụ

𝜕𝓍
+

𝜕ṿ

𝜕𝓎
= 0,      (1) 

ụ
𝜕ụ

𝜕𝓍
+ ṿ

𝜕ụ

𝜕𝓎
= 𝜈

𝜕2ụ

𝜕𝓎2 + 𝑔𝛽(𝑇 − 𝑇∞)𝑐𝑜𝑠𝛼 − 𝑔𝛽∗(𝐶 − 𝐶∞)𝑐𝑜𝑠𝛼,                (2) 

ụ
𝜕𝑇

𝜕𝓍
+ ṿ

𝜕𝑇

𝜕𝓎
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝓎2 −
𝜆

𝑘

𝜕𝑞𝑟

𝜕𝓎
,                                   (3) 
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ụ
𝜕𝐶

𝜕𝓍
+ ṿ

𝜕𝐶

𝜕𝓎
= 𝐷

𝜕2𝐶

𝜕𝓎2                                                                                                         (4) 

 
under the conditions  

                                                          ụ = ṿ = 0,   𝑇 = 𝑇𝑤 ,   𝐶 = 𝐶𝑤      𝑎𝑡 𝓎 = 0, 
ụ = 0,   𝑇 = 𝑇∞ ,    𝑇 = 𝑇∞            𝑎𝑠 𝓎 → ∞,     (5) 

 

where ụ & ṿ: velocity compoments; 𝓍 & 𝓎: space-coordinates; 𝑇:temperature; 𝐶:concentration;  𝜈:liquid kinematic viscosity; 

𝑔:acceleration of gravity; 𝛽:co-efficient of thermal-expansion; 𝛽∗:co-efficient of mass-expansion;  𝜆:thermal diffusivity; 

𝑞𝑟: local radiative heat flux; 𝑘:thermal conductivity of liquid; 𝜌:density of the liquid; 𝑐𝑝:specific heat of the liquid; 𝐷: 

diffusion-coefficient and 𝛼: leaning angle. 

 We use Rosseland estimate for 𝑞𝑟:          𝑞𝑟 =
4𝜎0

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                                         (6) 

 (𝜎0: Stefan-Boltzman constant &  𝑘∗: mean-absorption co-efficient.   

 According to our guess that differences in temperature are small, we can approximate 𝑇4 in terms of 𝑇∞ by shortened 

Taylor’s expansion as                                                                        

                                                                        𝑇4 = 4𝑇∞
3 𝑇 − 3𝑇∞

4                                                                      (7)                  
       

Non-dimensional variables are 

 

𝓍̅ =
𝓍𝑈∞

𝜈
, 𝓎̅ =

𝓎𝑈∞

𝜈
, ụ̅ =

ụ

𝑈∞
, ṿ̅ =

ṿ

𝑈∞
, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜑 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
              (8) 

 
Substituting (6)-(8) into equations (1)-(5) and dropping the over bars, we obtain, 

 
𝜕ụ

𝜕𝓍
+

𝜕ṿ

𝜕𝓎
= 0       (9) 

ụ
𝜕ụ

𝜕𝓍
+ ṿ

𝜕ụ

𝜕𝓎
=

𝜕2ụ

𝜕𝓎2 + 𝐺𝑟𝜃𝑐𝑜𝑠𝛼 − 𝐺𝑐𝜑𝑐𝑜𝑠𝛼    (10) 

ụ
𝜕𝜃

𝜕𝓍
+ ṿ

𝜕𝜃

𝜕𝓎
=

1

𝑃𝑟
(1 + 4𝑅)

𝜕2𝜃

𝜕𝓎2     (11) 

                                                                        ụ
𝜕𝜑

𝜕𝓍
+ ṿ

𝜕𝜑

𝜕𝓎
=

1

𝑆𝑐

𝜕2𝜑

𝜕𝓎2                                                                     (12) 

 

under the conditions 

ụ = ṿ = 0, 𝜃 = 1,          𝜑 = 1        𝑎𝑡 𝓎 = 0, 
                    ụ = 0,                 𝜃 = 0,          𝜑 = 0        𝑎𝑠 𝓎 → ∞,                               (13) 

 

where 𝐺𝑟 =
𝑔𝛽(𝑇𝑤−𝑇∞)𝜈

𝑈∞
3 , 𝐺𝑐 =

𝑔𝛽∗(𝐶𝑤−𝐶∞)𝜈

𝑈∞
3 , 𝑃𝑟 =

𝜌𝑐𝑝𝜈

𝑘
, 𝑆 =

𝜈

𝐷
  &  𝑅 =

4𝜎0𝑇∞
3

3𝑘𝑘∗  .  

III. SYMMETRY GROUPS EQUATIONS 

Equalities (9)-(12) of symmetries group are formed in reference to Bluman and Kumei [1] by Lie group notion. Lie 

group of transformations with single parameter which leave (9)-(12) as same is listed as follows:  

𝓍∗ = 𝓍 + 𝜖𝜉1(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑) 

𝓎∗ = 𝓎 + 𝜖𝜉2(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑) 

                    ụ∗ = ụ + 𝜖𝜂1(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑)                 (14) 

ṿ∗ = ṿ + 𝜖𝜂2(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑) 

𝜃∗ = 𝜃 + 𝜖𝜂3(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑) 

𝜑∗ = 𝜑 + 𝜖𝜂4(𝓍, 𝓎, ụ, ṿ, 𝜃, 𝜑) 

By employing rigorous algebraic computations, the infinitesimals are obtained as 

                                                                                 𝜉1 = 2𝑠1𝓍 − 𝑠2𝓍 − 𝑠3 

                                                                                 𝜉2 =
1

2
𝑠1𝓎 −

1

2
𝑠2𝓎 − 𝛼(𝓍) 

         𝜂1 = 𝑠1ụ                 (15) 

                                                                                 𝜂2 = −ụ𝛼′(𝓍) −
1

2
𝑠1ṿ +

1

2
𝑠2ṿ 

                                                                                 𝜂3 = 𝑠2𝜃 +
𝐺𝑐

𝐺𝑟
𝑠4 
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                                                                                 𝜂4 = 𝑐2𝜑 + 𝑠4 
When the constraints from boundaries are considered and boundary restrictions on infinitesimals are imposed, the system (15) 

takes the form 

                                                                                 𝜉1 = 2𝑠1𝓍 − 𝑠2𝓍 − 𝑠3 

                                                                                 𝜉2 =
1

2
𝑠1𝓎 −

1

2
𝑠2𝓎 

         𝜂1 = 𝑠1ụ                 (16) 

                                                                                 𝜂2 −
1

2
𝑠1ṿ +

1

2
𝑠2ṿ 

                                                                                 𝜂3 = 𝑠2𝜃 +
𝐺𝑐

𝐺𝑟
𝑠4 

                                                                                 𝜂4 = 𝑠2𝜑 + 𝑠4 

(𝑠1, 𝑠2: scaling transformation; 𝑠3, 𝑠4: translation in 𝓍, 𝓎 co-ordinates) 

IV. REDUCTION TO ODE’S 

By considering 𝑠1 as arbitrary and remaining parameters as zero in (12), the resulting subsidiary equations are  
𝑑𝓍

2𝓍
=

𝑑𝓎

(
1

2
)𝓎

=
𝑑ụ

ụ
=

𝑑ṿ

(−
1

2
)ṿ

=
𝑑𝜃

0
=

𝑑𝜑

0
                (17) 

from which we obtain 

                            𝜂 = 𝓍−
1

4𝓎, ụ = 𝓍
1

2𝐹1(𝜂), ṿ = 𝓍−
1

4𝐹2(𝜂), 𝜃 = 𝐹3(𝜂), 𝜑 = 𝐹4(𝜂)                           (18) 

Substituting (18) into equations (9)-(12), system of non-linear ODEs are obtained as  

                                                                    𝐹1
′′ =

1

2
𝐹1

2 −
1

𝐾
𝜂𝐹1𝐹1

′ + 𝐹2𝐹1
′ − 𝐺𝑟𝐹3𝑐𝑜𝑠𝛼 + 𝐺𝑐𝐹4𝑐𝑜𝑠𝛼 

                                                                    𝐹2
′ =

1

4
𝜂𝐹1

′ −
1

2
𝐹1                 (19)              

           𝐹3
′′ = Pr/(1 + 4R) (𝐹2𝐹3

′ −
1

4
𝜂𝐹1𝐹′3) 

           𝐹4
′′ = Sc (𝐹2𝐹4

′ −
1

4
𝜂𝐹1𝐹′4) 

 

with 

                                                                     𝐹1 = 𝐹2 = 0, 𝐹3 = 1, 𝐹4 = 1     𝑎𝑡 𝜂 = 0, 
            𝐹1 = 0, 𝐹3 = 0, 𝐹4 = 0               𝑎𝑠 𝜂 → ∞.               (20) 
 

V. NUMERICAL APPROACH 

Because of the reason that the final ODEs derived in the last section are not linear, resorting to numerical treatment is 

appropriate. Equations listed in (19) caccompanied by boundary restrictions is solved by numerical approach, nnamely, IV 

order R-K algorithm and trajectory shoot-up method with initial guesses for 𝐹1
′(0) and 𝐹3

′(0).  The iterations are continued upto 

a stage where an accuracy of 10−5 is realized. A code using MATHEMATICA is formulated and the outcomes are depicted 

with various sketches. 

VI. RESULTS ANALYSIS 

Solutions through numerical technique are evolved for the following range of values for Pr, Gr, Gc, Sc and R: 

Parameter Range 

Pr 0.1-2.05 

Gr 0.1-2.5 

Gc 0.1-1.0 

Sc 1-10 

R 0-5 

𝛼 0∘, 30∘, 45∘ 

 

We consider the cases for 𝛼 = 0o, 30o and 45o. Velocity-temperature-concentration variations are sketched via graphs. The 

analysis is performed for  = 45o. Results related to 𝛼 = 0° (vertical plate case) and 𝛼 = 30° are also discussed.  

 

Figures 1(a-c) show the velocity-temperature-concentration variations due to R for Pr = 0.71, Gr = 0.1, Gc = 0.1 &  

Sc = 1. Looking at these figures, it is evident that the speed rises, temperature becomes linear and the concentration boundary-

layer reduces due to ascending R values.  
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Figures 2(a-c) sketch the velocity-temperature-concentration with same values except for Gr (i.e., Gr =2.5). Evidently, 

because of the favouring buoyant force, the velocity is noted to be higher when compared to the last case. Thickness of the 

thermal boundary-layer rises with R. But the solutal boundary layer undergo only a small change due to R.  

Profiles of velocity-temperature-concentration with respect to Pr values are sketched in 3(a-c). A rise in Pr impacts 

the velocity in the boundary-layer to decrease. Temperature is observed to be linear for a low Pr value. On the other hand, it 
diminishes for rising Pr. By rising Pr, the concentration tends to rise.  

From the sketches 4(a-c), it is observed that, for the rising values of Sc, velocity rises but not the temperature and 

concentration. The velocity-temperature-concentration variations for rising Gr values are exhibited in Figures 5(a-c). Velocity 

rises with an increase in Gr in view of the presence of buoyant force. But, when temperature and concentration are concerned, 

this trend is opposite.  

Figures 6(a-c) depict the influence of Gc. When Gc is raised, the velocity of the liquid dimishes and both boundary-

layers are raised. 

The outcomes of different parameters for certain fixed slopes of surface are portrayed in Figures (7-8). The liquid 

flows with higher speed on the vertical surface. When the surface is leaning at 30o, the temperature&concentration along the 

boundary-layer are higher. Rising Sc reduces the temperature&concentration for a fixed . At a fixed slope, the temperature 

rises and solutal boundary-layer thickness reduces for ascending R values. 

 

   
                              (a)      (b)              (c) 

Fig. 1. Impacts of R when Gr = 0.1[Pr = 0.71,Gc = 0.1&Sc = 1] 

 

 

   
       (a)        (b)                (c) 

Fig. 2. Impacts of R when Gr = 2.5 [Pr = 0.71,Gc = 0.1&Sc = 1] 
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                                (a)      (b)           (c) 

Fig. 3. Impacts of Pr [R=1,SGr = 2.5,Gc = 0.1&Sc = 1] 

 

 
                                (a)     (b)            (c) 

Fig. 4. Impacts of Sc [Pr  = 2.05, R = 1,Gr = 0.1,Gc = 0.1&Sc = 1] 

 
 

 

 
        (a)     (b)            (c) 

Fig. 5. Impacts of Gr [Pr  = 2.05, R = 1,Gc = 0.1&Sc = 1] 
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                               (a)                (b)          (c) 

Fig. 6. Impacts of Gc [Pr = 0.71, R =0.1, Gr = 1&Sc = 1] 

 

 

 

 
                             (a)              (b)         (c) 

Fig. 7. Impacts of Sc for different slopes [Pr = 0.71,R = 1,Gr = 1&Gc = 1] 

 

 

 
                               (a)                 (b)            (c) 

Fig. 8. Impacts of R for different slopes [Pr=13.67,Gc =0.1,Gr = 1&Sc = 1] 
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VII. CONCLUSIONS 

PDEs that model the liquid motion are reduced to ODEs by symmetries. Approximate solution got by applying IV 

order R-K algorithm with trajectory shoot technique. Following conclusions are evolved.   

 Thinning of thermal and concentration boundary-layer thicknesses resulted as Gr & Sc rise; but when Gc 

rises, these thicknesses increase.  

 Velocity and temperature of the liquid rise with R and concentration shows the opposite as R intensifies.  

 As Pr rises, temperature rises but not the concentration. 

 Velocity and thickness of momentum boundary-layer rise with increasing Gr & Sc; but the opposite trend 

noticed with increasing Pr & Gc. 

REFERENCES  

[1] C.H. Chen., Heat and mass transfer in MHD flow by natural convection from a permeable, inclined surface with variable wall temperature and 

concentration, Acta Mechanica, 172 (2004) 219-235. 

[2] F.S. Ibrahim, M.A. Mansour, M.A.A. Hamad., Lie-group analysis of radiative and magnetic field effects on free convection and mass transfer flow 

past a semi- infinite vertical flat plate, Electronic J. Differential Equations. 39 (2005) 1-17. 

[3] V.K. Kalpakides, K.G. Balassas., Symmetry groups and similarity solutions for a free convective boundary-layer problem, Int. J. Non-linear Mech. 39 

(2004) 1659- 1670. 

[4] M. Yurusoy, M. Pakdemirli., Symmetry reductions of unsteady three-dimensional boundary layers of some non-Newtonian Fluids, Int. J. Engg. Sci. 

35(8) (1997) 731-740. 

[5] M. Yurusoy, M. Pakdemirli., Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet, Mech. Res. 

Comm. 26(2) (1999) 171-175. 

[6] M. Yurusoy, M. Pakdemirli., Lie group analysis of creeping flow of a second grade fluid, Int. J. Non-linear Mech. 36(2001) 955-960. 

[7] S. Karthikeyan, M. Bhuvaneswari, S. Sivasankaran, S. Rajan.,  Cross diffusion, radiation and chemical reaction effects on MHD combined convective 

flow towards a stagnation-point upon vertical plate with heat generation, IOP Conference Series Materials Science and Engineering.  390(1) (2018) 

012088. 

[8] S. Sivasankaran, M. Bhuvaneswari, A.K.Alzahrani., Numerical simulation on convection of non-Newtonian fluid in a porous enclosure with non-

uniform heating and thermal radiation, Alexandria Eng. J. 59(5) (2020) 3315-3323. 

[9] M. Bhuvaneswari and S. Karthikeyan., Free convective flowing upon a plate embedded in a penetrating environment by symmetry groups, 

International Journal of Mathematics Trends and Technology, 66(11) (2020) 148-153. 

 

 

 

 

 

 


