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I Introduction and Preliminaries

In past and recent years Bessel transform is used in engineering, mechanics, Physics, Computa-
tional Mathematics etc.
Inspired by Hamma & Daher[3], we obtain generalization of Titchmarsh’s theorem for the Bessel
type transform. In this paper Titchmarsh[7, Theorem 85] characterized the set of functions in
L2(R) satisfying the Cauchy Lipshitz condition by means of an asymptotic estimate growth of
the norm of their Fourier transforms. We have

Theorem1.1: Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the following are equiva-
lent.
(i) ‖f(t+ h)− f(t)‖L2(R) = O(hα) as h→ 0
(ii)
∫
|λ|≥r |g(λ)|2dλ = O(r−2α) as r →∞,

where g stands for the Fourier transform of f. Our main objective in this paper is to obtain a
generalization of Theorem 1.1 for the Bessel type operator. Let Ba,b = D2

x + a−b
x Dx, Dx ≡ d

dx ,
be the Bessel type differential operator.
Now, for (a − b) ≥ 0, we introduce the Bessel type normalized function of the first kind j a−b−1

2

defined by

j a−b−1
2

= Γ(
a− b+ 1

2
)

∞∑
n=0

(−1)n

n!Γ( 2n+a−b+1
2 )

(
x

2
)2n (1.1)

Where Γ(x) is the Gamma function (see[5])
From (1.1), it is easily deduced that

lim
x→0

j a−b−1
2

(x)− 1

x2
6= 0
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by consequence, there exist c > 0 and η > 0 satisfying

|x| ≤ η ⇒ |j a−b−1
2

(x)− 1| ≥ c|x|2 (1.2)

The function y = j a−b−1
2 (x) satisfies the differential equation

Ba,b(y) + y = 0

with the initial conditions that y(0) = 1 and y′(0) = 0, j a−b−1
2

(x) is function infinitely differen-

tiable, even and moreover entire analytic.
Lemma1.1: The following inequalities are valid for the Bessel type function j a−b−1

2
:

(i)|j a−b−1
2

(x)| ≤ C, for all x ∈ R+, where C is positive constant.

(ii)1− j a−b−1
2

(x) = O(x2), 0 ≤ x ≤ 1

Proof. Proof is clear from [1]
Let L2,a,b(R+), (a, b) ≥ 0 be the Hilbert space of measurable functions f(x)on R+ with the finite
norm

‖f‖2,a,b = (

∫ ∞
0

|f(x)|2xa−bdx)1/2

. The generalized Bessel type translation Th defined by

Thf(t) = ca,b

∫ π

0

f(
√
t2 + h2 − 2th cosϕ) sina−b−1 ϕ dϕ.

where

ca,b = (

∫ π

0

sina−b−1 ϕ dϕ)−1 =
Γ(a−b+1

2 )
√
πΓ(a−b2 )

.

The Bessel type transform is defined by (see[4,5,6])

f̂(λ) =

∫ ∞
0

f(t)j a−b−1
2

(λt)ta−bdt, λ ∈ R+.

The inverse Bessel type transform is given by the formula

f(t) = (2
a−b+1

2 Γ(
a− b+ 1

2
))−2

∫ ∞
0

f̂(λ)j a−b−1
2

(λt)λa−bdλ,

that is the direct and inverse Bessel type transform differ by the factor(2
a−b+1

2 Γ(a−b+1
2 ))−2

The connection between the Bessel type generalized translation and the Bessel type transform
in [2] is given by

ˆThf(λ) = j a−b−1
2

(λh)f̂(λ). (1.3)

II Main result

In this section we prove the main result of this paper. First we need to define ψ− Bessel type
Lipschitz class.
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Definition 2.1: A function f ∈ L2,a,b(R+) is said to be in the ψ− Bessel type Lipschitz class,
denoted by Lip(ψ, a, b, 2), if

‖Thf(t)− f(t)‖2,a,b = O(ψ(h)), as h→ 0,

Where ψ(t) is a continuous increasing function on [0,∞), ψ(0) = 0 and ψ(ts) = ψ(t)ψ(s) for all

t, s ∈ [0,∞)and this function verify
∫ 1/h

0
sψ(s−2)ds = O( 1

h2ψ(h2)) as h→ 0
Theorem 2.1: Let f ∈ L2,a,b(R+) then the following are equivalents:
(i)f ∈ Lip(ψ, a, b, 2)

(ii)
∫∞
r
|f̂(λ)|2λa−b dλ = O(ψ(r−2)) as r →∞.

Proof. (i)⇒(ii): Suppose that f ∈ Lip(ψ, a, b, 2). Then we obtain

‖Thf(t)− f(t)‖2,a,b = O(ψ(h)), ash→ 0

By using (1.3) and Parseval’s identity, we obtain

‖Thf(t)− f(t)‖22,a,b =
1

(2
a−b−1

2 Γ(a−b+1
2 ))2

∫ ∞
0

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ

From (1.2), we have∫ η
h

η
2h

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ ≥ c2η4

16

∫ η
h

η
2h

|f̂(λ)|2λa−bdλ

We can deduce that∫ η
h

η
2h

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ ≤
∫ ∞
0

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ

There exists a positive C2 such that∫ η
h

η
2h

|f̂(λ)|2λa−bdλ ≤ C2ψ(h2)

Now we obtain ∫ 2r

r

|f̂(λ)|2λa−bdλ ≤ C2ψ(2−2η2r−2)

Now there exists a positive constant K such that∫ 2r

r

|f̂(λ)|2λa−bdλ ≤ Kψ(r−2), for all r > 0

Thus ∫ ∞
r

|f̂(λ)|2λa−bdλ = [

∫ 2r

r

+

∫ 4r

2r

+

∫ 8r

4r

+ · · · ]|f̂(λ)|2λa−bdλ

= O(ψ(r−2) + ψ(2−2r−2) + · · · )
= O(ψ(r−2) + ψ(r−2) + · · · )
= O(ψ(r−2))
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This proves that ∫ ∞
r

|f̂(λ)|2λa−bdλ == O(ψ(r−2)), as r →∞.

now we prove (ii)⇒(i)

Let

∫ ∞
r

|f̂(λ)|2λa−bdλ = O(ψ(r−2)), as r →∞.

we write ∫ ∞
0

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ = I1 + I2,

I1 =

∫ 1/h

0

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ,

and

I2 =

∫ ∞
1/h

|1− j a−b−1
2

(λh)|2|f̂(λ)|2λa−bdλ.

Estimate the summands I1 and I2
Firstly we have from (1.1)in Lemma 1.2

I2 ≤ (1 + c)2
∫ ∞
1/h

|f̂(λ)|2λa−bdλ = O(ψ(h2))

Now set

φ(x) =

∫ ∞
x

|f̂(λ)|2λa−bdλ.

From Lemma 1.2 we have that

|1− j a−b−1
2

(λh)| ≤ C1λ
2h2for λ h ≤ 1.

Then I1 ≤ −C1h
2
∫ 1/h

0
x2φ′(x)dx

Integration by parts gives

I1 ≤ −C1h
2

∫ 1/h

0

x2ϕ′(x)dx

≤ C1φ

(
1

h

)
+ 2C1h

2

∫ 1/h

0

xφ(x)dx

≤ C3h
2

∫ 1/h

0

xψ(x−2)dx

≤ C3h
2 1

h2
ψ(h2)

≤ C3ψ(h2)

where C3 is a positive constant and thus proof is completed

Remarks:(i)If we take a = p+ 3
4 , b = −p− 1

4 throughout this paper, we obtain the results
studied in [3].

(ii)Author claims that the results studied in this paper are general than that of [3].
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