Titchmarsh Theorem and its Generalization for the Bessel type transform ISSN: 2231 - 5373 /doi: 10.14425315373673817458717467547585

ITHOLDTEED CHITES CONTENEES CONTENEES CONTENEES CONTENEES CONTENEES CONTENEES TO Research Contenent and Separation Contenent Second Materials in the Contenent o

Balasaheb Bhagaji Waphare¹, Yashodha Sanjay Sindhe² ¹ Professor,² Research Scholar, Mathematics Department, MAEER's MIT Arts, Commerce and Science College, Alandi, Pune-412105,Maharashtra, India email:balasahebwaphare@gmail.com,ysindhe@gmail.com

Abstract-In this paper we obtain a generalization of Titchmarsh's Theorem for the Bessel type transform for functions satisfying the $\psi-$ Bessel type Lipschitz condition in $L_{z,a,b}(\mathbb{R})$ by using a generalized translation operator.

Keywords-Bessel type operator, Bessel type transform, generalized translation operator, Bessel type function.

Mathematics subject classification:42A38,42B10.

I Introduction and Preliminaries

In past and recent years Bessel transform is used in engineering, mechanics, Physics, Computational Mathematics etc.

Inspired by Hamma & Daher[3], we obtain generalization of Titchmarsh's theorem for the Bessel type transform. In this paper Titchmarsh[7, Theorem 85] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipshitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms. We have

Theorem1.1: Let $\alpha \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalent.

(i)
$$
||f(t+h) - f(t)||_{L^2(\mathbb{R})} = O(h^{\alpha})
$$
 as $h \to 0$
(ii) $\int_{|\lambda| \ge r} |g(\lambda)|^2 d\lambda = O(r^{-2\alpha})$ as $r \to \infty$,

where g stands for the Fourier transform of f. Our main objective in this paper is to obtain a generalization of Theorem 1.1 for the Bessel type operator. Let $B_{a,b} = D^2_x + \frac{a-b}{x} D_x, D_x \equiv \frac{d}{dx}$, be the Bessel type differential operator.

Now, for $(a - b) \geq 0$, we introduce the Bessel type normalized function of the first kind $j_{\frac{a-b-1}{2}}$ defined by

$$
j_{\frac{a-b-1}{2}} = \Gamma(\frac{a-b+1}{2}) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(\frac{2n+a-b+1}{2})} (\frac{x}{2})^{2n}
$$
(1.1)

Where $\Gamma(x)$ is the Gamma function (see[5]) From (1.1), it is easily deduced that

$$
\lim_{x \to 0} \frac{j_{\frac{a-b-1}{2}}(x) - 1}{x^2} \neq 0
$$

by consequence, there exist $c > 0$ and $\eta > 0$ satisfying

$$
|x| \le \eta \Rightarrow |j_{\frac{a-b-1}{2}}(x) - 1| \ge c|x|^2 \tag{1.2}
$$

The function $y = j_{\frac{a-b-1}{2}(x)}$ satisfies the differential equation

$$
B_{a,b}(y) + y = 0
$$

with the initial conditions that $y(0) = 1$ and $y'(0) = 0, j_{\frac{a-b-1}{2}}(x)$ is function infinitely differentiable, even and moreover entire analytic.

Lemma1.1: The following inequalities are valid for the Bessel type function $j_{\frac{a-b-1}{2}}$. (i)| $j_{\frac{a-b-1}{2}}(x)$ | ≤ C, for all $x \in \mathbb{R}^+$, where C is positive constant. (ii)1 $-j_{\frac{a-b-1}{2}}(x) = O(x^2), 0 \le x \le 1$

Proof. Proof is clear from [1]

Let $L_{2,a,b}(\mathbb{R}^+), (a, b) \geq 0$ be the Hilbert space of measurable functions $f(x)$ on \mathbb{R}^+ with the finite norm

$$
||f||_{2,a,b} = (\int_0^\infty |f(x)|^2 x^{a-b} dx)^{1/2}
$$

. The generalized Bessel type translation T_h defined by

$$
T_h f(t) = c_{a,b} \int_0^{\pi} f(\sqrt{t^2 + h^2 - 2th \cos \varphi}) \sin^{a-b-1} \varphi \ d\varphi.
$$

where

$$
c_{a,b} = \left(\int_0^\pi \sin^{a-b-1}\varphi \ d\varphi\right)^{-1} = \frac{\Gamma\left(\frac{a-b+1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{a-b}{2}\right)}.
$$

The Bessel type transform is defined by $(\text{see} [4,5,6])$

$$
\hat{f}(\lambda) = \int_0^\infty f(t) j_{\frac{a-b-1}{2}}(\lambda t) t^{a-b} dt, \lambda \in \mathbb{R}^+.
$$

The inverse Bessel type transform is given by the formula

$$
f(t) = (2^{\frac{a-b+1}{2}} \Gamma(\frac{a-b+1}{2}))^{-2} \int_0^\infty \hat{f}(\lambda) j_{\frac{a-b-1}{2}}(\lambda t) \lambda^{a-b} d\lambda,
$$

that is the direct and inverse Bessel type transform differ by the factor $(2^{\frac{a-b+1}{2}} \Gamma(\frac{a-b+1}{2}))^{-2}$ The connection between the Bessel type generalized translation and the Bessel type transform in [2] is given by

$$
\hat{T_h f(\lambda)} = j_{\frac{a-b-1}{2}}(\lambda h)\hat{f}(\lambda).
$$
\n(1.3)

 \Box

II Main result

In this section we prove the main result of this paper. First we need to define ψ – Bessel type Lipschitz class.

Definition 2.1: A function $f \in L_{2,a,b}(\mathbb{R}^+)$ is said to be in the ψ - Bessel type Lipschitz class, denoted by $\text{Lip}(\psi, a, b, 2)$, if

$$
||T_h f(t) - f(t)||_{2, a, b} = O(\psi(h)), as \ h \to 0,
$$

Where $\psi(t)$ is a continuous increasing function on $[0,\infty)$, $\psi(0) = 0$ and $\psi(ts) = \psi(t)\psi(s)$ for all $t, s \in [0, \infty)$ and this function verify $\int_0^{1/h} s \psi(s^{-2}) ds = O(\frac{1}{h^2} \psi(h^2))$ as $h \to 0$ **Theorem 2.1:** Let $f \in L_{2,a,b}(\mathbb{R}^+)$ then the following are equivalents: $(i) f \in Lip(\psi, a, b, 2)$ $(i) \int_r^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})) \text{ as } r \to \infty.$

Proof. (i)⇒(ii): Suppose that $f \in Lip(\psi, a, b, 2)$. Then we obtain

$$
||T_h f(t) - f(t)||_{2,a,b} = O(\psi(h)), as h \to 0
$$

By using (1.3) and Parseval's identity, we obtain

$$
||T_h f(t) - f(t)||^2_{2, a, b} = \frac{1}{(2^{\frac{a-b-1}{2}} \Gamma(\frac{a-b+1}{2}))^2} \int_0^\infty |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda
$$

From (1.2) , we have

$$
\int_{\frac{\eta}{2h}}^{\frac{\eta}{h}} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \ge \frac{c^2 \eta^4}{16} \int_{\frac{\eta}{2h}}^{\frac{\eta}{h}} |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda
$$

We can deduce that

$$
\int_{\frac{\eta}{2h}}^{\frac{\eta}{h}} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \le \int_0^\infty |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda
$$

There exists a positive C_2 such that

$$
\int_{\frac{\eta}{2h}}^{\frac{\eta}{h}} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \le C_2 \psi(h^2)
$$

Now we obtain

$$
\int_r^{2r} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \le C_2 \psi(2^{-2} \eta^2 r^{-2})
$$

Now there exists a positive constant K such that

$$
\int_{r}^{2r} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \le K\psi(r^{-2}), \text{ for all } r > 0
$$

Thus

Balazaheb Bhagaji Waphare & Yashodha Sanjay Sindhe / LMTT, 67(4), 26-30, 2021
\n**2.1:** A function
$$
f \in L_{2,a,b}(\mathbb{R}^+)
$$
 is said to be in the ψ – Bessel type Lij $[\text{Lip}(\psi, a, b, 2), \text{ if}$
\n $||T_h f(t) - f(t)||_{2,a,b} = O(\psi(h)), as \ h \to 0,$
\nis a continuous increasing function on $[0, \infty), \psi(0) = 0$ and $\psi(ts) = \psi(t)$
\nand this function verify $\int_0^{1/h} \text{ sup}(-2) ds = O(\frac{1}{h^2}\psi(h^2))$ as $h \to 0$
\n $l, 1$. Let $f \in L_{2,a,b}(\mathbb{R}^+)$ then the following are equivalents:
\n $\langle a, b, 2 \rangle$
\n $|2\lambda^{\alpha - b} d\lambda = O(\psi(r^{-2}))$ as $r \to \infty$.
\n(ii): Suppose that $f \in Lip(\psi, a, b, 2)$. Then we obtain
\n $||T_h f(t) - f(t)||_{2,a,b} = O(\psi(h)), as h \to 0$
\n3) and Parseval's identity, we obtain
\n
$$
\|f(t) - f(t)||_{2,a,b} = \frac{1}{(2^{\frac{a-2}{2}}\Gamma(\frac{a-b+1}{2}))^2} \int_0^{\infty} |1 - j_{\frac{a-2}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda
$$

\nwe have
\n
$$
\int_{\frac{a}{2h}}^{\frac{a}{2h}} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \geq \frac{c^2 \eta^4}{16} \int_{\frac{a}{2h}}^{\frac{a}{2h}} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda
$$

\nare that
\n
$$
\int_{\frac{a}{2h}}^{\frac{a}{2h}} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda \leq C_2 \psi(h^2
$$

This proves that

$$
\int_r^{\infty} |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})), as \ r \to \infty.
$$

now we prove (ii) \Rightarrow (i)

$$
Let \int_r^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})), as \ r \to \infty.
$$

we write

$$
\int_0^\infty |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = I_1 + I_2,
$$

$$
I_1 = \int_0^{1/h} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda,
$$

and

$$
I_2 = \int_{1/h}^{\infty} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda.
$$

Estimate the summands I_1 and I_2 Firstly we have from (1.1)in Lemma 1.2

$$
I_2 \le (1+c)^2 \int_{1/h}^{\infty} |\widehat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(h^2))
$$

Now set

$$
\phi(x) = \int_x^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda.
$$

From Lemma 1.2 we have that

$$
|1 - j_{\frac{a-b-1}{2}}(\lambda h)| \le C_1 \lambda^2 h^2 \text{ for } \lambda \ h \le 1.
$$

Then $I_1 \leq -C_1 h^2 \int_0^{1/h} x^2 \phi'(x) dx$ Integration by parts gives

Balazaheb Bhagaji Waphare & Yashodha Sanjay Sindhe / LIMIT, 67(4), 26-30, 2021
\n
$$
\int_{r}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda == O(\psi(r^{-2})), as \ r \to \infty.
$$
\n(ii)
$$
\text{Let } \int_{r}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(r^{-2})), as \ r \to \infty.
$$
\n
$$
\int_{0}^{\infty} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = I_1 + I_2,
$$
\n
$$
I_1 = \int_{0}^{1/h} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda,
$$
\n
$$
I_2 = \int_{1/h}^{\infty} |1 - j_{\frac{a-b-1}{2}}(\lambda h)|^2 |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda.
$$
\nsummands I_1 and I_2
\nwe from (1.1)in Lemma 1.2
\n
$$
I_2 \leq (1 + c)^2 \int_{1/h}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda = O(\psi(h^2))
$$
\n
$$
\phi(x) = \int_{x}^{\infty} |\hat{f}(\lambda)|^2 \lambda^{a-b} d\lambda.
$$
\n1.2 we have that
\n
$$
|1 - j_{\frac{a-b-1}{2}}(\lambda h)| \leq C_1 \lambda^2 h^2 for \lambda h \leq 1.
$$
\n
$$
C_1 h^2 \int_{0}^{1/h} x^2 \phi'(x) dx
$$
\n
$$
\leq C_1 \phi \left(\frac{1}{h}\right) + 2C_1 h^2 \int_{0}^{1/h} x \phi(x) dx
$$
\n
$$
\leq C_3 h^2 \frac{1}{h^2} \psi(h^2)
$$
\n
$$
\leq C_3 h^2 \frac{1}{h^2} \psi(h^2)
$$
\npositive constant and thus proof is completed
\nthat the result is studied in this paper, we obtain the
\nif the value a = p + \frac{3}{4}, b = -p - \frac{1}{4} through

where C_3 is a positive constant and thus proof is completed

Remarks:(i)If we take $a = p + \frac{3}{4}$, $b = -p - \frac{1}{4}$ throughout this paper, we obtain the results studied in [3].

 \Box

⁽ii)Author claims that the results studied in this paper are general than that of [3].

References

- [1] V.A.Abilov and F.V.Abilova, Approximation of Functions by Fourier-Bessel sums, Izv. Vyssh, Uchebn Zaved, Mat;No.8,3-9(2001).
- [2] V.A.Abilov, F.V.Abilova and M.K.Kerimov, On Estimates for the Fourier- Bessel Integral Transform in the $L_2(\mathbb{R}^+), \text{Vol.49, No.7(2009)}.$
- [3] M.El.Hamma,and R.Daher, Generalization of Titchmansh's Theorem for the Bessel transform,Romanian Journal of Mathematics and Computer Science, Vol.2, No.2,17-22(2012).
- [4] I.A.Kipriyanov, Singular Elliptic value problems,[in Russian],Nauka, Moscow(1997).
- [5] B.M.Levitan, Expansion in Fourier series and integrals over Bessel, Uspekhi Mat. Nauk,6.No.2,102- 143(1951).
- [6] K.Trimeche,Transmutation operators and mean periodic functions associated with differential operators, Math.Rep.4,No.1,1-282(1988). Halasaheb Bhagaji Waphare & Yashodha Sanjay Sindhe / *IJMT1, 67(4), 26-30, 2021*
 30 Balasahem Control Cont
- [7] E.C.Titchmarsh, Introduction to the theory of Fourier Integrals, Claredon, Oxford, 1948,Komkniga, Moscow,2005.
- [8] A.L.Zayed,Handbook of Function and Generalized function transformations,(CRC,Boca Raton, 1996)