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Abstract: In this paper, the Tanh-coth and Banach contraction methods are proposed to solve the Burgers-Huxley and 

Kuramoto-Sivashinsky equations. The equations under study were first transformed into ordinary differential equations using 

specialized wave transformations as in Tanh-coth where solitary solutions were obtained, whereas the Banach contraction 

method gives an analytical solution after a finite number of iterations depending on the parameters. The result obtained 

showed, the methods are easy to implement, computationally less time consuming, accurate, reliable, promising and efficient.  
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I. INTRODUCTION 

Most of the nonlinear phenomena encountered in diverse fields of human endeavour like in Chemistry, Mathematics, Physics, 

Biology, Engineering and medicine are modelled with partial differential equations [1]. Intrigued by the inherent nonlinearity 

in these equations, scholars in the last decade and more, have devoted tremendous efforts to extensively study these nonlinear 

equations, using various advanced mathematical methods ranging from direct, exact, semi-analytical, especially in 

mathematics, physics, chemistry and engineering [2-4]. Some of these innovative and fascinating methods includes: Homotopy 

analysis method [5], Variational iteration method [6], Hirota Bilinear form [7], 8], Painleve analysis [9], Similarity 

transformation [10], Miura transformation [11], (𝐺′′/𝐺) expansion method [12], Homogenous method [13], Tanh-coth method 

[14-19]. 

Of the plethora of nonlinear partial differential equations, the Burgers-Huxley equation is increasingly finding useful 

applications in different fields. It is used to model the interaction between reaction mechanism, convection effects, diffusion 

transport, motion in liquid crystals and nerve pulse propagation in nerves fibres [20].  Several methods have been used to find 

the exact solutions to this equation in various forms. The generalized Burgers-Huxley equation has been analysed for its exact 

solution using the Tanh-coth [21-22] have examined the generalized Burgers-Huxley equation using Adomian decom position 

method. The result showed there is agreement between those in literature and exact solution. The solitary wave solutions of the 

generalized Burgers-Huxley equation [23]. The spectral collocation method cum the preconditioning to solve the Burgers-

Huxley equation is investigated by [24].  

Equally, the Kuramoto-Shivashinsky equation was proposed by Gregory Shivashinsky and Yoshida Kuramoto. The former 

when he was studying laminar flame front that exhibit turbulence [25-26] and the later when he was studying diffusion-induced 

chaos in reaction systems [27]. They both discovered it independently and presented the equation in normalized form [28]. It is 

used in the modelling of plasma instabilities or turbulence in a reaction diffusion system in chemistry, propagation of flame 

front, viscous flow problems and spatially uniform oscillating chemical reaction in a homogenous equation has been given 

considerable attention [29-30].  It’s a model prototype of a system which self-generates and sustain chaos in a large class of 

Burgers equation [31]. Many authors have used various mathematical methods to effectively solved this equation.[32] analyzed 

the Kuramoto-Shivashinsky equation using the Lattice Boltzmann method. The Chebyshev spectral collocation scheme was 

developed by [33] to study the equation for exact solutions. [34] explored the tanh function method to systematically examine 

the KSE equation. The result obtained showed promise and agree with literature. The local discontinuity Galerkin method was 

proposed by [35] to seek exact solutions. [36] investigated the KSE equation using a technique based on variational iteration 

https://www.ijmttjournal.org/archive/ijmtt-v67i4p506
http://www.internationaljournalssrg.org/
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method. [37] studied the KSE equation for both solitary and exact solution using the tanh-coth method. [38-39] examined the 

equation in detail for the exact, solitary, kink and soliton solutions.  

Our aim in this research is to implement the Banach contraction and Tanh-coth methods to the Burger-Huxley and Kuramoto-

Shivashinsky equations in obtaining the solitary wave and exact solutions and show its capability and efficiency in handling 

highly nonlinear partial differential equations that arises in physics, Mathematics and engineering. Equally, comparative 

analysis is made between the methods to know which produces the most convergent solutions.  

II. TANH-COTH METHOD 

The basics of the Tanh-coth method is outlined in the following steps  

Step 1. Consider a nonlinear partial differential equation of the form 

𝑃(𝑣, 𝑣𝑥, 𝑣𝑡 , 𝑣𝑥𝑥 , 𝑣𝑡𝑡, 𝑣𝑥𝑥𝑥 … ) = 0         (1) 

Let 𝑣(𝑥, 𝑡) be the solution of Eq. (1) 

Step 2. Using the special wave transformation 

𝑣(𝑥, 𝑡) = 𝑓(𝑧) = 𝑓(𝑥 − 𝑐𝑡)         (2) 

Where 𝑧 = 𝑥 − 𝑐𝑡 and 𝑓(𝑧) is the localized wave solution 

Applying elementary laws of calculus on Eq. (2), we have the derivatives 𝑤. 𝑟. 𝑡. 𝑥 and 𝑡 as follows 

𝑑𝑣

𝑑𝑡
= −𝑓𝑐

𝑑

𝑑𝑧
 

𝑑

𝑑𝑥
= 𝑓

𝑑

𝑑𝑧
 

𝑑2

𝑑𝑥2
= 𝑓2

𝑑2

𝑑𝑧2
 

Similarly, other higher derivatives include  

𝑑3

𝑑𝑥2
= 𝑓3

𝑑3

𝑑𝑧3
 

The wave variable, 𝑧 = 𝑥 − 𝑐𝑡 transforms the partial differential equation in Eq. (1) to an ordinary differential equation of the 

form 

Step 3. 𝑄(𝑣, 𝑣′, 𝑣′′ , 𝑣′′′ … ) = 0            (3) 

The ODE in step 3 is then integrated provided all terms contain derivatives, while the integration constants are taken as zero 

with respect to the localized solution 

Step 4.  We represent all derivatives and  tan ℎ by tan ℎ itself as follows 

 Let   𝐹 = 𝑡𝑎𝑛ℎ(𝑧)             (4) 

The successive differential coefficients of Eq. (4) become 
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𝐹′ = sech2(𝑧) = 1 − tanh2(𝑧) 

𝐹′ = 1 − 𝐹2 

𝐹′′ = −2 tanh(𝑧) sech2(𝑧) 

𝐹′′ = −2 tanh(1 − tanh2(𝑧))       

𝐹′′ = −2𝐹 + 2𝐹3 

𝐹′′′ = −2 + 8𝐹2 − 6𝐹4 

𝐹(𝑖𝑣) = 16𝐹 − 40𝐹3 + 24𝐹5 

Using step 4, we introduce a new independent variable of the form 

𝑌 = tanh(𝜇𝑧),   𝑧 = 𝑥 − 𝑐𝑡         (5) 

where 𝜇 is the wave number, then the corresponding derivatives are in the form 

𝑑

𝑑𝑧
= 𝜇(1 − 𝑌2)

𝑑

𝑑𝑌
 

𝑑2

𝑑𝑧2
= −2𝜇2𝑌(1 − 𝑌2)

𝑑

𝑑𝑌
+ 𝜇2(1 − 𝑌2)

𝑑2

𝑑𝑧2
 

 

𝑑3

𝑑𝑧3
= 2𝜇3(1 − 𝑌2)(3𝑌2 − 1)

𝑑

𝑑𝑌
− 6𝜇3𝑌(1 − 𝑌2)2

𝑑2

𝑑𝑧2
+ 𝜇3(1 − 𝑌2)3

𝑑3

𝑑𝑧3
 

𝑑4

𝑑𝑧4
= −8𝜇4𝑌(1 − 𝑌2)(3𝑌2 − 2)

𝑑

𝑑𝑌
+ 4𝜇4(1 − 𝑌2)2(9𝑌2 − 2)

𝑑2

𝑑𝑧2
− 12𝜇4𝑌(1 − 𝑌2)3

𝑑3

𝑑𝑧3
+ 𝜇4(1 − 𝑌2)4

𝑑4

𝑑𝑌4
 

 

Step 5. Using a finite expansion of the form 

𝑣(𝑥, 𝑡) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌𝑘 + ∑ 𝑏𝑘𝑌−𝑘𝑀
𝑘=1

𝑀
𝑘=0         (6) 

Step 6. Using exponential laws on the solution, we have the following 

𝑣′ ⟶ 𝑀 + 1 

𝑣′′ ⟶ 𝑀 + 2 

𝑣′′′ ⟶ 𝑀 + 3 

𝑣(𝑟) ⟶ 𝑀 + 𝑟 

𝑉 → 𝑀 

𝑉2 → 2𝑀 

𝑉3 → 3𝑀 
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𝑉(𝑟) → 𝑟𝑀 

(𝑉′)2 → (𝑀 + 1)2 

(𝑉′′)2 → (𝑀 + 2)2 

(𝑉𝑟)2 → (𝑀 + 𝑟)2 

(𝑉′)𝑟 → (𝑀 + 1)𝑟 

Where 𝑀 is a positive integer determined from a homogenous balance method so that a closed form analytical solution can be 

obtained. However, for negative values of 𝑀, a transformational formula is used to overcome the inherent difficulty and avert 

singularities.  

Step 7. By balancing the linear terms of the highest order in the resulting equation with the highest order nonlinear term, the 

parameter, 𝑀 is determined  

III. BANACH CONTRACTION METHOD (BCM) 

To illustrate the basics of the Banach Contraction method, we first look at some of the underlying definitions relevant to its 

analysis. 

Definition 3.1 (Contraction Mapping) 

Let (𝑋, 𝑑) be a metric space. A mapping 𝑓: 𝑋 → 𝑋 is said to be contraction mapping if there exist a positive number 𝑘 > 1, 

such that the following hold 

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑘𝑑(𝑥, 𝑦)   ∀ 𝑥, 𝑦 ∈ 𝑋 

Definition 3.2 (Banach Contraction Principle) 

Let (𝑋, 𝑑) be a complete metric space and 𝑓: 𝑋 → 𝑋 be a contraction mapping. Then 𝑓 has a unique fixed point 𝑥0 and for each 

𝑥 ∈ 𝑋, we have the 

(i) lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑥0 

(ii) For each 𝑥 ∈ 𝑋, we have 𝑑(𝑓𝑛(𝑥), 𝑥0) ≤
𝑘𝑛

1−𝑘
𝑑(𝑓(𝑥), 𝑥) 

Definition 3.3 (Banach Fixed Point Theorem) 

Let (𝑋, 𝑑) be a non-empty complete metric space with a contraction mapping 𝑓: 𝑋 → 𝑋, then 𝑓  admits a unique fixed-point 

𝑥 ∈ 𝑋, if 𝑓(𝑥) = 𝑥 

Definition 3.4  Let 𝐹 be a mapping of a complete metric space (𝑋, 𝑑) into itself such that 𝐹𝑘 is a contraction mapping of 𝑋 

for some positive integer 𝑘. Then 𝐹 has a unique fixed point in 𝑋 

Following [40-42], we consider a general functional equation as 

𝑣(𝑥) = 𝑁(𝑣) + 𝑓(𝑥)            (7) 

Where 𝑁(𝑣) is a nonlinear operator from a Banach space 𝐵 → 𝐵, 𝑓(𝑥) is a known integrable function of 𝑥 and 𝑣(𝑥) is an 

unknown function 



Liberty Ebiwareme / IJMTT, 67(4), 31-46, 2021 
 

35 

We seek a solution of 𝑣(𝑥) of Eq. (7) in series form as 

𝑣 = ∑ 𝑦𝑚
∞
𝑚=0                   (8) 

Decomposing the nonlinear operator, 𝑁 as an infinite series 

𝑁(∑ 𝑦𝑚
∞
𝑚=0 ) = 𝑁(𝑣0) + ∑ {𝑁(∑ 𝑦𝑚

𝑚
𝑚=0 ) − 𝑁(∑ 𝑦𝑚

𝑚−1
𝑚=0 )}∞

𝑚=1              (9) 

Combining Eqs. (8) and (9), Eq. (7) is rewritten in the form 

∑ 𝑦𝑚 = 𝑓(𝑥) + 𝑁(𝑣0) +∞
𝑚=0 ∑ {𝑁(∑ 𝑦𝑚

𝑚
𝑚=0 ) − 𝑁(∑ 𝑦𝑚

𝑚−1
𝑚=0 )}∞

𝑚=1            (10) 

Next, we define the recursive sequence of approximations as 

𝑣0
′ (𝑥) = 𝑓(𝑥) ⟹ 𝑣0(𝑥) = ∫ 𝑓

𝑥

0

(𝑥)𝑑𝑥 

𝑣1(𝑥) = 𝑣0(𝑥) + 𝑁(𝑣0) 

𝑣2(𝑥) = 𝑣0(𝑥) + 𝑁(𝑣1) 

𝑣3(𝑥) = 𝑣0(𝑥) + 𝑁(𝑣2) 

𝑣4(𝑥) = 𝑣0(𝑥) + 𝑁(𝑣3) 

     ⋮ 

𝑣𝑛(𝑥) = 𝑣0(𝑥) + 𝑁(𝑣𝑛−1), 𝑛 ≥ 1 

From the above recursive scheme, if 𝑁𝑘 is a contraction operator for some positive integer 𝑘, then 𝑁(𝑣) has a unique fixed-

point and hence the sequence above is convergent in view of theorem 3.4 see [43] 

Thus, the solution of Eq. (7) is given by 

𝑉(𝑥) = lim
𝑛→∞

𝑉𝑛(𝑥)          (11)  

  

IV. NUMERICAL EXAMPLE 

In this section, we solve the Kuramoto-Shivashinsky and Burgers-Huxley equations using the two methods and make 

comparative analysis between them to show which is more efficient and gives the solution at a lesser time. 

4.1 Burger-Huxley Equation: Tanh-coth solution 

Given the Burger-Huxley equation as 

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑢𝑢𝑥 + 𝑢(𝑘 − 𝑢)(𝑢 − 1)        (12) 

Let 𝑢(𝑥, 𝑡) = 𝑓(𝑧),   𝑧 = 𝑥 − 𝑐𝑡 be solution of Eq. (12)      (13) 

Putting Eq. (13) into Eq. (12), the PDE transforms into an ODE of the form 

𝑐𝑢′ + 𝑢𝑢′ + 𝑢′′ + 𝑢(𝑘 − 𝑢)(𝑢 − 1)        (14) 
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Balancing the nonlinear term 𝑢3, that has exponent 3𝑀, with the highest order derivative 𝑢′′ , that has the exponent 𝑀 + 2, we 

have 

3𝑀 = 𝑀 + 2 

So that 

𝑀 = 1 

The tanh-coth admits the use of the finite expression of the form 

𝑈(𝜇𝑧) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌𝑘 + ∑ 𝑏𝑘𝑌−𝑘

𝑚

𝑘=1

𝑚

𝑘=0

 

      = 𝑎0 + 𝑎1𝑌 + 𝑏1𝑌−1    (15) 

Substituting Eq. (15) into Eq. (14) and rearranging gives 

𝑐
𝑑𝑈(𝑧)

𝑑𝑌
+ 𝑈(𝑧)

𝑑𝑈(𝑧)

𝑑𝑌
+

𝑑2𝑈(𝑧)

𝑑𝑌2
+ 𝑈(𝑧)(𝑘 − 𝑈(𝑧))(𝑈(𝑧) − 1) 

Expressing the above in terms of the change in derivative, we obtain 

𝑐𝜇(1 − 𝑌2)
𝑑𝑆(𝑌)

𝑑𝑌
+ 𝜇𝑈(𝑧)(1 − 𝑌2)

𝑑𝑆(𝑌)

𝑑𝑌
− 2𝜇2𝑌(1 − 𝑌2)

𝑑𝑆(𝑌)

𝑑𝑌
+ 𝜇2(1 − 𝑌2)

𝑑2𝑆(𝑌)

𝑑𝑌2    (16) 

Collecting the coefficients of 𝑌𝑘 , 𝑘 ≥ 0, and setting each coefficient to zero leads to a system of algebraic equations in 

𝑎0, 𝑎1, 𝑏1, 𝜇 and 𝑐.  

Solving the resulting system in Eq. (16) using Mathematica, we obtain the following twelve set of solutions. 

Case 1. Putting 𝑏1 = 0, we have the following results for the unknowns 

𝑎0 =
1

2
, 𝑎1 = −

1

2
, 𝜇 =

1

4
, 𝑐 =

1

2
(1 − 4𝑘) 

𝑎0 =
𝑘

2
, 𝑎1 = −

𝑘

2
, 𝜇 =

𝑘

4
, 𝑐 =

1

2
(𝑘 − 4) 

𝑎0 =
𝑘 + 1

2
, 𝑎1 = −

𝑘 − 1

2
, 𝜇 =

𝑘 − 1

4
, 𝑐 =

1

2
(𝑘 + 1) 

𝑎0 =
1

2
, 𝑎1 =

1

2
, 𝜇 =

1

2
, 𝑐 = 𝑘 − 1 

𝑎0 =
𝑘

2
, 𝑎1 =

𝑘

2
, 𝜇 =

𝑘

2
, 𝑐 = 1 − 𝑘 

𝑎0 =
𝑘 + 1

2
, 𝑎1 =

𝑘 − 1

2
, 𝜇 =

𝑘 − 1

2
, 𝑐 = −(1 + 𝑘) 

Case 2. When 𝑎1 = 0, we get the following results 

𝑎0 =
1

2
, 𝑏1 = −

1

2
, 𝜇 =

1

4
, 𝑐 =

1

2
(1 − 4𝑘) 



Liberty Ebiwareme / IJMTT, 67(4), 31-46, 2021 
 

37 

𝑎0 =
𝑘

2
, 𝑏1 = −

𝑘

2
, 𝜇 =

𝑘

4
, 𝑐 =

1

2
(𝑘 − 4) 

𝑎0 =
𝑘 + 1

2
, 𝑏1 = −

𝑘 − 1

2
, 𝜇 =

𝑘 − 1

4
, 𝑐 =

1

2
(𝑘 + 1) 

𝑎0 =
1

2
, 𝑏1 =

1

2
, 𝜇 =

1

2
, 𝑐 = 𝑘 − 1 

𝑎0 =
𝑘

2
, 𝑏1 =

𝑘

2
, 𝜇 =

𝑘

2
, 𝑐 = 1 − 𝑘 

𝑎0 =
𝑘 + 1

2
, 𝑏1 =

𝑘 − 1

2
, 𝜇 =

𝑘 − 1

2
, 𝑐 = −(1 + 𝑘) 

The first case gives the kink solution of Eq. (1) as follows 

𝑢1(𝑥, 𝑡) =
1

2
(1 − tanh [

1

4
(𝑥 −

1 − 4𝑘

2
𝑡)]) 

𝑢2(𝑥, 𝑡) =
𝑘

2
(1 − tanh [

𝑘

4
(𝑥 −

𝑘 − 4

2
𝑡)]) 

𝑢3(𝑥, 𝑡) =
𝑘 + 1

2
−

𝑘 − 1

2
tanh [

𝑘 − 1

4
(𝑥 −

𝑘 + 1

2
𝑡)] 

𝑢4(𝑥, 𝑡) =
1

2
(1 + tanh [

1

2
(𝑥 − (𝑘 − 1)𝑡)]) 

𝑢5(𝑥, 𝑡) =
𝑘

2
(1 + tanh [

𝑘

2
(𝑥 − (1 − 𝑘)𝑡)]) 

𝑢6(𝑥, 𝑡) =
𝑘 + 1

2
−

𝑘 − 1

2
tanh [

𝑘 − 1

2
(𝑥 + (1 + 𝑘)𝑡)] 

The travelling wave solutions for the second case are as follows 

𝑢7(𝑥, 𝑡) =
1

2
(1 − coth [

1

4
(𝑥 −

1 − 4𝑘

2
𝑡)]) 

𝑢8(𝑥, 𝑡) =
𝑘

2
(1 − coth [

𝑘

4
(𝑥 −

𝑘 − 4

2
𝑡)]) 

𝑢9(𝑥, 𝑡) =
𝑘 + 1

2
−

𝑘 − 1

2
coth [

𝑘 − 1

4
(𝑥 −

𝑘 + 1

2
𝑡)] 

𝑢10(𝑥, 𝑡) =
1

2
(1 + coth [

1

2
(𝑥 − (𝑘 − 1)𝑡)]) 

𝑢11(𝑥, 𝑡) =
𝑘

2
(1 + coth [

𝑘

2
(𝑥 − (1 − 𝑘)𝑡)]) 

𝑢12(𝑥, 𝑡) =
𝑘 + 1

2
+

𝑘 − 1

2
coth [

𝑘 − 1

2
(𝑥 + (1 + 𝑘)𝑡)] 
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Figure 1. Kink solution of u1(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 

 

 

 

Figure 2.  kink solution of u3(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 
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Figure 3. kink solution of u4(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 

 

 

 

Figure 4. Kink solution of u6(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 
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Figure 5. Travelling wave solution of u7(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 

 

Figure 6. Travelling wave solution of u9(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 
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Figure 7. Travelling wave solution of u10(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 

 

 

Figure 8. Travelling wave solution of u12(x, t) for c = 0.5, −10 ≤ x ≤ 10, −0.4 ≤ t ≤ 0.4 
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4.2. Kuramoto-Shivashinsky Equation: Tanh-coth solution 

𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑏𝑢2𝑥 + 𝑘𝑢4𝑥 = 0         (17) 

Using the wave transformation, 

𝑢(𝑥, 𝑡) = 𝑓(𝑧), 𝑧 = 𝑥 − 𝑐𝑡       

The PDE transforms into an ODE and on integration and setting the constants of integration as zero, we get 

−𝑐𝑢 +
𝑎

2
𝑢2 + 𝑏𝑢′′ + 𝑘𝑢′′′ = 0         (18) 

Now by balancing the highest order derivative term, 𝑢′′′ with the power of the nonlinear term, 𝑢2 

We have, 𝑀 + 3 = 2𝑀 ⟹ 𝑀 = 3 

Using the Tanh-coth ansatz of the form  

𝑢(𝑧) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌𝑘 + ∑ 𝑏𝑘𝑌−𝑘,   𝑌 = tanh(𝜇𝑧)3
𝑘=1

3
𝑘=0       (19) 

Putting Eq. (19) into Eq. (18), we obtain an equation in the form 

𝑢(𝑥, 𝑡) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌𝑘 + ∑ 𝑏𝑘𝑌−𝑘
3

𝑘=1

3

𝑘=0
 

𝑆(𝑌) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑏1𝑌−1 + 𝑏2𝑌−2 + 𝑏3𝑌−3 

𝑆(𝑌) = 𝑎0 + 𝑎1𝑌 + 𝑎2𝑌2 + 𝑎3𝑌3 +
𝑏1

𝑌
+

𝑏2

𝑌2
+

𝑏3

𝑌3
 

−𝑐𝑆(𝑌) +
𝛼

2
𝑆2(𝑌) − 𝜇2𝑏 [2𝑌(1 − 𝑌2)

𝑑𝑆(𝑌)

𝑑𝑌
− (1 − 𝑌2)

𝑑2𝑆(𝑌)

𝑑𝑌2
] + 𝑘 [−2𝑌(1 − 𝑌2) (−2𝑌

𝑑3𝑆(𝑌)

𝑑𝑌3
)] + (1 − 𝑌2)

𝑑2𝑆(𝑌)

𝑑𝑌2 +

(1 − 𝑌2)2 (−2
𝑑𝑆(𝑌)

𝑑𝑌
− 2𝑌

𝑑2𝑆(𝑌)

𝑑𝑌3
) + (1 − 𝑌2)

𝑑3𝑆(𝑌)

𝑑𝑌3          

         (20) 

Collecting the coefficients of 𝑌, and solving the resulting algebraic system of equations in Eq. (20) for 

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 and 𝜇, we obtain the constants with the help of Mathematica as follows 

𝑎0 =
30𝑏

19𝑎
√

−𝑏

19𝑘
, 𝑎1 =

135𝑏

152𝑎
√

−𝑏

19𝑘
, 𝑎2 = 0, 𝑎3 = −

15𝑏

152𝑎
√

−𝑏

19𝑘
 

𝑏1 =
135𝑏

152𝑎
√

−𝑏

19𝑘
, 𝑏2 = 0, 𝑏3 = −

15𝑏

152𝑎
√

−𝑏

19𝑘
, 𝜇 =

1

4
√

−𝑏

19𝑘
, 𝑐 =

30𝑏

19𝑎
√

−𝑏

19𝑘
,  

𝑏

𝑘
< 0 

Similarly, for  
𝑏

𝑘
> 0, we have the following results for the coefficients 

𝑎0 =
30𝑏

19𝑎
√

11𝑏

19𝑘
, 𝑎1 = −

45𝑏

152𝑎
√

11𝑏

19𝑘
, 𝑎2 = 0, 𝑎3 =

165𝑏

152𝑎
√

11𝑏

19𝑘
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𝑏1 = −
45𝑏

152𝑎
√

11𝑏

19𝑘
, 𝑏2 = 0, 𝑏3 =

165𝑏

152𝑎
√

11𝑏

19𝑘
, 𝜇 =

1

4
√

11𝑏

19𝑘
, 𝑐 =

30𝑏

19
√

11𝑏

19𝑘
 

If  
𝑏

𝑘
< 0, the soliton solution for the first set is given as 

𝑢(𝑥, 𝑡) =
15𝑏

152𝑎
√

−𝑏

19𝑘
(16 + 9𝑌 − 𝑌3 + 9𝑌−1 − 𝑌−3)       (21) 

Similarly, for   
𝑏

𝑘
> 0 the soliton solution become 

𝑢(𝑥, 𝑡) =
15𝑏

152𝑎
√

11𝑏

19𝑘
(16 − 3𝑌 + 11𝑌3 − 3𝑌−1 + 11𝑌−3) 

4.3. Solution of Burger-Huxley Equation by Banach Contraction Method 

The general Burgers-Huxley equation is a nonlinear PDE of the form  

𝑢𝑡 + 𝛼𝑢𝛿𝑢𝑥 − 𝑢𝑥𝑥 = 𝛽𝑢(1 − 𝑢𝛿)(𝑢𝛿 − 𝛾), 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0      (22) 

Where 𝛼, 𝛽, 𝛾 and 𝛿 are parameters, 𝛽 ≥ 0, 𝛾, 𝛿 > 0 

When  𝛼 = 0, 𝛿 = 1, Eq. (22) reduces to the Huxley Equation expressible of the form 

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑢(𝑘 − 𝑢)(𝑢 − 1), 𝑘 ≠ 0           (23) 

Now putting 𝛿 = 𝛽 = 𝛾 = 1, 𝛼 = −1 in Eq. (22) we have the Burger-Huxley equation as 

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑢𝑢𝑥 − 𝑢(𝑢 − 1)2            (24) 

Integrating both sides of Eq. (24) from 0 to 𝑡 and using the initial condition at 𝑡 = 0, we obtain 

𝑢(𝑥, 𝑡) = 2𝑥 + ∫ [𝑢𝑥𝑥 + 𝑢𝑢𝑥 − 𝑢(𝑢 − 1)2]𝑑𝑡
𝑡

0
          (25) 

Applying Banach Contraction method to Eq. (25), we get 

𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝑁(𝑣) 

Where  𝑢0(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) = 2𝑥 

𝑁(𝑣) = ∫ [𝑢𝑥𝑥 + 𝑢𝑢𝑥 − 𝑢(𝑢 − 1)2]𝑑𝑡
𝑡

0

 

Then the recursive scheme for Eq. (25) become 

𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∫ [(𝑢𝑛−1(𝑥, 𝑡))
𝑥𝑥

+ 𝑢𝑛−1(𝑥, 𝑡)(𝑢𝑛−1(𝑥, 𝑡))
𝑥

− 𝑢𝑛−1(𝑥, 𝑡)(𝑢𝑛−1(𝑥, 𝑡) − 1)2] 𝑑𝑡
𝑡

0
, 𝑛 ≥ 1   

           (26) 

Then we have the iterate of the problem as follows using Eq. (26) 

𝑢0(𝑥, 𝑡) = 2𝑥 
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𝑢1(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∫ [(𝑢0(𝑥, 𝑡))
𝑥𝑥

+ 𝑢0(𝑥, 𝑡)(𝑢0(𝑥, 𝑡))
𝑥

− 𝑢0(𝑥, 𝑡)(𝑢0(𝑥, 𝑡) − 1)2] 𝑑𝑡
𝑡

0
      

           (27) 

𝑢1(𝑥, 𝑡) = 2𝑥(1 + 𝑡 + 4𝑥𝑡 − 4𝑥2𝑡) 

𝑢2(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∫ [(𝑢1(𝑥, 𝑡))
𝑥𝑥

+ 𝑢1(𝑥, 𝑡)(𝑢1(𝑥, 𝑡))
𝑥

− 𝑢1(𝑥, 𝑡)(𝑢1(𝑥, 𝑡) − 1)2] 𝑑𝑡
𝑡

0

 

4.4. Kuramoto-Shivashinsky Equation by Banach Contraction Method 

A nonlinear PDE of the form below where 𝑎, 𝑏 and 𝑘 are constants is called Kuramoto-Shivashinsky equation 

𝑢𝑡 + 𝑎𝑢𝑢𝑥 + 𝑏𝑢2𝑥 + 𝑘𝑢4𝑥 = 0         (28) 

Putting 𝑎 = 𝑏 = 𝑘 = 1, we get the simplified form of Eq. (28) as 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢2𝑥 + 𝑢4𝑥 = 0 

Rearranging the above gives the form 

𝑢𝑡 = −𝑢𝑢𝑥 − 𝑢2𝑥 − 𝑢4𝑥          (29) 

Subject to the initial condition 

𝑢(𝑥, 0) = 2𝑥           (30) 

Integrating both sides of Eq. (29) from 0 to 𝑡 subject to Eq. (30), we obtain 

𝑢(𝑥, 𝑡) = 2𝑥 + ∫ (−𝑢𝑢𝑥 − 𝑢2𝑥 − 𝑢4𝑥)𝑑𝑡
𝑡

0
        (31) 

Applying Banach Contraction method (BCM) to Eq. (30), we get 

𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝑁(𝑣) 

Where 𝑓(𝑥, 𝑡) = 2𝑥 

𝑁(𝑣) = ∫ (−𝑢𝑢𝑥 − 𝑢2𝑥 − 𝑢4𝑥)𝑑𝑡
𝑡

0

 

The recursive relation for Eq. (28) becomes 

𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) − ∫ [𝑢𝑛−1(𝑥, 𝑡)(𝑢𝑛−1(𝑥, 𝑡))
𝑥

+ (𝑢𝑛−1(𝑥, 𝑡))
2𝑥

+ (𝑢𝑛−1(𝑥, 𝑡))
4𝑥

] 𝑑𝑡
𝑡

0
, 𝑛 = 1,2,3.. (32) 

Then we have the iterates of the problem as follows 

𝑢0(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) = 2𝑥 

𝑢1(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) − ∫ [𝑢0(𝑥, 𝑡)(𝑢0(𝑥, 𝑡))
𝑥

+ (𝑢0(𝑥, 𝑡))
2𝑥

+ (𝑢0(𝑥, 𝑡))
4𝑥

] 𝑑𝑡
𝑡

0
    (33) 

𝑢1(𝑥, 𝑡) = 2𝑥 − 4𝑥𝑡 

Similarly, for the next iterate we get 
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𝑢2(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) − ∫ [𝑢1(𝑥, 𝑡)(𝑢1(𝑥, 𝑡))
𝑥

+ (𝑢1(𝑥, 𝑡))
2𝑥

+ (𝑢1(𝑥, 𝑡))
4𝑥

] 𝑑𝑡
𝑡

0
    (34) 

𝑢2(𝑥, 𝑡) = 2𝑥 − 4𝑥𝑡 + 8𝑥𝑡2 −
16

3
𝑥𝑡3 

Continuing in the same way, the problem converges to the exact solution using the identity 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) 

𝑢(𝑥, 𝑡) =
2𝑥

(1+𝑡)2           (35) 

V. CONCLUDING REMARKS 

In this research article, two powerful semi-analytical methods in Tanh-coth and Banach Contraction method is introduced to 

handle the nonlinear Kuramoto-Shivashinsky and Burger-Huxley equations. The efficiency of the methods is shown by 

applying the procedure to successfully solve the aforementioned equations to produce analytical solutions. The study reveals 

the performance of the methods are reliable and efficient in handling nonlinear problems to obtain a variety of exact as well as 

solitary solutions.   
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