Function Theory in Exotic Clifford Algebras and its Applications

Nguyen Thi Huyen ${ }^{\text {\#1 }}$, Doan Thanh Son ${ }^{* 2}$
${ }^{\text {\#l }}$ University of Transport and Communication, Ha Noi, Viet Nam
${ }^{* 2}$ University of Finance and Business Administration, Hung Yen, Viet Nam

Abstract

In this paper, we will introduce Exotic Clifford algebras, whose structure relations are $e_{j}^{2}+e_{j}+\alpha_{j}=0$ and $e_{i} e_{j}+e_{j} e_{i}+e_{i}+e_{j}=0$. From this structure, we will present Cauchy Integral formula. Moreover, boundary value problems for regular functions taking value in Exotic Clifford algebras can be solved in some low-dimensional cases.

I. INTRODUCTION

The usual way to introduce Clifford algebras is to start from bilinear forms in linear spaces (see [5]). However, the usual Clifford algebras over \sqcup^{n+1} can also be constructed by equivalence classes of polynomials in n free variables $X_{1}, X_{2}, \ldots, X_{n}$, where the polynomials have relation structures $X_{j}^{2}+1$ and $X_{i} X_{j}+X_{j} X_{i}, i, j=1, \ldots, n, i \neq j$ [9]. This yields the usual Clifford algebra with $e_{1}^{2}=-1$ and $e_{i} e_{j}+e_{j} e_{i}=0$.

In this paper, we introduce an Exotic Clifford algebra whose structure relations are

$$
\left\{\begin{array}{l}
e_{j}^{2}+e_{j}+\alpha_{j}=0 \\
e_{i} e_{j}+e_{j} e_{i}+e_{i}+e_{j}=0
\end{array}\right.
$$

First, we derive from the algebras built into \square^{2} and \square^{3}, and then generalized to \square^{n+1}.
In \square^{2}, we introduce $\square_{(\alpha)}$ algebra with basic elements $\{1, i\}$, where 1 is the unit element and i is the imaginary element satisfying $i^{2}+i+\alpha \quad \alpha \in \square$. An element $\alpha \in \square_{(\alpha)}$ can be written as $a=a_{0}+i a_{1} \quad a_{0}, a_{1} \in \square$. The conjugate of $a \in \square_{(\alpha)}$ is defined by $\bar{a}^{-(\alpha)}=a_{0}-(1+i) a_{1}$. We have $a a^{-(\alpha)}=a^{-(\alpha)} a=a_{0}^{2}-a_{0} a_{1}+\alpha a_{1}^{2}$, if $\alpha>\frac{1}{4}$ then $a a^{-(\alpha)} \geq 0$, and $a a^{-(\alpha)}=0$ if and only if $a=0$, that means $a_{0}=0$ and $a_{1}=0$. In this section, we only consider the case $\alpha>\frac{1}{4}$.

We denote $|a|_{(\alpha)}=\sqrt{a a^{-(\alpha)}}$ the norm of a. The inverse element of a nonzero element $a \in \square_{(\alpha)}$, we denote by a^{-1} such that:

$$
a^{-1}=\frac{\bar{a}^{-(\alpha)}}{|a|_{(\alpha)}^{2}}=\frac{a_{0}-a_{1}}{a_{0}^{2}-a_{0} a_{1}+\alpha a_{1}^{2}}-i \frac{a_{1}}{a_{0}^{2}-a_{0} a_{1}+\alpha a_{1}^{2}} .
$$

We can prove that $\square_{(\alpha)}$ it is a field with the usual addition and multiplication rule. The number 0 and 1 are neutral elements under addition and multiplication, respectively (see [10]).

Let Ω be a domain in \square^{2}. Then a mapping

$$
\begin{aligned}
u: \quad \Omega & \rightarrow \square_{(\alpha)} \\
& x \mapsto u(x)
\end{aligned}
$$

Defines a function u talking values in $\square_{(\alpha)}$, and u can be presented by $u\left(x_{0}, x_{1}\right)=u_{0}\left(x_{0}, x_{1}\right)+i u_{1}\left(x_{0}, x_{1}\right)$. Note that $u: \Omega \rightarrow \square{ }_{(\alpha)}$, that means, its define two functions $u_{0}: \Omega \rightarrow \square$ and $u_{1}: \Omega \rightarrow \square$, respectively.

Derivative function u with respect to x_{j} denoted by $\frac{\partial u}{\partial x_{j}}, j=0,1$, where $\frac{\partial u}{\partial x_{j}}=\frac{\partial u_{0}}{\partial x_{j}}+i \frac{\partial u_{1}}{\partial x_{j}}$. The function u is called to $\square^{k}(\Omega)$ if and only if all components $u_{j}, \quad(j=0,1)$ belong to $\square^{k}(\Omega)$, respectively.

The Complex derivative for the function taking values $\square_{(\alpha)}$ is given in [1], which means: Let $u: \Omega \subseteq \square_{(\alpha)} \rightarrow \square_{(\alpha)}$ be a complex function. Then we say the function u is differentiable $z_{0}=\xi_{0}+i \xi_{1}$ if the following limit exists:

$$
\lim _{h \rightarrow 0}(-i) \frac{u\left(z_{0}+h\right)-u\left(z_{0}\right)}{h}
$$

Where $h=h_{0}+i h_{1}$ and $h=h_{1}-i h_{0}$. If this limit exists, the complex derivative z_{0} is denoted by $u^{\prime}\left(z_{0}\right)$.
The Cauchy-Riemann operator and its adjoin are defined by

$$
\begin{aligned}
& D=\partial_{0}+i \partial_{1} \\
& \bar{D}^{(\alpha)}=\partial_{0}-(1+i) \partial_{1}
\end{aligned}
$$

Where $\partial_{j}=\frac{\partial}{\partial x_{j}}, j=0,1$.
We have $\bar{D}^{(\alpha)} D=D \bar{D}^{(\alpha)}=\partial_{0}^{2}-\partial_{0} \partial_{1}+\alpha \partial_{1}^{2}$. Since $\alpha>\frac{1}{4}$ the quadratic matrix $\bar{D}^{(\alpha)} D$ is positive definite, then this operator is the elliptic operator, and it's denoted by $\Delta_{2}^{(\alpha)}$.
A function u is called α-regular if $D u=0$, which means:

$$
\begin{gather*}
\partial_{0} u_{0}-\alpha \partial_{1} u_{1}=0 \tag{1.1}\\
\partial_{0} u_{1}+\partial_{1} u_{0}-\partial_{1} u_{1}=0 . \tag{1.2}
\end{gather*}
$$

We can show that, if \boldsymbol{u} is α-regular function, then $\Delta_{2}^{(\alpha)} u_{0}=0$ and $\Delta_{2}^{(\alpha)} u_{1}=0$.
Ramark 1.1. If the function u taking values $\square_{(\alpha)}$ is differentiable, then u it satisfies the system (1.1), (1.2) (and vice versa).

Ramark 1.1. Suppose u and v are functions taking value in $\square_{(\alpha)}$. Then the following product rule is true

$$
D(u, v)=(D u) \cdot v+u \cdot(D v)
$$

The integral of a function taking values in $\square_{(\alpha)}$ can be represented in [2].
The Dirichlet boundary value problem for a α - regular function in a simply connected and bounded domain as follows: Let Ω be a simply bounded domain in x_{0}, x_{1} - plane with sufficiently smooth boundary. Find a α-regular function $u=u_{0}+i u_{1}$ in Ω whose imaginary part is prescribed on $\partial \Omega$, while its real part u_{0} is given at the one point in $\bar{\Omega}$.
This problem can be solved similarly in a complex plane for a homomorphic function. Indeed, if u_{0}, u_{1} are the solution of (1.1), (1.2), then u_{0} and u_{1} are a solution of the equation

$$
\begin{gathered}
\partial_{0}^{2} u_{0}-\partial_{0} \partial_{1} u_{0}+\alpha \partial_{1}^{2} u_{0}=0 \\
\text { and } \partial_{0}^{2} u_{1}-\partial_{0} \partial_{1} u_{1}+\alpha \partial_{1}^{2} u_{1}=0 .
\end{gathered}
$$

Knowing the value of u_{1} the whole boundary $\partial \Omega, u_{1}$ is uniquely determined in the whole domain Ω (see the book [3]).

From (1.1), (1.2), we have

$$
\partial_{0} u_{0}=\alpha \partial_{1} u_{1}=p_{0}
$$

$$
\partial_{1} u_{0}=-\partial_{0} u_{1}+\partial_{1} u_{1}=p_{1},
$$

and

$$
\partial_{1} p_{0}-\partial_{0} p_{1}=\alpha \partial_{1}^{2} u_{1}+\partial_{0}^{2} u_{1}-\partial_{0} \partial_{1} u_{1}=\Delta_{2}^{(\alpha)} u_{1}=0
$$

This implies that the compatibility condition u_{0} is satisfied and, consequently, u_{0} is uniquely determined up to an arbitrarily constant. This arbitrary constant is uniquely determined, too, if one prescribes the value of u_{0} at one point P_{0} in $\bar{\Omega}$.

II. FUNCTION THEORY IN THE EXOTIC QUATERNION ALGEBRA $\mathrm{H}_{(\alpha)}$

2.1. The Exotic Quaternion algebra $\mathrm{H}_{(\alpha)}$

In the \square^{3}, we introduce algebra $\mathrm{H}_{(\alpha)}$ which has a basic element $\left\{e_{0}=1, e_{1}, e_{2}\right\}$ with the relations

$$
\begin{aligned}
& e_{1}^{2}+e_{1}+\alpha_{1}=0 \\
& e_{2}^{2}+e_{2}+\alpha_{2}=0 \\
& e_{1} e_{2}+e_{2} e_{1}+e_{1}+e_{2}=0
\end{aligned}
$$

An element $a \in H_{(\alpha)}$ can be presented by $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{12} e_{1} e_{2}$ and adjoin of a :

$$
\bar{a}^{(\alpha)}=a_{0}-a_{1}\left(1+e_{1}\right)-a_{2}\left(1+e_{2}\right)+a_{12}\left(1+e_{1}\right)\left(1+e_{2}\right) .
$$

We have

$$
a \bar{a}^{(\alpha)}=\bar{a}^{(\alpha)} a=a_{0}^{2}+\alpha_{1} a_{1}^{2}+\alpha_{2} a_{2}^{2}+\alpha_{1} \alpha_{2} a_{12}^{2}-a_{0} x_{1}-a_{0} x_{2}+a_{0} a_{12}-\alpha_{1} a_{1} a_{12}-\alpha_{2} a_{12} a_{12}
$$

The coefficient matrix if $a a^{-(\alpha)}$ can presented by

$$
M=\left(\begin{array}{cccc}
1 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \alpha_{1} & 0 & -\frac{\alpha_{1}}{2} \\
-\frac{1}{2} & 0 & \alpha_{2} & -\frac{\alpha_{2}}{2} \\
\frac{1}{2} & -\frac{\alpha_{1}}{2} & -\frac{\alpha_{2}}{2} & \alpha_{1} \alpha_{2}
\end{array}\right)
$$

Let

$$
M_{1}=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
-\frac{1}{2} & \alpha_{1}
\end{array}\right), M_{2}=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \alpha_{1} & 0 \\
-\frac{1}{2} & 0 & \alpha_{2}
\end{array}\right)
$$

By simple calculation, we have: $\operatorname{det}\left(M_{1}\right)=\alpha_{1}-\frac{1}{4}, \operatorname{det}\left(M_{2}\right)=\frac{1}{4}\left(4 \alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}\right), \operatorname{det}(M)=\frac{1}{16}\left(4 \alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}\right)^{2}$. Suppose

$$
\begin{equation*}
\alpha_{1}>\frac{1}{4} \quad \text { and } \quad \alpha_{1}+\alpha_{2}<4 \alpha_{1} \alpha_{2} \tag{2.1}
\end{equation*}
$$

Then, we have $a a^{-(\alpha)} \geq 0$, and we denote it by $|a|_{(\alpha)}^{2}=a a^{-(\alpha)}$ or $|a|_{(\alpha)}=\sqrt{a a^{-(\alpha)}}$. If $a \neq 0$ then there exists uniquely inverses element of $a: a^{-1}=\frac{\bar{a}^{-(\alpha)}}{|a|_{(\alpha)}^{2}}$.
Remark 2.1. It is not difficult to show that $\overline{\bar{a}}^{(\alpha)}=a$.
Let Ω be a domain in \square^{3}. Then a mapping

$$
\begin{aligned}
u: \quad \Omega & \rightarrow H_{(\alpha)} \\
x & \mapsto u(x)
\end{aligned}
$$

defines a function u taking values in $H_{(\alpha)}$, and u can be presented by

$$
u\left(x_{0}, x_{1}, x_{2}\right)=u_{0}\left(x_{0}, x_{1}, x_{2}\right)+u_{1}\left(x_{0}, x_{1}, x_{2}\right) e_{1}+u_{2}\left(x_{0}, x_{1}, x_{2}\right) e_{2}+u_{12}\left(x_{0}, x_{1}, x_{2}\right) e_{1} e_{2} .
$$

Derivatives of function u respect to $x_{j},(j=0,1,2)$ are denoted by $\frac{\partial u}{\partial x_{j}}$ (or $\partial_{j} u$), where

$$
\frac{\partial u}{\partial x_{j}}=\frac{\partial u_{0}}{\partial x_{j}}+\frac{\partial u_{1}}{\partial x_{j}} e_{1}+\frac{\partial u_{2}}{\partial x_{j}} e_{2}+\frac{\partial u_{12}}{\partial x_{j}} e_{1} e_{2} .
$$

The function u to be called belongs to $C^{k}(\Omega)$ if and only if components $u_{j}(j=0,1,2,12)$ belong to $C^{k}(\Omega)$, respectively.
The Cauchy - Riemann operator and its adjoin can be presented by

$$
\begin{aligned}
& D=\partial_{0}+e_{1} \partial_{1}+e_{2} \partial_{2} \\
& \bar{D}^{(\alpha)}=\partial_{0}-\left(1+e_{1}\right) \partial_{1}-\left(1+e_{2}\right) \partial_{2} .
\end{aligned}
$$

And, we have

$$
\bar{D}^{(\alpha)} D=\partial_{0}^{2}+\alpha_{1} \partial_{1}^{2}-\partial_{0} \partial_{1}-\partial_{0} \partial_{2} .
$$

Suppose that $\alpha_{1} \alpha_{2}$ satisfies (2.1). Then $\bar{D}^{(\alpha)} D$ is the eliptic operator, we denote by $\Delta_{3}^{(\alpha)}$.

2.2. Fundamental solution, Cauchy - pompeiu Integral Formula

From the above definition, the coefficient matrix $\bar{D}^{(\alpha)} D$ can be presented by

$$
M_{2}=\left(\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \alpha_{1} & 0 \\
-\frac{1}{2} & 0 & \alpha_{2}
\end{array}\right) .
$$

In this section, we assume that condition (2.1) is satisfied. Therefore the matrix M_{2} has an inverse matrix in the form

$$
A=\frac{1}{4 \alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}}\left(\begin{array}{ccc}
4 \alpha_{1} \alpha_{2} & 2 \alpha_{2} & 2 \alpha_{1} \\
2 \alpha_{2} & 4 \alpha_{2}-1 & 1 \\
2 \alpha_{1} & 1 & 4 \alpha_{1}-1
\end{array}\right)=\left(\begin{array}{ccc}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right)
$$

Where $a_{i j}=a_{j i}, i, j=1,2$. Using these coefficients, define for two points $x=\left(x_{0}, x_{1}, x_{2}\right)$ and $\xi=\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$ of Π^{3} a (nonEuclidean) distance ρ by

$$
\begin{equation*}
\rho^{2}=\sum_{i, j=0}^{2} a_{i j}\left(x_{i}-\xi_{i}\right)\left(x_{j}-\xi_{j}\right) \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
H=\sum_{i, j=0}^{2} a_{0 j}\left(x_{j}-\xi_{j}\right)-\sum_{i=1}^{2}\left(1+e_{i}\right) \sum_{k=0}^{2} a_{i k}\left(x_{k}-\xi_{k}\right) . \tag{2.3}
\end{equation*}
$$

Now we are going to show that

$$
\begin{equation*}
E(x, \xi)=\frac{1}{4 \pi^{2}} \cdot \frac{H}{\rho^{3}} \tag{2.4}
\end{equation*}
$$

is a fundamental solution of $D u=0$ with singularity at ξ.
Indeed, to simplify the calculation, choose $\xi=(0,0,0)$, we get

$$
\begin{aligned}
D E & =\frac{1}{4 \pi^{2}} \sum_{j=0}^{3} e_{j} \partial_{j} E_{0} \\
& =\frac{1}{4 \pi^{2}}\left(\frac{1}{\rho^{3}} \sum_{j=0}^{3} e_{j} \partial_{j} H-\frac{3}{\rho^{4}} \sum_{j=0}^{3} e_{j} H \partial_{j} \rho\right) \\
& =\frac{1}{4 \pi^{2}}((I)-(I I)) .
\end{aligned}
$$

We have ($k=0,1,2$)

$$
\begin{gathered}
\partial_{k} H=a_{0 k}-\left(1+e_{1}\right) a_{1 k}-\left(1+e_{2}\right) a_{2 k} \\
\partial_{k} \rho=\frac{1}{\rho} \sum_{j=0}^{2} a_{k j} x_{j} .
\end{gathered}
$$

Since $M_{2} A=I$ and $a_{i j}=a_{j i}$, we have

$$
\begin{aligned}
(I) & =\frac{a_{00}-a_{10}-a_{20}+\alpha_{1} a_{11}+\alpha_{2} a_{22}}{\rho^{3}} \\
& =\frac{\left(a_{00}-\frac{1}{2} a_{10}-\frac{1}{2} a_{20}\right)+\left(-\frac{1}{2} a_{01}+\alpha_{1} a_{11}\right)+\left(-\frac{1}{2} a_{02}+\alpha_{2} a_{22}\right)}{\rho^{3}} \\
& =\frac{3}{\rho^{3}},
\end{aligned}
$$

and

$$
\begin{aligned}
(I I) & =\frac{3}{\rho^{5}}\left(H \sum_{j=0}^{2} a_{0 j} x_{j}+e_{1} H \sum_{j=0}^{2} a_{1 j} x_{j}+e_{2} H \sum_{j=0}^{2} a_{2 j} x_{j}\right) \\
& =\frac{3}{\rho^{5}}\left[\left(\sum_{j=0}^{2} a_{0 j} x_{j}\right)^{2}+\alpha_{1}\left(\sum_{j=0}^{2} a_{1 j} x_{j}\right)^{2}+\alpha_{2}\left(\sum_{j=0}^{2} a_{2 j} x_{j}\right)^{2}-\left(\sum_{j=0}^{2} a_{0 j} x_{j}\right)\left(\sum_{k=0}^{2} a_{1 k} x_{k}\right)-\left(\sum_{j=0}^{2} a_{0 j} x_{j}\right)\left(\sum_{k=0}^{2} a_{2 k} x_{k}\right)\right] .
\end{aligned}
$$

In this equation using $M_{2} A=I$, the coefficient for x_{0}^{2} can be written in the following form

$$
\begin{aligned}
& a_{00}^{2}+\alpha_{1} a_{10}^{2}+\alpha_{2} a_{20}^{2}-a_{00} a_{01}-a_{00} a_{01} \\
& =a_{00}\left(a_{00}-\frac{1}{2} a_{01}-\frac{1}{2} a_{02}\right)+a_{01}\left(-\frac{1}{2} a_{00}+\alpha_{1} a_{01}\right)+a_{02}\left(-\frac{1}{2} a_{00}+\alpha_{2} a_{02}\right) \\
& =a_{00}
\end{aligned}
$$

Similarly, we can calculate the coefficients of $x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}$ and $x_{1} x_{2}$ are $a_{11}, a_{22}, 2 a_{02}$ and a_{12}, respectively. And so

$$
\begin{aligned}
(I I) & =\frac{3}{\rho^{5}}\left(a_{00} x_{0}^{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+2 a_{01} x_{0} x_{1}+2 a_{02} x_{0} x_{2}+2 a_{12} x_{1} x_{2}\right) \\
& =\frac{3}{\rho^{5}} \cdot \rho^{2}=\frac{3}{\rho^{3}} .
\end{aligned}
$$

Therefore, $D E=0$. By analogy, we can prove that $E D=0$.
Remark 2.2. In (2.3), we denote

$$
\begin{aligned}
& H_{i}=\sum_{k=0}^{2} a_{i k}\left(x_{k}-\xi_{k}\right), i=0,1,2 \\
& H_{12}=0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& H=H_{0}-H_{1}\left(1+e_{1}\right)-H_{2}\left(1+e_{2}\right)+H_{12}\left(1+e_{1}\right)\left(1+e_{2}\right), \\
& \bar{H}^{(\alpha)}=H_{0}+H_{1} e_{1}+H_{2} e_{2}+H_{12} e_{1} e_{2} .
\end{aligned}
$$

And so (see calculate with (II)), we have $\bar{H}^{(\alpha)} H=\rho^{2}$. From this, we obtain

$$
\begin{equation*}
|E(x, \xi)|_{(\alpha)}=\frac{|H|_{(\alpha)}}{\rho^{3}}=\frac{\sqrt{\bar{H}^{(\alpha)} H}}{\rho^{3}}=\frac{1}{\rho^{2}} . \tag{2.5}
\end{equation*}
$$

Now we consider the usual Euclidean distance $r=|x-\xi|$ for $x \neq \xi$, we can write $x-\xi$ in the form $r x^{*}$, where $\left|x^{*}\right|=1$. For such a point, the non- Euclidean distance ρ_{0} between the point x^{*} and $(0,0, \ldots, 0)$ has a positive infimum c_{0}, i.e., $\rho_{0} \geq c_{0}$. And, from the definition of ρ shows that $\rho=r \rho_{0}$. Hence we have $\frac{1}{\rho^{2}} \leq \frac{\text { Constant }}{r^{2}}$. This implies that $E(x, \xi)$ it has a weak singularity $x=\xi$.

Let Ω be a domain in \square^{3} with sufficiently smooth boundary $\partial \Omega, N=\left(N_{0}, N_{1}, N_{2}\right)$ the outer unit normal of $\partial \Omega, f_{0}, f_{1}$, f_{2} real-valued functions continuously differentiable in $\bar{\Omega}$. Then we have

$$
\begin{equation*}
\int_{\Omega} \sum_{j=0}^{2} \partial_{j} f_{j} d x=\int_{\partial \Omega} \sum_{j=0}^{2} \partial_{j} N_{j} d \mu \tag{2.6}
\end{equation*}
$$

where $d \mu=$ measure element of $\partial \Omega$.
Let $u=\sum_{A} u_{A} e_{A}, u=\sum_{B} u_{B} e_{B}, A, B \in\{0,1,2,12\}$ are $H_{(\alpha)}$ - valued functions defined $\bar{\Omega}$, and suppose that u_{A}, v_{B} are continuously differentiable functions in $\bar{\Omega}$. We consider (2.6) for $f_{j}=v_{B} \cdot u_{A}, f_{k}=0$ for all $k \neq j$

$$
\int_{\Omega} \partial_{j}\left(v_{B} u_{A}\right) d x=\int_{\partial \Omega} v_{B} u_{A} N_{j} d \mu=\int_{\partial \Omega} v_{B} N_{j} d \mu u_{A} .
$$

Apply the product rule for real-valued functions u_{A} and v_{B}, we have

$$
\begin{equation*}
\int_{\Omega}\left(\partial_{j} v_{B} u_{A}+v_{B} \partial_{j} u_{A}\right) d x=\int_{\partial \Omega} v_{B} N_{j} d \mu u_{A} \tag{2.7}
\end{equation*}
$$

From this, we get

$$
\int_{\Omega}\left(\partial_{j}\left(v_{B} e_{B}\right) e_{j} u_{A} e_{A}+v_{B} e_{B} e_{j} \partial_{j}\left(u_{A} e_{A}\right)\right) d x=\int_{\partial \Omega}\left(v_{B} e_{B}\right) e_{j} N_{j} d \mu\left(u_{A} e_{A}\right) .
$$

Sum up over A, B and $j=0,1,2$, then we have following formula, to be called Green Integral Formula

$$
\begin{equation*}
\int_{\Omega}(v D \cdot u+v \cdot D u) d x=\int_{\partial \Omega} v d \sigma u \tag{2.8}
\end{equation*}
$$

where $\partial \sigma=\sum_{j=0}^{2} e_{j} N_{j} d \mu$.

Now, we consider $u_{\varepsilon}(\xi)=|x-\xi|<\varepsilon$ (neighborhood of ξ), $\Omega_{\varepsilon}=\Omega \backslash \overline{u_{\varepsilon}(\xi)}$. Apply (2.8) in Ω_{ε} with functions v and $u=E(x, \xi)$ assume that v is continuously differentiable in $\bar{\Omega}$. Then we have

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}} v D \cdot E(x, \xi) d x=\int_{\partial \Omega} v d \sigma \cdot E(x, \xi)-\int_{|x-\xi|=\varepsilon} v d \sigma E(x, \xi) . \tag{2.9}
\end{equation*}
$$

Limiting process $\varepsilon \rightarrow 0$ in this formula. We have, in the left-hand side of (2.9), because $E(x, \xi)$ it is weakly singular at $x=\xi$, then

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}} v D \cdot E(x, \xi) d x=\int_{\Omega} v D \cdot E(x, \xi) d x .
$$

In the right-hand side of (2.9), we consider

$$
K=\int_{|x-\xi|=\varepsilon} v d \sigma E(x, \xi)
$$

First, we have

$$
d \sigma E(x, \xi)=\sum_{j=0}^{2} e_{j} N_{j} d \mu \cdot \frac{1}{4 \pi^{2}} \cdot \frac{H}{\rho^{3}} .
$$

Observe that, on the ε-sphere: $|x-\xi|=\varepsilon$, a point $x=\left(x_{0}, x_{1}, x_{2}\right)$ can be represented on the form $x-\xi=\varepsilon . X$, where X is a point on the unit sphere, and $\left(N_{0}, N_{1}, N_{2}\right)=\left(X_{0}, X_{1}, X_{2}\right)$. From (2.4), and furthermore one gets $d \mu=e^{2} d \mu_{1}$, where $d \mu_{1}$ is the surface element of the unit sphere, we have

$$
\begin{aligned}
d \sigma . E(x, \xi) & =\sum_{i=0}^{2} e_{i} X_{i} \varepsilon^{2} d \mu_{1} \cdot \frac{1}{4 \pi^{2}} \cdot \frac{-\varepsilon\left(\sum_{j=0}^{2} a_{0 j} X_{j}-\sum_{i=0}^{2}\left(1+e_{i}\right) \sum_{k=0}^{2} a_{i k} X_{k}\right)}{\varepsilon^{3}\left(\sum_{i, j=0}^{2} a_{i j} X_{i} X_{j}\right)^{3 / 2}} \\
& =-\frac{1}{4 \pi^{2}} \frac{\sum_{i=1}^{2} e_{i} X_{i}\left(\sum_{j=0}^{2} a_{0 j} X_{j}-\sum_{i=0}^{2}\left(1+e_{i}\right) \sum_{k=0}^{2} a_{i k} X_{k}\right)}{\left(\sum_{i, j=0}^{2} a_{i j} X_{i} X_{j}\right)^{3 / 2}} .
\end{aligned}
$$

Therefore, the integral K does not depend on ε. We denote by $-c\left(\alpha_{1}, \alpha_{2}\right)$. Therefore

$$
\int_{|x-\xi|=\varepsilon} v d \sigma E(x, \xi)=\int_{|x-\xi|=\varepsilon}(v(x)-v(\xi)) d \sigma E(x, \xi)+v(\xi) \int_{|x-\xi|=\varepsilon} d \sigma E(x, \xi) .
$$

In the right-hand side of the above equation, the first integral tends to zero as $\varepsilon \rightarrow 0$ (because v it is continuous), and the second integral has the value: $-v(\xi) . c\left(\alpha_{1}, \alpha_{2}\right)$.

We obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{|x-\xi|=\varepsilon} v(x) d \sigma E(x, \xi)=-v(\xi) \cdot c\left(\alpha_{1}, \alpha_{2}\right) .
$$

To sum up, the following theorems have been proven.
Theorem 2.3. The fundamental solution of the equation $D u=0$ can be represented by

$$
E(x, \xi)=\frac{1}{4 \pi^{2}} \cdot \frac{H}{\rho^{3}} .
$$

Theorem 2.4 (Cauchy-Pompeiu Integral Formula). Let $E(x, \xi)$ be a fundamental solution to the equation $D u=0$. Then in any interior point ξ of Ω each function, v twice continuously differentiable with values in the $H_{(\alpha)}$ algebra can be represented by

$$
v(\xi) \cdot c\left(\alpha_{1}, \alpha_{2}\right)=\int_{\partial \Omega} v d \sigma E(x, \xi)-\int_{\Omega} v D \cdot E(x, \xi) d x .
$$

III. FUNCTION THEORY IN THE EXOTIC CLIFFORD ALGEBRAS $\mathrm{A}_{n,(\alpha)}$

In \square^{n+1}, we introduce algebras $A_{n,(\alpha)}$ whose have basis elements $\left\{e_{0}=1, e_{1}, e_{2}, \ldots, e_{n}\right\}$ with the relation

$$
\begin{aligned}
& e_{j}^{2}+e_{j}+\alpha_{j}=0, \quad j=1, \ldots, n \\
& e_{i} e_{j}+e_{j} e_{i}+e_{i}+e_{j}=0, \quad i \neq j .
\end{aligned}
$$

The Cauchy-Riemann operator and its adjoin:

$$
\begin{aligned}
& D=\partial_{0}+\sum_{j=1}^{n} e_{j} \partial_{j}, \\
& \bar{D}^{(\alpha)}=\partial_{0}-\sum_{j=1}^{n}\left(1+e_{j}\right) \partial_{j} .
\end{aligned}
$$

We have

$$
\begin{equation*}
\bar{D}^{(\alpha)} D=\partial_{0}^{2}+\sum_{j=1}^{n}\left(\alpha_{j} \partial_{j}^{2}-\partial_{0} \partial_{j}\right) . \tag{3.1}
\end{equation*}
$$

The coefficient matrix if $\bar{D}^{(\alpha)} D$ can presented by

$$
M=\left(\begin{array}{cccc}
1 & -\frac{1}{2} & \cdots & -\frac{1}{2} \tag{3.2}\\
-\frac{1}{2} & \alpha_{1} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
-\frac{1}{2} & 0 & \cdots & \alpha_{n}
\end{array}\right)
$$

In this section, we assume that the determinant of the matrix M is different from zero. In this case, for instance, if (3.1) is elliptic, then M it has an inverses matrix in the following form

$$
A=\left(\begin{array}{cccc}
a_{00} & a_{01} & \cdots & a_{0 n} \tag{3.3}\\
a_{10} & a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & & \vdots \\
a_{n 0} & a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

where $a_{i j}=a_{j i}, i, j=1, \ldots, n$. Using these coefficients, define for two points $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and $\xi=\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right)$ of $\square^{n+1} \mathrm{a}$ distance ρ by $\rho^{2}=\sum_{i, j=0}^{n} a_{i j}\left(x_{i}-\xi_{i}\right)\left(x_{j}-\xi_{j}\right)$.
By an analogy method in Section II, we can prove the following result. Let

$$
H=\sum_{j=0}^{n} a_{0 j}\left(x_{j}-\xi_{j}\right)-\sum_{i=1}^{n}\left(1+e_{i}\right) \sum_{k=0}^{n} a_{i k}\left(x_{k}-\xi_{k}\right) .
$$

Then

$$
\begin{equation*}
E(x, \xi)=\frac{1}{\omega_{n+1}} \cdot \frac{H}{\rho^{n+1}} \tag{3.4}
\end{equation*}
$$

where ω_{n+1} - the surface measure of the unit sphere is a fundamental solution of $D u=0$ with singularity at ξ.

IV. BOUNDARY VALUE PROBLEM FOR A α - REGULAR FUNCTION TAKING VALUES IN $H_{(\alpha)}$ ALGEBRA

A function $u=u_{0}+u_{1} e_{1}+u_{2} e_{2}+u_{12} e_{1} e_{2}$ taking values in $H_{(\alpha)}$ is called α-regular if $D u=0$, that means:

$$
\begin{gather*}
\partial_{0} u_{0}-\alpha_{1} \partial_{1} u_{1}-\alpha_{2} \partial_{2}\left(u_{2}-u_{12}\right)=0 \tag{4.1}\\
\partial_{0} u_{1}+\partial_{1}\left(u_{0}+u_{1}\right)-\partial_{2}\left(u_{1}-\alpha_{2} u_{12}\right)=0 \tag{4.2}\\
\partial_{0} u_{2}-\alpha_{1} \partial_{1} u_{12}+\partial_{2}\left(u_{0}-u_{1}-u_{2}+u_{12}\right)=0 \tag{4.3}
\end{gather*}
$$

$$
\begin{equation*}
\partial_{0} u_{12}+\partial_{1}\left(u_{2}-u_{12}\right)-\partial_{2} u_{1}=0 \tag{4.4}
\end{equation*}
$$

Note that, if u is α-regular function, then all components of following satisfying equations

$$
\begin{equation*}
\Delta_{3}^{(\alpha)} u_{j}=0, \quad(j=0,1,2,12) \tag{4.5}
\end{equation*}
$$

Now we consider a boundary value problem $H_{(\alpha)}$. Let Ω be the unit ball in \square^{3} and Ω_{01} the unit ball in $x_{0} x_{1}$ - space. Then we have the following theorem:

Theorem 4.1. The α-regular function u talking values in $H_{(\alpha)}$ is uniquely determined by

- The values of components u_{2}, u_{12} on the whole boundary $\partial \Omega$,
- The value of component u_{1} on the distinguishing part $\partial \Omega_{01} \subset \partial \Omega$,
- The value of component u_{0} at one point $P_{0} \subset \partial \Omega$.

Proof

Since all components of α the -regular function u satisfy equation (4.5). Let $\varphi_{2}, \varphi_{12}$ are boundary values of u_{2}, u_{12}, resp. Then corresponding u_{2} and u_{12} are uniquely determined in the whole domain Ω.

From (4.4), we have

$$
\begin{equation*}
\partial_{2} u_{1}=\partial_{0} u_{12}+\partial_{1} u_{2}-\partial_{1} u_{12}=F\left(x_{0}, x_{1}, x_{2}\right) . \tag{4.6}
\end{equation*}
$$

Then u_{1} can be represented by integration in x_{2} - direction and the values g_{1} on the lower covering surface $x_{2}=\psi_{1}\left(x_{0}, x_{1}\right)$:

$$
u_{1}\left(x_{0}, x_{1}, x_{2}\right)=g_{1}\left(x_{0}, x_{1}\right)+\int_{\psi_{1}\left(x_{0}, x_{1}\right)}^{x_{2}} F\left(x_{0}, x_{1}, \xi\right) d \xi
$$

In order to simplify the calculations, we represent u_{1} with the values g_{1} on the middle surface Ω_{01}

$$
\begin{equation*}
u_{1}\left(x_{0}, x_{1}, x_{2}\right)=g_{1}\left(x_{0}, x_{1}\right)+\int_{0}^{x_{2}} F\left(x_{0}, x_{1}, \xi\right) d \xi \tag{4.7}
\end{equation*}
$$

We see that $\Delta_{3}^{(\alpha)} u_{1}=0$ is not true for all g_{1}. In order to find the necessary condition g_{1}, we calculate $\Delta_{3}^{(\alpha)} u_{1}$. From (4.6), we have ($j=0,1$)

$$
\partial_{j}^{2} u_{1}=\partial_{j}^{2} g_{1}+\int_{0}^{x_{2}} \partial_{j}^{2} F\left(x_{0}, x_{1}, \xi\right) d \xi
$$

and

$$
\partial_{0} \partial_{1} u_{1}=\partial_{0} \partial_{1} g_{1}+\int_{0}^{x_{2}} \partial_{0} \partial_{1} F\left(x_{0}, x_{1}, \xi\right) d \xi
$$

From (4.6), we have

$$
\begin{aligned}
& \partial_{2}^{2} u_{1}=\partial_{2} F \\
& \partial_{0} \partial_{2} u_{1}=\partial_{0} F
\end{aligned}
$$

And so $\Delta_{3}^{(\alpha)} u_{1}=0$ if and only if

$$
\Delta_{2}^{(\alpha)} g_{1}\left(x_{0}, x_{1}\right)+\alpha_{2} \partial_{2} F\left(x_{0}, x_{1}, x_{2}\right)-\partial_{0} F\left(x_{0}, x_{1}, x_{2}\right)+\int_{0}^{x_{2}}\left(\partial_{0}^{2} F+\alpha_{1} \partial_{1}^{2} F\right) d \xi=0
$$

Where the variables in the integrand are $\left(x_{0}, x_{1}, \xi\right)$ and $\Delta_{2}^{\alpha_{2}}=\partial_{0}^{2}-\partial_{0} \partial_{1}+\alpha_{2} \partial_{1}^{2}$. Since u_{2}, u_{12} satisfy (4.5), derivatives of these functions also satisfy (4.5), therefore, $\Delta_{3}^{(\alpha)} F=0$, and the integral can be written in the form

$$
-\int_{0}^{x_{2}}\left(\alpha_{2} \partial_{2} F-\partial_{0} \partial_{2} F\right) d \xi=-\int_{0}^{x_{2}} \partial_{2}\left(\alpha_{2} \partial_{2} F-\partial_{0} F\right) d \xi,
$$

so that, the integral the value

$$
-\alpha_{2} \partial_{2} F\left(x_{0}, x_{1}, x_{2}\right)+\partial_{0} F\left(x_{0}, x_{1}, x_{2}\right)+\alpha_{2} \partial_{2} F\left(x_{0}, x_{1}, 0\right)-\partial_{0} F\left(x_{0}, x_{1}, 0\right)
$$

And so, $\Delta_{3}^{(\alpha)} u_{1}=0$ in Ω, if the initial function g_{1} satisfies the Poisson equation in Ω_{01} :

$$
\begin{gather*}
\Delta_{2}^{\left(\alpha_{2}\right)} g_{1}=-\alpha_{2} \partial_{2} F\left(x_{0}, x_{1}, 0\right)+\partial_{0} F\left(x_{0}, x_{1}, 0\right) \text { in } \Omega_{01} \tag{4.8}\\
g_{1}=\varphi_{1} \text { on } \partial \Omega_{01} \tag{4.9}
\end{gather*}
$$

Here φ_{1} are the values of the function $u_{1} \partial \Omega_{01}$.
Finally, the component u_{0} can be constructed from (4.1)-(4.3)

$$
\begin{aligned}
& \partial_{0} u_{0}=\alpha_{1} \partial_{1} u_{1}+\alpha_{2} \partial_{2} u_{2}-\alpha_{2} \partial_{2} u_{12}=p_{0} \\
& \partial_{1} u_{0}=-\partial_{0} u_{1}+\partial_{1} u_{1}+\partial_{2} u_{1}-\alpha_{2} \partial_{2} u_{12}=p_{1} \\
& \partial_{2} u_{0}=-\partial_{0} u_{2}+\alpha_{1} \partial_{1} u_{12}+\partial_{2} u_{1}+\partial_{2} u_{2}-\partial_{2} u_{12}=p_{2} .
\end{aligned}
$$

We can prove that $\partial_{j} p_{k}=\partial_{k} p_{j}$ for all $0 \leq j \neq k \leq 2$.
Indeed, we have

$$
\begin{aligned}
\partial_{1} p_{0}-\partial_{0} p_{1} & =\alpha_{1} \partial_{1}^{2} u_{1}+\alpha_{2} \partial_{1} \partial_{2} u_{2}-\alpha_{2} \partial_{1} \partial_{2} u_{12}+\partial_{0}^{2} u_{1}-\partial_{0} \partial_{1} u_{1}-\partial_{0} \partial_{2} u_{1}-\alpha_{2} \partial_{0} \partial_{2} u_{12} \\
& =\partial_{0}^{2} u_{1}+\alpha_{1} \partial_{1}^{2} u_{1}-\partial_{0} \partial_{1} u_{1}-\partial_{0} \partial_{2} u_{1}+\alpha_{2} \partial_{2}\left(\partial_{1} u_{2}-\partial_{1} u_{12}-\partial_{0} u_{12}\right) \\
& =\partial_{0}^{2} u_{1}+\alpha_{1} \partial_{0}^{2} u_{1}-\partial_{0} \partial_{1} u_{1}-\partial_{0} \partial_{2} u_{1}+\alpha_{2} \partial_{2}^{2} u_{1} \\
& =\Delta_{3}^{(\alpha)} u_{1}=0 .
\end{aligned}
$$

Applying $\Delta_{3}^{(\alpha)} u_{2}=0, \Delta_{3}^{(\alpha)} u_{12}=0$ and from (4.4) we can prove $\partial_{2} p_{0}-\partial_{0} p_{2}=0$ and $\partial_{2} p_{1}-\partial_{1} p_{2}=0$.
Therefore, the system turns out to be completely integrable. Since the domain Ω is homotopically simple connected, u_{0} it is uniquely determined by

$$
u_{0}(P)=u_{0}\left(P_{0}\right)+\int_{\gamma}\left(p_{0} d \xi_{0}+p_{1} d \xi_{1}+p_{2} d \xi_{2}\right)
$$

Where $\quad P_{0} \in \partial \Omega \quad \gamma \quad$ is \quad an \quad arbitrarily curve in $\Omega \quad$ starting from $\quad P_{0}$ to $\quad P \in \Omega$?

REFERENCES

[1] D. Alayon-Solarz and C. J. Vanegas, Operators Associated to the Cauchy-Riemann Operators in Eliptic Complex Number, Adv. Appl. Clifford Algebras 22 (2012) 257-270.
[2] -, The Cauchy - Pompeiu representation formula in eliptic complex numbers. Complex Variables and Eliptic Equations, 57(2012).
[3] D. Gilbarg and N.S. Trudinger, Eliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin Heidelbaerg New York Tokyo (1983).
[4] Dao Viet Cuong, Trinh Xuan Sang, Function Theory in Clifford algebras Depending on Parameters and its Application, Journal of Mathematical Application, 16(1)(2018) 19-36.
[5] F. Brack, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Research Notes in Mathematics, 76(1982).
[6] C. Miranda, Partial Differential Equations of Eliptic Type - Verlag New York, Heidelbaerg, Berlin (1970).
[7] W. Tutschke, Generalized analytic function in higher dimensions. Georgian Math. J. (2007) 581-595.
[8] -, The Distinguishing Boundary for Monogenic Functions of Clifford Analysis, Adv. Appl. Clifford Algebras 25(2015) 441-451.
[9] W. Tutschke and C. J. Vanegas, Clifford Algebras Depending on Parameters and Their Applications to Partial Differentiability Equations, chapter 14 in Some Topic on Value Distribution and Differentiability in Complex and P-adic Analysis, A. Escassut, W. Tutschke, and C. C. Yang, Science Press, Beijing (2008) 430-450.
[10] Yaglom. I. M, Complex Numbers in Geometry, Academic Press, New York, (1968).

