Computation of Adriatic $(a, b)-K A$ Index of some Nanostructues

V. R. Kulli ${ }^{1}$, B. Chaluvaraju ${ }^{2}$ AND T. Vidya ${ }^{3}$
${ }^{1}$ Department of Mathematics, Gulbarga University, Gulbarga - 585 106, INDIA.
${ }^{2,3}$ Department of Mathematics, Bangalore University, Jnanabharathi Campus Bangalore -560 056, INDIA.

Abstract

Adriatic indices are analyzed on the testing sets provided by the International Academy of Mathematical Chemistry (IAMC), these indices were selected as significant predictors of physicochemical properties. In this study, we introduce the certain discrete Adriatic (a, b)-KA index of molecular graph and compute exact formulas for certain important families of dendrimers along with their comparative analysis.

Keywords: Topological index, Adriatic (a, b)-KA index, dendrimer.
Mathematics Subject Classification: 05C05, 05C12, 05C35.

I. Introduction

In Chemical Graph Theory, concerning the definition of the topological index on the molecular graph and concerning chemical properties of drugs can be studied by the topological index calculation see [1]. Numerous degree based topological indices have been appeared in the literature [2] and have found some applications in QSPR/GSAR research [3, 4, 5]. Some of the most useful topological descriptors are bond additive. Adriatic indices were introduced by Vukičević et al. [6] as a way of generalizing well known bond additive indices. Recently some discrete Adriatic indices were studied, for example in [7].

Let G be a simple, finite, connected graph with the vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(u)$ of a vertex u is the number of vertices adjacent to u. The additional definitions and notations, the reader may refer to [8].

The misbalance deg index (or irregularity index [9]) of G is defined as

$$
\alpha_{1}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right| .
$$

Minus F-index or nonzero Zagreb index was introduced and studied by Kulli in [10] and Jahabani et al. in [11], defined it as

$$
M F(G)=\sum_{u v \in E(G)}\left|d_{G}(u)^{2}-d_{G}(v)^{2}\right| .
$$

In [12], Gutman et al. introduced σ-index of a graph G, which is defined as $\sigma(\mathrm{G})$

$$
\sigma(G)=\sum_{u v \in E(G)}\left[d_{G}(u)-d_{G}(v)\right]^{2}
$$

In [6], Vukicevic et al. introduced the following bond additive discrete Adriatic indices:
The misbalance indeg index of G defined as

$$
\alpha_{-1}(G)=\sum_{u v \in E(G)}\left|\frac{1}{d_{G}(u)}-\frac{1}{d_{G}(v)}\right| .
$$

The misbalance irdeg index of G is defined as

$$
\alpha_{-\frac{1}{2}}(G)=\sum_{u v \in E(G)}\left|\frac{1}{\sqrt{d_{G}(u)}}-\frac{1}{\sqrt{d_{G}(v)}}\right| .
$$

The misbalance rodeg index of G is defined as

$$
\alpha_{\frac{1}{2}}(G)=\sum_{u v \in E(G)}\left|\sqrt{d_{G}(u)}-\sqrt{d_{G}(v)}\right| .
$$

The general minus index [13] of a graph G is defined as

$$
M_{i}^{a}(G)=\sum_{u v \in(G)}\left[\left|d_{G}(u)-d_{G}(v)\right|\right]^{a}
$$

where a is a real number.
The misbalance sdeg index [14] of a graph G is defined as

$$
\alpha_{-2}(G)=\sum_{w \cup E(G)}\left|\frac{1}{d_{G}(u)^{2}}-\frac{1}{d_{G}(v)^{2}}\right|
$$

The general misbalance deg index [15] of a graph G is defined as

$$
\alpha_{a}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|
$$

where $a=\{-1 / 2,1 / 2,-1,1\}$. Furthermore, Kulli in [14] extended this definition for a real number a.
In [16], the Randic index itself is directly related to an irregularity measure, which is defined as

$$
\operatorname{IRA}(G)=\sum_{u v \in E(G)}\left(\frac{1}{\sqrt{d_{G}(u)}}-\frac{1}{\sqrt{d_{G}(v)}}\right)^{2}
$$

In [16]], the IRB index of a graph G was $\sum_{u v}$ defined as

$$
\operatorname{IRB}(G)=\sum_{u v \in E(G)}\left(\sqrt{d_{G}(u)}-\sqrt{d_{G}(v)}\right)^{2} .
$$

We introduce the Adriatic (a, b)-KA index and coindex of a graph G and they are defined as

$$
\begin{aligned}
& M K A_{a, b}^{1}(G)=\sum_{u v E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b} \\
& \overline{M K A}_{a, b}^{1}(G)=\sum_{w v E E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b}
\end{aligned}
$$

where a and b are real numbers.
We easily see that
(1) $\alpha_{1}(G)=M K A_{1,1}^{1}(G)$.
(2) $M F(G)=M K A_{2,1}^{1}(G)$.
(3) $\sigma(G)=M K A_{1,2}^{1}(G)$.
(4) $\alpha_{-1}(G)=M K A_{-1,1}^{1}(G)$.
(5) $\alpha_{-\frac{1}{2}}(G)=M K A_{-\frac{1}{2}, 1}^{1}(G)$.
(6) $\alpha_{\frac{1}{2}}(G)=M K A_{\frac{1}{2}, 1}^{2}(G)$.
(7) $M_{i}^{a}(G)=M K A_{1, a}^{1}(G)$.
(8) $\alpha_{-2}(G)=M K A_{-2,1}^{1}(G)$.
(9) $\alpha_{a}(G)=M K A_{\mathrm{a}, 1}^{1}(G)$.
(10) $\operatorname{IRA}(G)=M K A_{-\frac{1}{2}, 2}^{1,}(G)$.
(11) $\operatorname{IRB}(G)=M K A_{\frac{1}{2}, 2}^{1}(G)$.

Clearly, we obtain some other graph indices directly as a special case of minus $(a, b)-K A$ indices for some special values of a and b.

In this paper, we compute the minus $(a, b)-K A$ indices of polycyclic aromatic hydrocarbons and benzenoid systems.

II. Results for Porphyrin Dendrimer $D_{n} P_{n}$

We consider the family of porphyrin dendrimers. This family of dendrimers is denoted by $D_{n} P_{n}$. The molecular graph of $D_{n} P_{n}$ is shown in Figure 1.

Figure 1. The molecular graph of $D_{n} P_{n}$
Let G be the molecular graph of $D_{n} P_{n}$. By calculation, we find that G has $96 n-10$ vertices and $105 n-$ 11 edges. In $D_{n} P_{n}$, there are six types of edges based on degrees of end vertices of each edge as given in Table 1.

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,3)$	$(1,4)$	$(2,2)$	$(2,3)$	$(3,3)$	$(3,4)$
Number of edges	$2 n$	$24 n$	$10 n-5$	$48 n-6$	$13 n$	$8 n$

Table 1. Edge partition of $\boldsymbol{D}_{\boldsymbol{n}} \boldsymbol{P}_{\boldsymbol{n}}$
In the following theorem, we compute the minus $(a, b)-K A$ index of $D_{n} P_{n}$.
Theorem 1. Let $D_{n} P_{n}$ be the family of porphyrin dendrimers. Then

$$
M K A_{a, b}^{1}\left(D_{n} P_{n}\right)=\left(\left|1^{a}-3^{a}\right|\right)^{b} 2 n+\left(\left|1^{a}-4^{a}\right|\right)^{b} 24 n+\left(\left|2^{a}-3^{a}\right|\right)^{b}(48 n-6)+\left(\left|3^{a}-4^{a}\right|\right)^{b} 8 n
$$

Proof: From definition and by using Table 1, we deduce

$$
\begin{aligned}
\operatorname{MKA}_{a, b}^{1}(& \left.D_{n} P_{n}\right)=\sum_{u v \in E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b} \\
& =\left(\left|1^{a}-3^{a}\right|\right)^{b} 2 n+\left(\left|1^{a}-4^{a}\right|\right)^{b} 24 n+\left(\left|2^{a}-2^{a}\right|\right)^{b}(10 n-5)+\left(\left|2^{a}-3^{a}\right|\right)^{b}(48 n-6) \\
& +\left(\left|3^{a}-3^{a}\right|\right)^{b} 13 n+\left(\left|3^{a}-4^{a}\right|\right)^{b} 8 n \\
& =\left(\left|1^{a}-3^{a}\right|\right)^{b} 2 n+\left(\left|1^{a}-4^{a}\right|\right)^{b} 24 n+\left(\left|2^{a}-3^{a}\right|\right)^{b}(48 n-6)+\left(\left|3^{a}-4^{a}\right|\right)^{b} 8 n .
\end{aligned}
$$

From Theorem 1, we establish the following results.
Corollary 1.1. Let $D_{n} P_{n}$ be the family of porphyrin dendrimers. Then
(1) $\alpha_{1}\left(D_{n} P_{n}\right)=M K A_{1,1}^{1}\left(D_{n} P_{n}\right)=132 n-6$.
(2) $M F\left(D_{n} P_{n}\right)=M K A_{2,1}^{1}\left(D_{n} P_{n}\right)=672 n-30$.
(3) $\sigma\left(D_{n} P_{n}\right)=M K A_{1,2}^{1}\left(D_{n} P_{n}\right)=280 n-6$.
(4) $\alpha_{-1}\left(D_{n} P_{n}\right)=M K A_{-1,1}^{1}\left(D_{n} P_{n}\right)=28 n-1$.
(5) $\alpha_{-\frac{1}{2}}\left(D_{n} P_{n}\right)=M K A_{-\frac{1}{2}, 1}^{1}\left(D_{n} P_{n}\right)=\left(10-\frac{42}{\sqrt{3}}+\frac{48}{\sqrt{2}}\right) n-\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)$.
(6) $\alpha_{\frac{1}{2}}\left(D_{n} P_{n}\right)=M K A_{\frac{1}{2}, 1}^{2}\left(D_{n} P_{n}\right)=(38+42 \sqrt{3}-48 \sqrt{2}) n-(\sqrt{3}-\sqrt{2}) 6$.
(7)

$$
\begin{array}{r}
M_{i}^{a}\left(D_{n} P_{n}\right)=M K A_{1, a}^{1}\left(D_{n} P_{n}\right)=(|1-3|)^{a} 2 n+(|1-4|)^{a} 24 n \\
+(|2-3|)^{a}(48 n-6)+(|3-4|)^{a} 8 n
\end{array}
$$

(8) $\alpha_{-2}\left(D_{n} P_{n}\right)=M K A_{-2,1}^{1}\left(D_{n} P_{n}\right)=\frac{94 n}{3}-\frac{5}{6}$.
(9) $\quad \alpha_{a}\left(D_{n} P_{n}\right)=M K A_{\mathrm{a}, 1}^{1}\left(D_{n} P_{n}\right)=\left(\left|1-3^{a}\right|\right) 2 n+\left(\left|1-4^{a}\right|\right) 24 n$

$$
+\left(\left|2^{a}-3^{a}\right|\right)(48 n-6)+\left(\left|3^{a}-4^{a}\right|\right) 8 n
$$

(10) $\operatorname{IRA}\left(D_{n} P_{n}\right)=M K A_{-\frac{1}{2}, 2}^{1}\left(D_{n} P_{n}\right)=\left[\left(1-\frac{1}{\sqrt{3}}\right)^{2} 2+6+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2} 48+\left(\frac{1}{\sqrt{3}}-\frac{1}{2}\right)^{2} 8\right] n$

$$
\begin{gathered}
-(\sqrt{3}-\sqrt{2})^{2} \\
\operatorname{IRB}\left(D_{n} P_{n}\right)=M K A_{\frac{1}{2}, 2}^{1}\left(D_{n} P_{n}\right)=\left[(1-\sqrt{3})^{2} 2+24+(\sqrt{2}-\sqrt{3})^{2} 48+(\sqrt{3}-2)^{2} 8\right] n \\
-(\sqrt{2}-\sqrt{3})^{2} 6 .
\end{gathered}
$$

III. Results for Propyl Ether Imine Dendrimer PETIM

We consider the family of propyl ether imine dendrimers. This family of dendrimers is denoted by PETIM. The molecular graph of PETIM is depicted in Figure 2.

Figure 2. The molecular graph of PETIM
Let G be the molecular graph of PETIM. By calculation, we find that G has $24 \times 2^{n}-23$ vertices and $24 \times 2^{n}-24$ edges. In PETIM, there are three types of edges based on degrees of end vertices of each edge as given in Table 2.

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,2)$	$(2,2)$	$(2,3)$
Number of edges	2×2^{n}	$16 \times 2^{n}-18$	$6 \times 2^{n}-6$

Table 2. Edge partition of PETIM
In the following theorem, we compute the minus (a, b)-KA index of PETIM.

Theorem 2. The minus (a, b)-KA index of PETIM is

$$
M K A_{a, b}^{1}(\text { PETIM })=\left(\left|1^{a}-2^{a}\right|\right)^{b} 2 \times 2^{n}+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(6 \times 2^{n}-6\right)
$$

Proof: From definition and by using Table 2, we derive

$$
\begin{aligned}
& \text { MKA }_{a, b}^{1}(\text { PETIM })=\sum_{u v \in E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b} \\
& \quad=\left(\left|1^{a}-2^{a}\right|\right)^{b} 2 \times 2^{n}+\left(\left|2^{a}-2^{a}\right|\right)^{b}\left(16 \times 2^{n}-18\right)+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(6 \times 2^{n}-6\right) \\
& \quad=\left(\left|1^{a}-2^{a}\right|\right)^{b} 2 \times 2^{n}+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(6 \times 2^{n}-6\right) .
\end{aligned}
$$

From Theorem 2, we establish the following results.
Corollary 2. 1. Let PETIM be the family of propyl ether imine dendrimers. Then
(1) $\alpha_{1}($ PETIM $)=M K A_{1,1}^{1}($ PETIM $)=8 \times 2^{n}-6$.
(2) $M F($ PETIM $)=M K A_{2,1}^{1}($ PETIM $)=36 \times 2^{n}-30$.
(3) $\sigma($ PETIM $)=M K A_{1,2}^{1}($ PETIM $)=8 \times 2^{n}-6$.
(4) $\alpha_{-1}($ PETIM $)=M K A_{-1,1}^{1}($ PETIM $)=2 \times 2^{n}-1$.
(5) $\alpha_{-\frac{1}{2}}($ PETIM $)=$ MKA $_{-\frac{1}{2}, 1}^{1}($ PETIM $)=(1+\sqrt{2}-\sqrt{3}) 2 \times 2^{n}-(\sqrt{3}-\sqrt{2}) 6$.
(6) $\alpha_{\frac{1}{2}}($ PETIM $)=M K A_{\frac{1}{2}, 1}^{2}($ PETIM $)=(3 \sqrt{3}-2 \sqrt{2}-1) 2 \times 2^{n}-(\sqrt{3}-\sqrt{2})_{6}$.
(7) $M_{i}^{a}($ PETIM $)=$ MKA $_{1, a}^{1}($ PETIM $)=(|1-2|)^{a} 2 \times 2^{n}+(|2-3|)^{a}\left(6 \times 2^{n}-6\right)$.
(8) $\alpha_{-2}($ PETIM $)=M K A_{-2,1}^{1}($ PETIM $)=\frac{7}{3} \times 2^{n}-\frac{5}{6}$.
(9) $\alpha_{a}($ PETIM $)=$ MKA $_{\mathrm{a}, 1}^{1}($ PETIM $)=\left(\left|1-2^{a}\right|\right) 2 \times 2^{n}+\left(\left|2^{a}-3^{a}\right|\right)\left(6 \times 2^{n}-6\right)$.
(10) IRA $($ PETIM $)=$ MKA $_{-\frac{1}{2}, 2}^{1}($ PETIM $)=\left[(\sqrt{2}-1)^{2}+(\sqrt{3}-\sqrt{2})^{2}\right] 2^{n}-(\sqrt{3}-\sqrt{2})^{2}$.
(11) IRB $($ PETIM $)=$ MKA $_{\frac{1}{2}, 2}^{1}($ PETIM $)==\left[(\sqrt{2}-1)^{2}+3(\sqrt{3}-\sqrt{2})^{2}\right] 2 \times 2^{n}-(\sqrt{3}-\sqrt{2})^{2} 6$.

IV. Results for Poly Ethylene Amide Amine Dendrimer PETAA

We consider the family of poly ethylene amide amine dendrimers. This family of dendrimers is denoted by PETAA. The molecular graph of PETAA is presented in Figure 3.

Figure 3. The molecular graph of PETAA
Let G be the molecular graph of PETAA. By calculation, we find that G has $44 \times 2^{n}-18$ vertices and $44 \times 2^{n}-19$ edges. In PETAA, there are three types of edges based on degrees of end vertices of each edge as given in Table 3.

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(1,2)$	$(1,3)$	$(2,2)$	$(2,3)$
Number of edges	4×2^{n}	$4 \times 2^{n}-2$	$16 \times 2^{n}-8$	$20 \times 2^{n}-9$

Table 3. Edge partition of PETAA

In the following theorem, we determine the minus $(a, b)-K A$ index of PETAA.

Theorem 3. Let PETAA be the family of poly ethylene amide amine dendrimers. Then $M K A_{a, b}^{1}($ PETAA $)=\left(\left|1^{a}-2^{a}\right|\right)^{b} 4 \times 2^{n}+\left(\left|1^{a}-3^{a}\right|\right)^{b}\left(4 \times 2^{n}-2\right)+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(20 \times 2^{n}-9\right)$.

Proof: By using definition and Table 3, we obtain

$$
\begin{aligned}
& \operatorname{MKA}_{a, b}^{1}(P E T A A)=\sum_{u v \in E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b} \\
& =\left(\left|1^{a}-2^{a}\right|\right)^{b} 4 \times 2^{n}+\left(\left|1^{a}-3^{a}\right|\right)^{b}\left(4 \times 2^{n}-2\right)+\left(\left|2^{a}-2^{a}\right|\right)^{b}\left(16 \times 2^{n}-8\right)+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(20 \times 2^{n}-9\right) \\
& =\left(\left|1^{a}-2^{a}\right|\right)^{b} 4 \times 2^{n}+\left(\left|1^{a}-3^{a}\right|\right)^{b}\left(4 \times 2^{n}-2\right)+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(20 \times 2^{n}-9\right) .
\end{aligned}
$$

From Theorem 3, we establish the following results.
Corollary 3.1. Let PETAA be the family of propyl ether imine dendrimers. Then
(1) $\alpha_{1}(P E T A A)=M K A_{1,1}^{1}(P E T A A)=32 \times 2^{n}-13$.
(2) $M F(P E T A A)=M K A_{2,1}^{1}(P E T A A)=144 \times 2^{n}-61$.
(3) $\sigma(P E T A A)=M K A_{1,2}^{1}(P E T A A)=40 \times 2^{n}-17$.
(4) $\alpha_{-1}(P E T A A)=M K A_{-1,1}^{1}(P E T A A)=8 \times 2^{n}-\frac{17}{6}$.
(5) $\alpha_{-\frac{1}{2}}(P E T A A)=M K A_{-\frac{1}{2}, 1}^{1}(P E T A A)=\left(1-\frac{1}{\sqrt{2}}\right) 4 \times 2^{n}+\left(1-\frac{1}{\sqrt{3}}\right)\left(4 \times 2^{n}-2\right)$

$$
+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\left(20 \times 2^{n}-9\right)
$$

(6) $\alpha_{\frac{1}{2}}($ PETAA $)=M K A_{\frac{1}{2}, 1}^{2}(P E T A A)=$

$$
=(\sqrt{2}-1) 4 \times 2^{n}+(\sqrt{3}-1)\left(4 \times 2^{n}-2\right)+(\sqrt{3}-\sqrt{2})\left(20 \times 2^{n}-9\right) .
$$

(7) $M_{i}^{a}(P E T A A)=M K A_{1, a}^{1}(P E T A A)=(|1-2|)^{a} 2 \times 2^{n}+(|2-3|)^{a}\left(6 \times 2^{n}-6\right)$.
(8) $\quad \alpha_{-2}($ PETAA $)=M K A_{-2,1}^{1}($ PETAA $)=\frac{26}{3} \times 2^{n}-\frac{109}{36}$.
(9) $\alpha_{a}(P E T A A)=M K A_{\mathrm{a}, 1}^{1}($ PETAA $)$

$$
=\left(\left|1-2^{a}\right|\right) 4 \times 2^{n}+\left(\left|1-3^{a}\right|\right)\left(4 \times 2^{n}-2\right)+\left(\left|2^{a}-3^{a}\right|\right)\left(20 \times 2^{n}-9\right) .
$$

(10) $\operatorname{IRA}(P E T A A)=M K A_{-\frac{1}{2}, 2}^{1}(P E T A A)=\left(1-\frac{1}{\sqrt{2}}\right)^{2} 4 \times 2^{n}+\left(1-\frac{1}{\sqrt{3}}\right)^{2}\left(4 \times 2^{n}-2\right)$ $+\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2}\left(20 \times 2^{n}-9\right)$.
(11) $\operatorname{IRB}(P E T A A)=M K A_{\frac{1}{2}, 2}^{1}(P E T A A)$

$$
=(\sqrt{2}-1)^{2} 4 \times 2^{n}+3(\sqrt{3}-1)\left(4 \times 2^{n}-2\right)+(\sqrt{3}-\sqrt{2})^{2}\left(20 \times 2^{n}-9\right)
$$

V. Results for Zinc Prophyrin Dendrimer DPZ $_{\boldsymbol{n}}$

We consider the family of zinc prophyrin dendrimers. This family of dendrimers is denoted by $D P Z_{n}$, where n is the steps of growth in this type of dendrimers. The molecular graph of $D P Z_{n}$ is shown in Figure 4.

Figure 4. The molecular graph of $\mathrm{DPZ}_{\boldsymbol{n}}$
Let G be the molecular graph of $D P Z_{n}$. By calculation, we obtain that G has $56 \times 2^{n}-7$ vertices $64 \times 2^{n}-$ 4 edges. In $D P Z_{n}$, there are four types of edges based on degrees of end vertices of each edge as given in Table 4.

$d_{G}(u), d_{G}(v) \backslash u v \in E(G)$	$(2,2)$	$(2,3)$	$(3,3)$	$(3,4)$
Number of edges	$16 \times 2^{n}-4$	$40 \times 2^{n}-16$	$8 \times 2^{n}+12$	4

Table 4. Edge partition of $\boldsymbol{D P} \boldsymbol{Z}_{\boldsymbol{n}}$
In the following theorem, we determine the minus $(a, b) K A$ index of $D P Z_{n}$.
Theorem 4. Let $D P Z_{n}$ be the family of zinc prophyrin dendrimers. Then
$M K A_{a, b}^{1}\left(D P Z_{n}\right)=\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(40 \times 2^{n}-16\right)+\left(\left|3^{a}-4^{a}\right|\right)^{b} 4$.

Proof: From definition and by using Table 4, we deduce

$$
\begin{aligned}
& \text { MKA }_{a, b}^{1}\left(D P Z_{n}\right)=\sum_{u v \in E(G)}\left[\left|d_{G}(u)^{a}-d_{G}(v)^{a}\right|\right]^{b} \\
& \quad=\left(\left|2^{a}-2^{a}\right|\right)^{b}\left(16 \times 2^{n}-4\right)+\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(40 \times 2^{n}-16\right)+\left(\left|3^{a}-3^{a}\right|\right)^{b}\left(8 \times 2^{n}+12\right)+\left(\left|3^{a}-4^{a}\right|\right)^{b} 4 \\
& \quad=\left(\left|2^{a}-3^{a}\right|\right)^{b}\left(40 \times 2^{n}-16\right)+\left(\left|3^{a}-4^{a}\right|\right)^{b} 4 .
\end{aligned}
$$

From Theorem 4, we establish the following results.
Corollary 4.1. Let $D P Z_{n}$ be the family of zinc prophyrin dendrimers. Then
(1) $\alpha_{1}\left(D P Z_{n}\right)=M K A_{1,1}^{1}\left(D P Z_{n}\right)=40 \times 2^{n}-12$.
(2) $M F\left(D P Z_{n}\right)=M K A_{2,1}^{1}\left(D P Z_{n}\right)=200 \times 2^{n}-52$.
(3) $\sigma\left(D P Z_{n}\right)=M K A_{1,2}^{1}\left(D P Z_{n}\right)=40 \times 2^{n}-12$.
(4) $\alpha_{-1}\left(D P Z_{n}\right)=M K A_{-1,1}^{1}\left(D P Z_{n}\right)=\frac{20}{3} \times 2^{n}-\frac{7}{3}$.
(5) $\alpha_{-\frac{1}{2}}\left(D P Z_{n}\right)=M K A_{-\frac{1}{2}, 1}^{1}\left(D P Z_{n}\right)=\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right) 40 \times 2^{n}-\left(\frac{16}{\sqrt{2}}-\frac{20}{\sqrt{3}}+2\right)$.
(6) $\alpha_{\frac{1}{2}}\left(D P Z_{n}\right)=M K A_{\frac{1}{2}, 1}^{2}\left(D P Z_{n}\right)=(\sqrt{3}-\sqrt{2}) 40 \times 2^{n}-(16 \sqrt{2}-20 \sqrt{3}+8)$.
(7) $M_{i}^{a}\left(D P Z_{n}\right)=M K A_{1, a}^{1}\left(D P Z_{n}\right)=(|2-3|)^{a}\left(40 \times 2^{n}-16\right)+(|3-4|)^{a} 4$.
(8) $\alpha_{-2}\left(D P Z_{n}\right)=M K A_{-2,1}^{1}\left(D P Z_{n}\right)=\frac{50}{9} \times 2^{n}-\frac{73}{36}$.
(9) $\alpha_{a}\left(D P Z_{n}\right)=M K A_{\mathrm{a}, 1}^{1}\left(D P Z_{n}\right)=\left(\left|2^{a}-3^{a}\right|\right)\left(40 \times 2^{n}-16\right)+\left(\left|3^{a}-4^{a}\right|\right) 4$.

$$
\begin{align*}
& \text { (10) } \operatorname{IRA}\left(D P Z_{n}\right)=M K A_{-\frac{1}{2}, 2}^{1}\left(D P Z_{n}\right)=\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2} 40 \times 2^{n}-\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)^{2} 16+\left(\frac{1}{\sqrt{3}}-\frac{1}{2}\right)^{2} 4 . \tag{10}\\
& \text { (11) } \operatorname{IRB}\left(D P Z_{n}\right)=M K A_{\frac{1}{2}, 2}^{1}\left(D P Z_{n}\right)=(\sqrt{2}-\sqrt{3})^{2} 40 \times 2^{n}-(\sqrt{2}-\sqrt{3})^{2} 16+(\sqrt{3}-2)^{2} 4 .
\end{align*}
$$

VI. Comparative Analysis

The comparative analysis of Figures 5 and 6, show plotting of Adriatic indices, which are special case of Adriatic (a, b)-KA index for some special values of a and b for dendrimers $\mathrm{D}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}$, PETIM, PETAA and DPZ ${ }_{\mathrm{n}}$. The co-efficient of correlation of these Adriatic indices are close to each other. Especially, the co-efficient of correlation of Adriatic $(a, b)-K A$ index of dendrimers $\mathrm{D}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}$ is one and it shows that the best fit.

Figure-5. Plot of Adriatic-KA indices for $D_{n} P_{n}$ and PETIM

Figure-6. Plot of Adriatic-KA indices for PETAA and DPZ ${ }_{n}$

CONCLUSION

In this study, we have defined the discrete Adriatic $(a, b)-K A$ index of a molecular graph. Furthermore, we have computed the Adriatic $(a, b)-K A$ index for certain dendrimers. Also we obtained some other Adriatic indices directly as a special case of Adriatic $(a, b)-K A$ index for some special values of a and b.

REFERENCES

[11] A.jahabani, Nano-Zagreb index and multiplicative nano-Zagreb index of some graph operators, International Journal of Computing Science and Applied Mathematics, 5(1) (2019) 15.
[12] I.Gutman, M.Togan, A.Yuttus, A.S.Cevik and I.N.Cangul, Inverse problem of sigma index, MATCH Common, Math. Comput. Chem. 79 (2018) 491-508.
[13] V.R.Kulli, Computation of some minus indices of titania nanotubes, International Journal of Current Research in Science and Technology, 4(12) (2018) 9-13.
[14] V.R.Kulli, On Adriatic indices, submitted.
[15] V.Lokesha, K.Z.Yasmeen, B.Chaluvaraju and T.Deepika, Computation of misbalance type degree indices of certain classes of derived graph, International J. Math. Combin. 3 (2019) 61-69.
[16] T.Reti, R.Sharfdini, A.D.Kiss, and H.Hagobin, Graph irregularity indices used as molecular Descriptors in QSPR studies, MATCH Common, Math. Comput. Chem. 79 (2018) 509-524.

