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 INTRODUCTION 
N.Levine [1] introduced generalized closed (g-closed) sets in general topology as a generalization` of closed sets. This 

concept was found to be useful and many results in general topology were improved. For example, it was proved that a g-

closed subset of a compact space is compact. Many researchers like S.P.Arya and R.Gupta [2], K.Balachandran, P.Sundaram 

and H.Maki [3], S.G.Crosseley and S.K.Hilderbrand [4], J.Dontchev [5],H.Maki, J.Umehara and T.Noiri [6], S.R.Malghan [7], 

N.Palaniappan and K.Chandrasekhara Rao [8], T.Noiri [9], W.Dunham [10] and P.Sundaram [11] have worked on this and 

related problems in general topology. 

 

This idea of N.Levine motivated us to generalize the concept of closed fuzzy sets in fuzzy topological spaces to a 

concept called b-closed (boundary-closed) fuzzy sets, using the concept of boundary of a fuzzy set defined by R.H.Warren [15] 

 

1. Preliminaries 

 
1.1 Definition: A fuzzy subset A in a set X is a function A : X → [0, 1]. A fuzzy subset in X is empty iff  its membership 

function is identically 0 on X and is denoted by 0 or  𝜇ϕ.The set X can be considered as a fuzzy subset of X whose membership 

function is identically 1 on X and is denoted by  𝜇x or Ix. In fact every subset of X is a fuzzy subset of  X but not conversely. 

Hence the concept of a fuzzy subset is a generalization of the concept of a subset. 

 
1.2 Defnition: A fuzzy set on X is ‘Crisp ‘if it takes only the values 0 and 1 on X. 

 

1.3 Defnition:Let X be a set and  be a family of fuzzy subsets of (X,𝜏) is called a fuzzy topology on X iff   𝜏 satisfies the 

following conditions.  

 

(i) μ ϕ ;  𝜇X ∈ 𝜏: That is 0 and 1 ∈ τ 

 

(ii) If Gi ∈ 𝜏  for i ∈ I then  ∨ Gi ∈ 𝜏 

                                            i ∈ I 
 

(iii) If G,H ∈ τ then G ∧ H ∈ τ 
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The pair (X, 𝜏 ) is called a fuzzy topological space. The members of  𝜏 are called fuzzy open sets and a fuzzy set A in X is said 
to be closed iff 1 − A is an fuzzy open set in X.  

 

1.4 Remark: Every topological space is a fuzzy topological space but not conversely. 

 
1.5 Definition :If A and B are any two fuzzy subsets of a set X , then A is said to be included in B or A is contained in B iff 

A(x) ≤ B(x) for all x in X. Equivalently, A ≤ B iff A(x) ≤ B(x) for all x in X.  

 

1.6 Definition: Two fuzzy subsets A and B are said to be equal if A(x) = B(x) for every x in X.  

Equivalently A = B if A(x) = B(x) for every x in X. 

 

1.7Defnition: The complement of a fuzzy subset A in a set X, denoted by A′ or 1 − A, is the fuzzy subset of X defined by A′(x) 

= 1 − A(x) for all x in X. Note that(A′)′ = A. 

 

1.8 Definition: The union of two fuzzy subsets A and B in X, denoted by A ∨ B, is a fuzzy subset in X defined by (A ∨ B)(x) = 

Max{𝜇A(x), 𝜇B(X)} for all x in X.  

 
1.9 Defnition:The intersection of two fuzzy subsets A and B in X, denoted by A ∧ B, is a fuzzy subset in X defined by (A ∧ 

B)(x) = Min{A(x), B(x)} for all 

 

2.2 BOUNDARY CLOSED FUZZY SETS IN FUZZY TOPOLOGICAL SPACES 

 

2.2.1 Definition: A fuzzy set A of a fuzzy topological space X is called boundary closed  

(b-closed) fuzzy set if  bd(A) < G whenever A < G and G is an open fuzzy set. 

 

2.2.2Theorem: Every closed fuzzy set is a b-closed fuzzy set in any Fuzzy topological spaces X. Proof : Let A be a closed 

fuzzy set in a Fuzzy topological spaces X. Let A < G, where G is an open fuzzy set in X. Since A is closed, cl(A) = A < G 

which implies cl(A) < G. Also since  

bd (A) < cl (A) < G, it follows that bd(A) < G. Hence A is a b-closed fuzzy set. 
 

 

The converse of the above theorem need not be true as seen from the following example. 

 

2.2.3 Example: Let X = [0, 1] and A be a fuzzy subset of X defined by 

 

 

                                         0.5              if x = 2/3 

                      A(x)   = 

                                         0                otherwise 

 

 

Consider   T = {0,1, A}. Then (X, T) is a Fuzzy topological space. Let B be a fuzzy subset of X defined by 

 

                                     0.6              if x = 2/3 
                    B(x)   = 
                                      1                otherwise 
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Then B is a b-closed fuzzy set. 

For, B < 1 where 1 is an open fuzzy set, we have bd (B) < 1. Further B is not a  closed fuzzy set. Hence B is a b-closed fuzzy 

set which is not closed fuzzy set.  

2.2.4 Definition: Let X be a Fuzzy topological spaces. A fuzzy set A in X is said to be generalized closed (g-closed) fuzzy set 

in X if cl (A) < U whenever A < U and U is an open fuzzy set in X. 

2.2.5 Theorem: Every g-closed fuzzy set is b-closed fuzzy set. 

Proof: Let A be g-closed fuzzy set in a Fuzzy topological spaces X. To prove that A is b-closed fuzzy set in X. Let A < G, 

where G is an open fuzzy set in X. Since A is g-closed fuzzy set, by definition it follows, cl (A) < G. But we have bd (A) < cl 

(A), Therefore bd (A) < cl(A) < G which implies bd(A) < G. Hence A is b-closed fuzzy set in X. The converse of the above 

theorem is true if cl(A) ∧   cl(l - A ) > 0 for  any fuzzy set A. 

 

2.2.6 Theorem: If A is a b-closed fuzzy set in  a fuzzy topological spaces  X   and 

cl(A)  ∧   cl(l - A) > 0, then A is a g-closed fuzzy set. 

            

Proof:  Suppose A is a b-closed fuzzy set and cl(A) ∧   cl(l –A ) > 0. To prove that A is g-closed fuzzy set. Let A < G, where G 

is an open fuzzy set in X. Since A is b-closed fuzzy set, by definition it follows that bd (A) < G. Also since cl(A)∧  cl(l - A) > 

0,bd(A) = cl(A),Therefore cl(A) = bd(A) < G   which implies cl(A) < G.Hence A is a g-closed fuzzy set. 

2.2.7 Definition: A fuzzy subset A of a Fuzzy topological space X is said to be  

(i) A regular open fuzzy set in X if int(cl(A)) = A  and  

(ii) A regular closed fuzzy set in X if cl (int(A)) = A. 

2.2.8 Theorem: If a fuzzy set A of a fuzzy topological space X is both open fuzzy set and  

b-closed fuzzy set, then it is a closed fuzzy set. 

Proof: Let A be a fuzzy subset of a Fuzzy topological spaces X which is both open fuzzy set and b-closed fuzzy set. Now, we 

have A < A, where A is an open fuzzy set. Since A is b-closed fuzzy set, we have bd(A) < A. Therefore from, A is a closed 

fuzzy set in X. 

2.2.9 Corollary: If a fuzzy set A in a Fuzzy topological spaces X is both open fuzzy set and 

 b- Closed fuzzy set then it is g-closed fuzzy set. 

2.2.10 Corollary: If A is both open fuzzy set and b-closed fuzzy set in a Fuzzy topological spaces X then it is regular open 

fuzzy set and regular closed fuzzy set in X.  

Proof: Since A is an open fuzzy set A = int(A). But from the main theorem 2.2.8, it follows that A is closed and hence A = 

cl(A).Therefore A = int(A) = int(cl(A)). Hence A is regular open fuzzy set. Similarly, cl(int(A)) = cl(A) = A   as A is open and 

closed fuzzy set. Hence A is also regular closed fuzzy set. 

2.2.11 Theorem: Let X be a Fuzzy topological spaces and A be a fuzzy subset of X such that bd(A)  ∧   (1 – bd(A)) = 0. Then 

A is b-closed fuzzy set iff  bd(A) ∧   (1 - A) contains no non -zero closed fuzzy set. 

Proof: Let F be any closed fuzzy set such that F < bd(A)  ∧    (1-A). Now F < 1 - A implies  
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A < 1 - F, 1 - F is open fuzzy set. Since A is b-closed, we have by definition bd(A) < 1 - F, which implies that F < 1 - bd(A). 

Thus F < bd(A) and F < 1 - bd(A). Therefore  

F < bd(A) ∧   (1 - bd(A)) = 0 by hypothesis. Therefore F = 0.Conversely, suppose the condition holds. Let A < U, where U is 

an open fuzzy set. If bd(A) > U, then bd(A)  ∧    (1 - U) is a closed fuzzy set and bd(A)  ∧   (1 - U) < bd(A) ∧   (1 - A), which 

contradicts the hypothesis. Therefore bd(A) < U. Hence A is b-closed fuzzy set. 

2.2.12 Theorem: The union of any two b-closed fuzzy sets of Fuzzy topological spaces X  

is b-closed fuzzy set. 
 
Proof: Let A and B be two b-closed fuzzy sets of a Fuzzy topological spaces X. To prove A v B is a b-closed fuzzy set. Let Av 

B < G, where G is an open fuzzy set. Then A < G and B < G. Then by hypothesis, bd(A) < G and bd(B) < G , as A and B are b-

closed fuzzy sets. Therefore bd(A) v bd(B) < G. Now from, we have bd(A v B) < bd(A) v bd(B) < G.  

Therefore bd(Av B) < G. Hence A v B is b-closed fuzzy set. 

2.2.13 Remarks: 

1. Finite union of b-closed fuzzy sets is a b-closed fuzzy set. 

 

2. Intersection of b-closed fuzzy sets need not be b-closed 

 

 
2.2.14 Example: Let X = {a, b, c} Fuzzy sets A,B and C be defined as follows: A = {(a, .3), 

 

(b, .5),(c, .6)}, B = {(a, .5),(b, .4),(c, .6)} and  C = {(a, .2),(b, .5),(c, .7)}. Consider T = {0, 1, A}.  

 

Then {X, T) is Fuzzy topological spaces. Fuzzy sets B and C are b-closed. Now B < 1 implies   

 

bd(B) = 1 < 1 and  C < 1 implies bd(C) = 1 < 1.Now D = B  ∧   C = {(a, .2),(b, .4),(c, .6)} is not a  

 

b-closed fuzzy  set. Hence the intersection of any two b-closed fuzzy sets need not be a b-closed  

 

fuzzy set.   

 

  

2.2.15 Definition: A Fuzzy topological spaces (X,T) is compact iff each open cover of X has a finite sub cover. S.S.Benchalli 

and Jenifer Rodrigues proved that a closed crisp subspace of compact Fuzzy topological spaces is compact. Therefore it 

follows from 2.2.8 that an open  

b-closed crisp subspace of a compact Fuzzy topological spaces is also compact. 

 

2.2.16 Definition : A fuzzy set A of a Fuzzy topological spaces X is called b-open fuzzy set if its complement (1 - A) is b- 

closed fuzzy set. 

 

2.2.17 Theorem : Every open fuzzy set is b - open fuzzy set. 
 
Proof: Let A be an open fuzzy set. Then 1 - A is closed fuzzy set in X. 
 
And so 1 - A is b-closed fuzzy set. Hence A is b-open fuzzy set in Fuzzy topological spaces X. 
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The converse of the above theorem need not be true as seen from the following example. 

 
2.2.18 Example: Let X = [0, 1] and A be a fuzzy subset of X defined by 

 

 
                                0.5 if x = 2/3 
  A(x)   =  
                                0 otherwise 
 

 

Consider T = (0, 1, A}. Then (X, T) is a fuzzy topological space. Let B be a fuzzy subset of X defined by 

 
                                  0.4 if x = 2/3 
 B(x)    = 
                                    0                      otherwise 

 

Then B is a b-open fuzzy set. We show that 1 - B is a b-closed fuzzy set. Now 

 
 
                                     0.6 if x = 2/3 
1 - B(x)  = 
                                                                    

                         0                           otherwise 

 

and 1 - B < 1 where 1 is an open fuzzy set. Then we have bd (1 - B) < 1. And so 1 - B is b-closed fuzzy set. Therefore 

B is b-open fuzzy set. Further B is not an open fuzzy set. Hence B is a b-open fuzzy set which is not an open fuzzy set. 

2.2.19 Remark: Every g-open fuzzy set is b-open fuzzy set, which follows from 2.2.5. 

2.2.20 Theorem: The intersection of any two b-open fuzzy sets is a b-open fuzzy set. 

Proof: Let A, B be two b-open fuzzy sets in a Fuzzy topological spaces X. Then 1 - A, 1 - B are  

 

two b-closed fuzzy sets in X. From theorem 2.2.11, it follows that (1 - A) v (1 - B) is a b - closed  

 

fuzzy set which  implies 1 - (A  ∧   B) is a b-closed fuzzy set. Therefore A ∧  B is a b-open fuzzy  

 

set. 

 

2.2.21 Remark: It can be verified from example 2.2.14, that union of two b-open fuzzy sets need not be a b-open fuzzy set. 

Boundary- closure and boundary interior of a fuzzy set are defined as follows. 

2.2.22 Definition: Let A be any fuzzy set in a Fuzzy topological spaces X. We define boundary closure (B cl) and boundary 

interior (B int) of A as follows: 

B cl (A)    = ∧  {U : U is b-closed fuzzy set and A <  U} 
 
B int (A)  =  V {V : V is b-open fuzzy set and    A > V) 

 

2.2.23 Theorem: Let A be any fuzzy set in a Fuzzy topological spaces (X, T).  

Then B cl (1 - A) = 1 - B int (A) and B int (1 - A) = 1 - B cl (A). 

Proof: We see that a b-open fuzzy set U < A is precisely the complement of a b-closed fuzzy set V < 1 - A. Thus 
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B int (A) = V { l-V  : V  is b-closed and V > 1 - A} 
 
                             = 1 -   ∧    {V: V is b-closed and V > 1 - A} 

 

                             = 1 - B cl (1 - A) 

 

So, B cl (1 - A) = 1 - B int (A). 
 
 

Let g be any b-open fuzzy set. Then for any b-closed fuzzy set  f > A, g = 1 - f < 1 - A . 

Now B cl (A) =   ∧  {1 - g: g is b-open and g < 1 - A) 

 

                                               = 1 - v (g: g is b-open and g < 1 - A} 

 

                                              = 1 – B int (1 - A) 

                 

            Thus B int (l - A) = 1 - B cl (A). 
 

2.2.24 Theorem: In a Fuzzy topological spaces X, a fuzzy set A is b-closed iff A = B cl (A). 

 

Proof : Let A be a b-closed fuzzy set in Fuzzy topological spaces X. Since A < A and A is  

 

b-closed fuzzy set, A 𝜖 {f: f is a b-closed fuzzy set and A < f} and A < f  implies that  

 

A = ∧   {f : f is a b-closed fuzzy set and A < f}. That is A = B cl (A). 

 

Conversely, suppose that A = B cl (A). Then  A =  ∧   {f : f is b-closed fuzzy set and A < f}.  

 

This implies that, A 𝜖  {f: f is a b-closed fuzzy set and A < f}. Hence A is b-closed fuzzy set 

 

2.2.25 Theorem: In a Fuzzy topological spaces X, the following hold for b-closure. 
 
               1. B cl (0) = 0 
 
              2. B cl (A) is a b-closed fuzzy set in X. 

 
              3. B cl (B cl (A)) < B cl (A). 
 
Proof: The straight forward proof is omitted. 

 

2.2.26 Theorem: in a Fuzzy topological space X, a fuzzy set A is b-open fuzzy set  

 Iff A = B int (A). 

Proof: Let A be b-open fuzzy set in X. Since A < A and A is b-open fuzzy set,  

 

A 𝜖 {f : f is b-open fuzzy set and A > f } and  A > f implies  that A = v {f : f is a b-open fuzzy set  

  

and A > f } = B int (A). That is A = B int(A). Conversely, suppose that A = B int(A). 
 
That is A = v {f: f is b-open fuzzy set and A > f}.  

 

This implies that A 𝜖 {f : f is b-open fuzzy set and A > f }. Hence A is b-open fuzzy set in X. 
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2.2.27 Theorem: In a Fuzzy topological spaces X, the following hold for b-interior 

 

             1. B int (0) = 0. 

 

             2. B int (A) is a b-open fuzzy set in X. 
 

             3.B int (B int (A)) < B int (A). 

 

Proof: The easy verification is omitted 

 

2.2.28 Definition : A Fuzzy topological spaces X is said to be fuzzy –T1/2 space if every g-closed fuzzy set is a closed fuzzy set 

in X. 

We introduce the following. 
 
2.2.29 Definition: A Fuzzy topological spaces X is called a fuzzy b-space (fb-space) if every b-closed fuzzy set is dosed fuzzy 

set. 

 

2.2.30Theorem: A Fuzzy topological spaces X is fb-space iff every b-open fuzzy set is open fuzzy set in X. 
 
Proof: Suppose the space X is fb-space. Let V be b-open fuzzy set in X.Then 1  - V is b-closed.  

 

Since X is fb-space, 1 - V is closed in X.  Therefore V is open in X. 
 
Conversely, assume that every b-open fuzzy set in X is open in X. Let F be b-closed fuzzy set in X, then 1 - F is b-open in X. 

By hypothesis, 1 - F is open in X. Therefore F is closed in X. Hence X is fb-space. 

 

2.2.31 Theorem: Every fb-space is fuzzy –T1/2 space. 
 
Proof: Let X be a fb-space. Let A be g-closed fuzzy set in X. Then A is b-closed fuzzy set in X. Since X is fb-space, A is closed 

fuzzy set in X. Hence X is fuzzy –T1/2. 

 
 
2.2.32 Definition: A Fuzzy topological spaces X is called a fuzzy boundary T-space (fbT-space) if every b-closed fuzzy set is 

g-closed fuzzy set in X. 

 

2.2.33 Theorem: A Fuzzy topological spaces X is fbT-space iff every b-open fuzzy set is g-open fuzzy set in X. 
 
Proof: Suppose Fuzzy topological spaces X is fb T-space. Let V be b-open fuzzy set in X. Then 1 - V is b-closed fuzzy set in 

X. Since X is fb T-space, 1 - V is a g-closed fuzzy set in X. Therefore V is g-open fuzzy set in X. Conversely, assume that every 

b-open fuzzy set in X is  

g-open in X. Let F be b-closed fuzzy set in X, then 1 - F is b-open fuzzy set in X. By hypothesis, 

 1 - F is g-open in X. Therefore F is g-closed fuzzy set   in X. Hence X is fb T-space 

 

2.2.34 Theorem: Every fb-space is fb T-space. 

 

Proof: Let Fuzzy topological spaces X be a fb-space. Let A be a b-closed fuzzy set in X. Then A  
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is closed fuzzy set in X since X is fb-space. Therefore A is g-closed fuzzy set in X. Hence X is  

 

fb T-space.  
 

               

The converse of the above theorem need not be true as shown from the following example. 

 

 2.2.35 Example: Let X = (a, b, c}. Fuzzy sets A, B and C be defined as follows: A = {(a, 1), 

 

 (b, 0), (c, 0)}, B = {(a, 0), (b, 1), (c, 0)} and C = {(a, 0), (b, 1), (c, 1)}. Let T = {0, 1, A, C}.  

 

Then (X, T) is Fuzzy topological spaces. (X, T)  is fb T- space but not fb-space as the fuzzy set B  

 

is b-closed and not a closed fuzzy set in X. 

 

 2.2.36 Theorem: A Fuzzy topological spaces X is fb-space iff it is fuzzy-T1/2 and fb T-space. 
 
Proof: Suppose Fuzzy topological spaces X is fb - space. Then by the theorems 2.2.33 and 2.2.36, the space X is fuzzy-T1/2 and 

fb T-space 

 

Conversely, X is fuzzy-T1/2 and fb T-space. Let A be b-closed fuzzy   set  in X, then A is g-closed fuzzy set in X since X is fb T-

space. Again since X is fuzzy-T1/2, A is closed fuzzy set in X.  Therefore X is fb-space. 
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