Fuzzy $Pre^* - \gamma$ -Open and Fuzzy $Pre^* - \gamma$ -Continuity Mappings in Fuzzy Topological Spaces

C. Sivashanmugaraja Department of Mathematics, Periyar Government Arts College, Cuddalore, Tamil Nadu, India - 607 001

Abstract

In topology, an open mapping is a function between two topological spaces that the image of an open set is an open. On the other hand, a continuous map is a continuous function between two topological spaces that the preimage of an open set is an open. Sivashanmugaraja introduced the concepts of fuzzy pre^{*} - γ -continuous mappings in fuzzy topological spaces. In this paper, we formulate a definition of fuzzy pre^{*} - γ -open mapping and fuzzy super pre- γ -open mapping in fuzzy topological spaces via pre- γ -open fuzzy sets. Also we study composite on these mappings. Moreover, we investigate relationships among these mappings and also prove some properties and theorems.

MSC 2020 Mathematics Subject Classification: 54A40, 54C05, 54C10.

Key words: Fuzzy topology, Fuzzy pre- γ -open, Fuzzy pre*- γ -open, Fuzzy super pre- γ -open, Fuzzy pre*- γ -continuous.

1 Introduction

The notion of fuzzy sets was introduced by Zadeh [11] in 1965. Fuzzy sets play a crucial role in all fields of mathematics. In 1968, Chang [1] introduced the idea of fuzzy topological space. Kasahara [4] defined an operation γ in topological spaces. A fuzzy operation γ on fuzzy topological space was introduced by Kalitha and Das [3]. Hariwan Z. Ibrahim [2] introduced the notion of pre- γ -open sets in topological spaces. As a generalization of these notions in fuzzy topology, Sivashanmugaraja and Vadivel [10] introduced notion of pre- γ -open fuzzy sets in fuzzy topological spaces. In this paper, we introduce the notion of pre*- γ -open and super fuzzy pre- γ -open mappings in fuzzy setting. Also we study the relationships between these mappings.

2 Preliminaries

In this paper, (X, τ_X) , (Y, τ_Y) and (Z, τ_Z) (or simply X, Y and Z) are always mean fuzzy topological spaces (fts, in short). By <u>0</u> and <u>1</u>, we mean the constant fuzzy sets taking on the values 0 and 1 on X, respectively. Now, we recall some definitions and results used in this paper.

Definition 2.1. A fuzzy set λ of a fts X is called fuzzy pre- γ -open [10] if $\lambda \leq \tau_{\gamma} - int(cl(\lambda))$. A fuzzy set λ of a fts X is called fuzzy pre- γ -closed [6] iff its complement is fuzzy pre- γ -open. The family of all pre- γ -open and pre- γ -closed fuzzy sets are denoted by $FP_{\gamma}O(X)$ and $FP_{\gamma}C(X)$ respectively.

Definition 2.2. [6] Let λ be a fuzzy set in a fts X. Then the pre- γ -interior of λ is defined as $pint_{\gamma}(\lambda) = \vee \{\mu : \mu \leq \lambda, \mu \in FP_{\gamma}O(X)\}$ and the pre- γ -closure of λ is defined as $pcl_{\gamma}(\lambda) = \wedge \{\mu : \mu \geq \lambda, \mu \in FP_{\gamma}C(X)\}$.

Definition 2.3. A fuzzy subset μ of a fts (X, τ) is called

- (i) neighborhood [1] of a fuzzy point x_{β} iff \exists a $\eta \in \tau$ such that $x_{\beta} \in \eta \leq \mu$;
- (ii) pre- γ -neighborhood [9] of a fuzzy point $x_{\beta} \in X$, if \exists a pre- γ -open fuzzy set η such that $x_{\beta} \in \eta \leq \lambda$.

Definition 2.4. A mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ is called

- (i) fuzzy pre- γ -open [8], if the image of each open fuzzy set of (X, τ_X) is pre- γ -open fuzzy set of (Y, τ_Y) ;
- (ii) fuzzy pre- γ -continuous [9], if $f^{-1}(\lambda)$ is pre- γ -open fuzzy set in (X, τ_X) , \forall open fuzzy set λ in (Y, τ_Y) .

Definition 2.5. A fts X is called

- (i) fuzzy pre- γ - T_1 [7] if \forall pair of fuzzy singletons p_0 and p_1 with different supports x_0 and x_1 , \exists a pre- γ -open fuzzy sets λ and μ such that $p_0 \leq \lambda \leq p_1^c$ and $p_1 \leq \mu \leq p_0^c$.
- (ii) fuzzy pre- γ -Hausdorff or fuzzy pre- γ - T_2 [7] iff \forall pair of fuzzy singletons p_0 and p_1 with different supports, \exists a pre- γ -open fuzzy sets λ and μ such that $p_0 \leq \lambda \leq p_1^c$, $p_1 \leq \mu \leq p_0^c$ and $\lambda \leq \mu^c$;
- (iii) fuzzy pre- γ -compact [5] if each pre- γ -open covering \mathcal{A} of X contains a finite sub collection that also covers X.

3 Fuzzy Pre^{*}- γ -Open and Fuzzy Pre^{*}- γ -Closed Mappings

Definition 3.1. Let (X, τ_X) and (Y, τ_Y) be two fuzzy topological spaces and γ be a fuzzy operation on τ_X and τ_Y . A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ is called

- (i) fuzzy pre^{*} γ -open, if the image of each pre- γ -open fuzzy set of (X, τ_X) is a pre- γ -open fuzzy set of (Y, τ_Y) ;
- (ii) fuzzy pre^{*} γ -closed, if the image of each pre- γ -closed fuzzy set of (X, τ_X) is a pre- γ -closed fuzzy set of (Y, τ_Y) .

Example 3.1 Let $X = Y = \{a, b, c\}$, λ and μ be the fuzzy subsets of X which are defined as $\lambda = \underline{0.4}$ and $\mu = \underline{0.5}$ Let $\tau_X = \{\underline{1}, \underline{0}, \lambda\}$ and $\tau_Y = \{\underline{1}, \underline{0}, \mu\}$. Then (X, τ_X) and (Y, τ_Y) are fts. Define an operation γ on τ_X by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}, \gamma(\lambda) = \lambda$ and also define a γ on τ_Y by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}, \gamma(\mu) = cl(\mu)$. A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ be an identity mapping. Then clearly f is a fuzzy pre^{*} - γ -open mapping.

Theorem 3.1. Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a mapping. Then the following statements are equivalent:

- (i) The mapping f is fuzzy pre^{*} γ -open,
- (ii) For every fuzzy singleton $x_{\alpha} \in X$ and each fuzzy pre- γ -neighborhood P of a fuzzy singleton x_{α} , \exists a pre- γ -open fuzzy set Q in Y such that $f(x_{\alpha}) \leq Q \leq f(P)$,
- (iii) For every fuzzy set λ of X, $f(pint_{\gamma}(\lambda)) \leq pint_{\gamma}(f(\lambda))$;
- (iv) For every fuzzy set μ of Y, $pint_{\gamma}(f^{-1}(\mu)) \leq f^{-1}(pint_{\gamma}(\mu));$
- (v) For every fuzzy set μ of Y, $f^{-1}(pcl_{\gamma}(\mu)) \leq pcl_{\gamma}(f^{-1}(\mu))$.

Proof. (i) \rightarrow (ii) Let P be fuzzy pre- γ -neighborhood of x_{α} in X. Then \exists an pre- γ -open fuzzy set Q in X such that $x_{\alpha} \in Q \leq P$ and hence $f(x_{\alpha}) \leq f(Q) \leq f(P)$. Since f is fuzzy pre^{*}- γ -open, then f(Q) is pre- γ open fuzzy set in Y. Put f(Q) = N, then $f(x_{\alpha}) \leq N \leq f(P)$.

(ii) \rightarrow (i) Let *P* be a pre- γ -open fuzzy set of *X* containing x_{α} . Then *P* is fuzzy pre- γ -neighborhood of each $x_{\alpha} \in P$. By hypothesis, \exists a pre- γ -open fuzzy set *N* of *Y* such that $f(x_{\alpha}) \in N \leq f(P)$. Hence, f(P) is fuzzy pre- γ -neighborhood of each $f(x_{\alpha}) \in f(P)$. So f(P) is pre- γ -open fuzzy set in *Y*. Therefore, *f* is fuzzy pre^{*}- γ -open mapping.

(i) \rightarrow (iii) Since $pint_{\gamma}(\lambda) \leq \lambda \leq X$, is fuzzy pre- γ -open and f is a fuzzy pre^{*} - γ -open, then $f(pint_{\gamma}(\lambda)) \leq f(\lambda)$ is pre- γ -open fuzzy set in Y. Hence, $f(pint_{\gamma}(\lambda)) \leq pint_{\gamma}(f(\lambda))$.

(iii) \rightarrow (iv) By replacing $f^{-1}(\mu)$ instead of λ in (iii), we have $f(pint_{\gamma}(f^{-1}(\mu))) \leq pint_{\gamma}(f(f^{-1}(\mu))) \leq pint_{\gamma}(\mu)$ and then $pint(f^{-1}(\mu)) \leq f^{-1}(pint_{\gamma}(\mu))$.

(iv) \rightarrow (i) Let λ be a pre- γ -open fuzzy set in X. Then $f(\lambda) \in Y$ and by hypothesis, $pint_{\gamma}(f^{-1}(f(\lambda))) \leq f^{-1}(pint_{\gamma}(f(\lambda)))$. This implies that, $pint_{\gamma}(\lambda) \leq f^{-1}(pint_{\gamma}(f(\lambda)))$. Thus $f(pint_{\gamma}(\lambda)) \leq pint_{\gamma}(f(\lambda))$. Therefore by (iii), f is fuzzy pre^{*} - γ -open.

(iv) \rightarrow (v) and (v) \rightarrow (iv) Obvious.

(i) \rightarrow (v) Let μ be a fuzzy set of Y and $x_{\alpha} \in f^{-1}(pcl_{\gamma}(\mu))$. Then $f(x_{\alpha}) \in pcl_{\gamma}(\mu)$. Assume that P is a pre- γ -open fuzzy set containing x_{α} . Since f is fuzzy pre^{*}- γ -open, we obtain f(P) is a pre- γ -open fuzzy set in Y. Hence, $\mu \wedge f(P) \neq \phi$. Thus $f^{-1}(\mu) \wedge P \neq \phi$. Therefore, $x_{\alpha} \in pcl_{\gamma}(f^{-1}(\mu))$. So, $f^{-1}(pcl_{\gamma}(\mu)) \leq pcl_{\gamma}(f^{-1}(\mu))$.

(v) \rightarrow (i) Let μ be a fuzzy set in Y. Then $Y \setminus \mu \leq Y$. According to the assumption $f^{-1}(pcl_{\gamma}(Y \setminus \mu)) \leq pcl_{\gamma}(f^{-1}(Y \setminus \mu))$ and hence $[X \setminus f^{-1}(pint_{\gamma}(\mu))] \leq [X \setminus int(f^{-1}(\mu))]$ that implies $pint_{\gamma}(f^{-1}(\mu)) \leq f^{-1}(pint_{\gamma}(\mu))$. Then by (iv), f is fuzzy pre^{*} - γ -open.

Theorem 3.2. If $f_1: (X, \tau_X) \to (Y, \tau_Y)$ is fuzzy pre- γ -open mapping and $f_2: (Y, \tau_Y) \to (Z, \tau_Z)$ is fuzzy pre*- γ -open mapping, then $(f_2 \circ f_1)$ is fuzzy pre- γ -open.

Proof. Assume that λ be an open fuzzy set in X. Since f_1 is fuzzy pre- γ -open, $f_1(\lambda)$ is a pre- γ -open fuzzy set in Y. Also since f_2 is fuzzy pre*- γ -open mapping, hence $f_2(f_1(\lambda)) = (f_2 \circ f_1)(\lambda)$ is a pre- γ -open fuzzy set in Z. Therefore $(f_2 \circ f_1)$ is fuzzy pre- γ -open mapping.

Theorem 3.3. Let $f_1 : (X, \tau_X) \to (Y, \tau_Y)$ and $f_2 : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. If f_1 is an onto fuzzy pre- γ -continuous and $(f_2 \circ f_1)$ is fuzzy pre^{*}- γ -closed, then f_2 is fuzzy pre- γ -closed.

Proof. Let λ be a closed fuzzy set in Y and f_1 be a fuzzy pre- γ -continuous mapping. Therefore $f_1^{-1}(\lambda)$ is a pre- γ -closed fuzzy set in X. But $(f_2 \circ f_1)$ is a fuzzy pre^{*} - γ -closed, then $(f_2 \circ f_1)(f_1^{-1}(\lambda))$ is pre- γ -closed in Z. Also, by onto of f_1 , $f_2(\lambda)$ is pre- γ -closed fuzzy set in Z. Hence, f_2 is fuzzy pre- γ -closed.

Theorem 3.4. If f_1 and f_2 be two fuzzy pre^{*} - γ -open mappings, then the composite map $(f_2 \circ f_1)$ is also a fuzzy pre^{*} - γ -open mapping.

Proof. Suppose that λ be a pre- γ -open fuzzy set in X. According to the assumption, f_1 be a fuzzy pre^{*}- γ -open mapping, we obtain $f_1(\lambda)$ is a pre- γ -open fuzzy set in Y. Also by hypothesis f_2 is fuzzy pre^{*}- γ -open, then $f_2(f_1(\lambda))$ is pre- γ -open fuzzy set in Z. But $f_2(f_1(\lambda)) = (f_2 \circ f_1)(\lambda)$. Hence, the composite map $f_2 \circ f_1$ is fuzzy pre^{*}- γ -open.

4 Fuzzy Super Pre- γ -Open and Fuzzy Super Pre- γ -Closed Mappings

Definition 4.1. Let (X, τ_X) and (Y, τ_Y) be two fuzzy topological spaces and γ be a fuzzy operation on τ_X . A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ is called

- (i) fuzzy super pre- γ -open if the image of every pre- γ -open fuzzy set of X is an open fuzzy set of Y.
- (i) fuzzy super pre-γ-closed if the image of every pre-γ-closed fuzzy set of X is an closed fuzzy set of Y.

Example 4.1 Let $X = Y = \{a, b, c\}$ and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ defined as $\lambda_1(a) = 0.3, \lambda_1(b) = 0.6, \lambda_1(c) = 0.3; \lambda_2(a) = 0.6, \lambda_2(b) = 0.2, \lambda_2(c) = 0.7; \lambda_3(a) = 0.3, \lambda_3(b) = 0.2, \lambda_3(c) = 0.3; \lambda_4(a) = 0.6, \lambda_4(b) = 0.6, \lambda_4(c) = 0.7.$ Let $\tau_X = \{\underline{1}, \underline{0}, \lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ and τ_Y be the fuzzy discrete topology. Then (X, τ_X) and (Y, τ_Y) are fts. Define an operation $\gamma : \tau_X \to I^X$ by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}, \gamma(\lambda_1) = \lambda_1, \gamma(\lambda_2) = \underline{0.8}, \gamma(\lambda_3) = \lambda_3, \gamma(\lambda_4) = cl(\lambda_4)$ and also define $\gamma : \tau_Y \to I^Y$ by $\gamma(\underline{1}) = \underline{1}, \gamma(\underline{0}) = \underline{0}$. A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ defined as f(a) = a, f(b) = c, f(c) = b. Then f is a fuzzy super pre- γ -open mapping.

Theorem 4.1. Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a mapping. Then the following statements are equivalent:

- (i) The mapping f is fuzzy super pre- γ -open,
- (ii) For every fuzzy singleton $x_{\alpha} \in X$ and each fuzzy pre- γ -neighborhood P of a fuzzy singleton x_{α} , \exists a fuzzy neighborhood N of $f(x_{\alpha})$ in Y such that $f(x_{\alpha}) \leq N \leq f(P)$,
- (iii) For every fuzzy set λ of X, $f(pint_{\gamma}(\lambda)) \leq int(f(\lambda))$;
- (iv) For every fuzzy set μ of Y, $pint_{\gamma}(f^{-1}(\mu)) \leq f^{-1}(int(\mu));$
- (v) For every fuzzy set μ of Y, $f^{-1}(cl(\mu)) \leq pcl_{\gamma}(f^{-1}(\mu))$.
- (vi) If f is an onto, then for every fuzzy subset μ of Y and for any pre- γ closed fuzzy set λ in X containing $f^{-1}(\mu)$, there exists a closed fuzzy subset η of Y containing μ such that $f^{-1}(\eta) \leq \lambda$.

Proof. (i) \rightarrow (ii) Let P be fuzzy pre- γ -neighborhood of x_{α} in X. So \exists an pre- γ -open fuzzy set Q in X such that $x_{\alpha} \in Q \leq P$ and therefore $f(x_{\alpha}) \leq f(Q) \leq f(P)$. Since f is fuzzy super pre- γ -open, f(Q) is open fuzzy set in Y. Put f(Q) = R, then $f(x_{\alpha}) \leq R \leq f(P)$.

(ii) \rightarrow (i) Let P be a pre- γ -open fuzzy set of X containing x_{α} . Therefore $f(x_{\alpha}) \in f(P)$. By hypothesis, \exists an open fuzzy set R of Y such that $f(x_{\alpha}) \in R \leq f(P)$. Thus, f(P) is fuzzy neighborhood for $f(x_{\alpha}) \in f(P)$. So f(P) is an open fuzzy set in Y. Therefore, f is super pre- γ -open mapping.

(i) \rightarrow (iii) Since $pint_{\gamma}(\lambda) \leq \lambda \leq X$, is pre- γ -open fuzzy set and f is fuzzy super pre- γ -open, we obtain $f(pint_{\gamma}(\lambda)) \leq f(\lambda)$ is an open fuzzy set in Y. Thus, $f(pint_{\gamma}(\lambda)) \leq int(f(\lambda))$.

(iii) \rightarrow (iv) By replacing $f^{-1}(\mu)$ instead of λ in (iii), we have $f(pint_{\gamma}(f^{-1}(\mu))) \leq int(f(f^{-1}(\mu))) \leq int(\mu)$ and therefore $pint(f^{-1}(\mu)) \leq f^{-1}(int(\mu))$.

(iv) \rightarrow (i) Let λ be a pre- γ -open fuzzy set of X. Then $f(\lambda)$ is in Yand by hypothesis, $pint_{\gamma}(f^{-1}(f(\lambda))) \leq f^{-1}(int(f(\lambda)))$. Therefore, $pint_{\gamma}(\lambda) \leq f^{-1}(int(f(\lambda)))$. Hence $f(pint_{\gamma}(\lambda)) \leq int(f(A))$. Thus, f is fuzzy super pre- γ -open.

(iv) \rightarrow (v) Let μ be any fuzzy set in Y. Therefore $Y \setminus \mu \leq Y$, thus by hypothesis, we obtain $pint_{\gamma}(f^{-1}(Y \setminus \mu)) \leq f^{-1}(int(Y \setminus \mu))$. Thus $X \setminus pcl_{\gamma}(f^{-1}(\mu)) \leq X \setminus f^{-1}(cl(\mu))$. Hence, $f^{-1}(cl(\mu)) \leq pcl_{\gamma}(f^{-1}(\mu))$.

 $(v) \to (iv)$ Let μ be any fuzzy set in Y. Then $Y \setminus \mu \leq Y$. Therefore by hypothesis, we have $f^{-1}(cl(Y \setminus \mu)) \leq pcl_{\gamma}(f^{-1}(Y \setminus \mu))$ and thus $X \setminus f^{-1}(int(\mu)) \leq X \setminus pint_{\gamma}(f^{-1}(\mu))$. Hence, $pint_{\gamma}(f^{-1}(\mu)) \leq f^{-1}(int(\mu))$.

(iv) \rightarrow (i) Let μ be a pre- γ -open fuzzy set in X. Then $f(\mu)$ is in Y and by hypothesis, $pint(f^{-1}(f(\mu))) \leq f^{-1}(int(f(\mu)))$. Therefore, $pint_{\gamma}(\mu) \leq f^{-1}(int(f(\mu)))$. Thus $f(pint_{\gamma}(\mu)) \leq int(f(\mu))$. Thus by (iii), f is fuzzy super pre- γ -open.

(i) \rightarrow (vi) Let $\eta = Y \setminus f(X \setminus \lambda)$ and λ be a pre- γ -closed fuzzy set of X containing $f^{-1}(\mu)$. Then $X \setminus \lambda$ is a pre- γ -open fuzzy set. Since f is a fuzzy super-pre- γ -open mapping, $f(X \setminus \lambda)$ is an open fuzzy set in Y. Therefore, η is a closed fuzzy set of Y and $f^{-1}(\eta) = X \setminus f^{-1}f(X \setminus \lambda) \leq X \setminus (X \setminus \lambda) = \lambda$.

(vi) \rightarrow (i) Let P be a pre- γ -open fuzzy set in X and put $\mu = Y \setminus f(P)$. Then $X \setminus P$ is a pre- γ -closed fuzzy set in X with $f^{-1}(\mu) \leq (X \setminus P)$. By hypothesis, there exists a closed fuzzy set η of Y such that $\mu \leq \eta$ and $f^{-1}(\eta) \leq (X \setminus P)$. Hence, $f(P) \leq (Y \setminus \eta)$ and since $\mu \leq \eta$, then $(Y \setminus \eta) \leq (Y \setminus \mu) = f(P)$. This implies $f(P) = Y \setminus \eta$ which is open. Therefore, f is fuzzy super pre- γ -open.

Remark 4.1. The composition of two fuzzy super pre- γ -open mappings need not be fuzzy super pre- γ -open.

Proof. Obvious.

Theorem 4.2. Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a bijective fuzzy super pre- γ -open mapping. Then the following statements are hold:

(i) If X is a fuzzy pre- γ - T_i -space, then Y is fuzzy T_i , where i = 1, 2.

(ii) If Y is a fuzzy compact space, then X is fuzzy pre- γ -compact.

Proof. (i) We prove that for the case of a pre- γ - T_2 -space. Suppose y_{α} and y_{β} be two fuzzy singleton with different supports in Y. Then there exist two fuzzy singletons x_{α} and x_{β} in X such that $f(x_{\alpha}) = y_{\alpha}$ and $f(x_{\beta}) = y_{\beta}$. According to the assumption, X is a fuzzy pre- γ - T_2 -space, then there exist two disjoint pre- γ -open fuzzy sets λ and μ of X such that $x_{\alpha} \leq \lambda \leq x_{\beta}^c$ and $x_{\beta} \leq \mu \leq x_{\alpha}^c$ and $\lambda \leq \mu^c$. Since f is a bijective fuzzy super pre- γ -open map, we obtain $f(\lambda)$ and $f(\mu)$ are open fuzzy sets of Y with $y_{\alpha} \leq f(\lambda), y_{\beta} \leq f(\mu)$, and $f(\lambda) \wedge f(\mu) = \phi$. Hence, Y is fuzzy T_2 .

(ii) Let Y be a fuzzy compact space. Let $\{\mu_j : j \in J\}$ be a family of pre- γ -open fuzzy set cover of X and f be an onto super pre- γ -open mapping. Then $\{f(\mu_j) : j \in J\}$ is an open cover fuzzy set of Y. But, Y is a fuzzy compact space, hence there exists a finite subfamily I of J such that $Y = \bigvee \{f(\mu_j) : j \in I\}$. Then by one-one of f, we obtain $\{\mu_j : j \in I\}$ is a finite subfamily of X. Therefore, X is fuzzy pre- γ -compact..

Theorem 4.3. If $f: (X, \tau_X) \to (Y, \tau_Y)$ is an onto fuzzy super pre- γ -open mapping and Y is a fuzzy connected space, then X is fuzzy pre- γ -connected.

Proof. Obvious.

5 Fuzzy $Pre^* - \gamma$ -Continuous or Fuzzy $Pre - \gamma$ -Irresolute Mappings

Definition 5.1. [9] Let (X, τ_X) and (Y, τ_Y) be two fuzzy topological spaces and γ be a fuzzy operation on τ_X and τ_Y . A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ is said to be fuzzy pre^{*} - γ -continuous (or pre- γ -irresolute), if $f^{-1}(\lambda)$ is a pre- γ -open fuzzy set of X, \forall pre- γ -open fuzzy set λ of Y.

Example 5.1 Let $X = Y = \{a, b, c\}$. Let τ_X be the indiscrete fuzzy topology and τ_Y be the discrete fuzzy topology. Define $\gamma : \tau_X \to I^X$ by $\gamma(\underline{1}) = \underline{1}, \ \gamma(\underline{0}) = \underline{0}$ and also define $\gamma : \tau_Y \to I^Y$ by $\gamma(\lambda) = \lambda, \ \forall \ \lambda \in \tau_Y$. A mapping $f : (X, \ \tau_X) \to (Y, \ \tau_Y)$ defined as $f(a) = c, \ f(b) = a, \ f(c) = b$. Then f is a fuzzy pre^{*} - γ -continuous mapping.

Theorem 5.1. Let $f: (X, \tau_X) \to (Y, \tau_Y)$ be a bijective mapping. Then the following statements are equivalent:

- (i) f is fuzzy pre^{*} γ -open;
- (i) f is fuzzy pre^{*} γ -closed;
- (i) f^{-1} is fuzzy pre^{*} γ -continuous.

Proof. Obvious.

Theorem 5.2. A mapping $f : (X, \tau_X) \to (Y, \tau_Y)$ is fuzzy pre^{*}- γ continuous iff $f^{-1}(\lambda)$ is pre- γ -closed fuzzy set in X, \forall pre- γ -closed fuzzy set λ in Y.

Proof. Obvious.

Theorem 5.3. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ be a mapping. Then the following are equivalent:

- (i) f is a fuzzy pre^{*} γ -continuous mapping;
- (ii) $f(pcl_{\gamma}(\lambda)) \leq cl(f(\lambda)), \forall \text{ fuzzy set } \lambda \text{ in } X.$

Proof.

(i) \Rightarrow (ii) Let λ be a fuzzy set in X. Then $cl(f(\lambda))$ is closed fuzzy set in Y. Since f is fuzzy pre^{*} - γ -continuous mapping, $f^{-1}(cl(f(\lambda)))$ is a pre- γ -closed fuzzy set in X and so $f^{-1}(cl(f(\lambda))) = pcl_{\gamma}(f^{-1}(cl(f(A))))$. Since $\lambda \leq f^{-1}(f(\lambda))$, we have $pcl_{\gamma}(\lambda) \leq pcl_{\gamma}(f^{-1}(f(\lambda))) \leq pcl_{\gamma}(f^{-1}(cl(f(\lambda)))) =$ $f^{-1}(cl(f(\lambda)))$. Hence $f(pcl(\lambda)) \leq cl(f(\lambda))$.

(ii) \Rightarrow (i) Let μ be a closed fuzzy set in Y and let $\lambda = f^{-1}(\mu)$. According to the assumption, $f(pcl_{\gamma}(f^{-1}(\mu))) \leq cl(f(f^{-1}(\mu)))$, which implies $pcl_{\gamma}(f^{-1}(\mu)) \leq f^{-1}(cl(f(f^{-1}(\mu))) \leq f^{-1}(cl(\mu)) \leq f^{-1}(\mu)$. But $f^{-1}(\mu) \leq pcl_{\gamma}(f^{-1}(\mu))$, so $f^{-1}(\mu) = pcl_{\gamma}(f^{-1}(\mu))$. Hence $f^{-1}(\mu)$ is pre- γ -closed fuzzy set in X. Therefore f is fuzzy pre^{*}- γ -continuous mapping.

Theorem 5.4. If $f_1 : (X, \tau_X) \to (Y, \tau_Y)$ and $f_2 : (Y, \tau_Y) \to (Z, \tau_Z)$ are fuzzy pre^{*} - γ -continuous mappings, then the composite map $(f_2 \circ f_1) : (X, \tau_X) \to (Z, \tau_Z)$ is also fuzzy pre^{*} - γ -continuous.

Proof. Let μ be a pre- γ -open fuzzy set in Z. Since f_2 be a fuzzy pre^{*} - γ -continuous, $f_2^{-1}(\mu)$ is pre- γ -open fuzzy set in Y. Also since f_1 is fuzzy pre^{*} - γ -continuous, $f_1^{-1}(f_2^{-1}(\mu))$ is pre- γ -open fuzzy set in X. But $f_1^{-1}(f_2^{-1}(\mu)) = (f_2 \circ f_1)^{-1}(\mu)$. So $(f_2 \circ f_1)^{-1}(\mu)$ is a pre- γ -open fuzzy set in X. Therefore $(f_2 \circ f_1)$ is fuzzy pre^{*} - γ -continuous.

Theorem 5.5. If $f_1 : (X, \tau_X) \to (Y, \tau_Y)$ is fuzzy pre^{*} - γ -continuous and $f_2 : (Y, \tau_Y) \to (Z, \tau_Z)$ be a fuzzy pre- γ -continuous, then $(f_2 \circ f_1) : (X, \tau_X) \to (Z, \tau_Z)$ is fuzzy pre- γ -continuous.

Proof. Let μ be an open fuzzy set in Z. Since f_2 be a fuzzy pre- γ continuous, $f_2^{-1}(\mu)$ is a pre- γ -open fuzzy set in Y. Also since f_1 is fuzzy
pre*- γ -continuous, $f_1^{-1}(f_2^{-1}(\mu))$ is a pre- γ -open fuzzy set in X. Hence $(f_2 \circ f_1)^{-1}(\mu)$ is pre- γ -open fuzzy set in X. Therefore $(f_2 \circ f_1)$ is fuzzy
pre- γ -continuous.

6 Conclusion

In this paper, the concepts of fuzzy pre^{*}- γ -open and fuzzy super pre- γ -open mappings are introduced. Also we studied about fuzzy pre^{*}- γ -continuous. It is reported that the notions of these three mappings are independent. Moreover we have discussed the relationships between these mappings. There is a scope to study and extend these newly defined mappings.

References

- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–189.
- [2] Hariwan Z. Ibrahim, Weak forms of γ -open sets and new separation axioms, Int. J. Sci. Eng. Res., 3(4) (2012), 1–4.
- [3] B.Kalita and N.R.Das, Some Aspects of Fuzzy operations, The Journal of Fuzzy Mathematics, 19(3) (2011), 531–540.
- [4] S. Kasahara, Operation-Compact spaces, Math. Japonica, 24 (1979), 97-105.
- [5] C. Sivashanmugaraja, Fuzzy Pre- γ -Compact, Fuzzy Pre- γ -Connected and Fuzzy Pre- γ -Closed Spaces, Communicated.
- [6] C. Sivashanmugaraja, More on Fuzzy Pre- γ -open and Fuzzy Pre- γ -generalized closed Sets, Communicated.
- [7] C. Sivashanmugaraja, On Some Types of Pre- γ -Separation Axioms in Fuzzy Topological Spaces, South East J. of Mathematics and Mathematical Sciences, 17(1), (2021), 449–460.
- [8] C. Sivashanmugaraja, Operation Approaches on Fuzzy Pre- γ-Open and Fuzzy Pre- γ-Closed Mappings in Fuzzy Topological Spaces, Juni Khyat, 10(8) (2020), 22–27.
- [9] C. Sivashanmugaraja, Operation Approaches on Fuzzy Pre- γ -Continuity and Fuzzy Weakly Pre- γ -Continuity in Fuzzy Topological Spaces, Communicated.
- [10] C. Sivashanmugaraja and A. Vadivel, Weak forms of fuzzy γ -open sets, Global Journal of Pure and Applied Mathematics, 13 (2017), 251–261.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.