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Abstract — In this paper, an original reduction algorithm for solving simultaneous multivariate polynomial equations is 
presented. The algorithm is exponential in complexity, but the well-known algorithms, such as the extended Euclidean 

algorithm and Buchberger's algorithm, are superexponential. The superexponential complexity of the well-known algorithms is 

due to their not being “minimal” in a certain sense. Buchberger's algorithm produces a Grӧbner basis. The proposed original 

reduction algorithm achieves the required task via computation of determinants of parametric Sylvester matrices, and 

produces a Rabin basis, which is shown to be minimal, when two multivariate polynomials are reduced at a time. The 

minimality of Rabin basis allows us to prove exponential lower bounds for the space complexity of an algebraic proof of 

certification, for a specific computational problem in the computational complexity class PSPACE, showing that the 

complexity classes PSPACE and P cannot be the same. It is also shown that the class of languages decidable by probabilistic 

algorithms with (probabilistic) polynomial time proofs for the membership of input words is not the same as the complexity 

class P. 
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 I. INTRODUCTION  

Two prominent methods for reducing simultaneous multivariate polynomial equations are the extended Euclidean algorithm 

and Buchberger's algorithm. The reduction can be performed eliminating one variable at a time. If two multivariate 

polynomials vanish simultaneously, then so does their parametric gcd, where the parametric gcd is an element in the integral 
domain or the field of rational functions in the remaining variables. However, in general, if the parametric gcd vanishes, for a 

particular interpretation of variables from the algebraic closure of the ground field without any free variables, then the same 

cannot be guaranteed for the two multivariate polynomials, whose gcd has vanished under the chosen interpretation. The 

failure of the converse to hold true in general contributes to the superexponential complexity of these two well-known 
algorithms (Section 2). 

For the two multivariate polynomials in discussion to vanish simultaneously, it is both necessary and sufficient that the 

determinant of the parametric Sylvester matrix, called their resultant, with respect to the variable being eliminated, vanishes, 
for any or some values in the ground field, in which the zeros are being searched for, assuming that neither of the two 

multivariate polynomials vanishes identically, under the chosen interpretation nullifying the resultant. The equivalence of the 

vanishing resultant ― except when at least one of the two multivariate polynomials identically vanishes, under the 
interpretation of values to the variables other than the variable being eliminated in the current reduction step ― to the sharing 

of a common zero in the algebraic closure of the ground field without parameters lends us the minimality criterion, for the 

reduction of the two multivariate polynomials. The entries of the Sylvester matrix being multivariate polynomials themselves, 

albeit without the variable being eliminated in the current step, the Gaussian elimination procedure cannot be applied, even 
though the final resultant, which is the determinant of the Sylvester matrix, is the same. The reason for inapplicability of the 

Gaussian elimination procedure for the determinant of the parametric matrices is that the computations in the intermediate 

stages might become excessively large, causing superexponential space and time for the completion of its computations, as can 
be achieved by simplification of intermediate results. The overall performance of the Gaussian elimination procedure for 

computation of the parametric resultant may be worse than the extended Euclidean algorithm or Buchberger's algorithm. A 

step-by-step simplified computation of the resultant that does not run into the space or time explosion problem, which is 

experienced with the Gaussian elimination method for the parametric matrices, is also presented. The reduced multivariate 
polynomial basis obtained by taking the resultant for each reduction step is called a Rabin basis, in honour of Professor 

Michael Oser Rabin, for his profound contributions to computer science (Section 3).  

The minimality criterion allows us to derive exponential lower bounds for space requirement for an algebraic proof of 
certification, for a specific computational problem in two variables with undetermined coefficients over any finite field. The 

specific computational problem is shown to exist in PSPACE, by exhibiting an algorithm for solving it, requiring space 

bounded by a linear expression in the sum of the degrees of the two independent variables and logarithm of the cardinality of 
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the finite field, excluding the space required for the finite field arithmetic operations. It is customarily acknowledged that, for a 
computational problem to be in P, a polynomial time algorithm, together with a proof of certification ― the proof being 

bounded in space by a polynomial in appropriate parameter values for the instance ― must exist for its correctness of 

operation. The class of nondeterministic computational or decision problems, for which it is possible to produce machine 

checkable deterministic proofs, bounded in space by a polynomial for each such specific computational problem, denoted by 
NPSPACE-with-proof-in-PSPACE, relative to any particular fixed system of deductive or symbolic logic, equipped with rules 

of inference, that might be extensible, is included in NP. From this fact, it follows that the complexity classes NPSPACE-with-

proof-in-PSPACE and NP are one and the same. The machine checkable proofs may include references to external facts, the 
rules of inference may be specialized to a specific computational or decision problem, and the extensibility is the system's or 

users' ability to add more rules perhaps adaptively and / or interactively. The nonexistence of a polynomial time deterministic 

verification algorithm for a computational problem can be inferred from the nonexistence of a proof of correctness for any such 
algorithm, for its solution, that is bounded in space by a polynomial in the acceptable parameter values for its instances. A 

discernment of Herbrand's theorem, as applied to multivariate polynomials, shows that there cannot be a shorter form for the 

algebraic proof of certification, for the specific computational problem in PSPACE, because an immediate reflection shows 

that the degree of the resultant for an instance to the computational problem under investigation, even when the number 
variables is only two, is exponential, which must be combined with the fact that further mod and gcd operations may have to be 

performed, for the completion of the proof. In particular, the algebraic form of the resultant needs to hold for all undetermined 

coefficients, degrees and field characteristics, for the application of Herbrand's theorem. Moreover, it is easily possible to 
assume multivariate polynomials with undetermined coefficients (with more than just two independent variables and 

undetermined coefficients) as instances for the specific computational problem in PSPACE, and again invoking Herbrand's 

theorem, recursion can be applied, to produce an algebraic proof of correctness for the specific computational problem in 

discussion. By restricting interpretation of variables to small dimension extension fields, a deterministic algorithm running in 
linear space (possibly excluding the space required for the finite field arithmetic operations) can be exhibited, for the specific 

computational problem with generalization to multiple variables. The occurrence of recursion effectively annihilates any little 

hope of finding a proof of certification bounded in space by a polynomial, for any deterministic algorithm for the specific 
computational problem in its most generality, even when the interpretation is restricted to small dimension extension fields. In 

summary, we have to become contented in accepting that PSPACE cannot be P. In fact, an almighty can be assumed to be 

capable of guessing the correct answer to the question posed as part of the specific computational problem, but the 

impossibility of producing a polynomial space proof of certification shows that PSPACE cannot be NP, either. In addition, to 
these results, it is also shown that the class of languages acceptable by probabilistic algorithms with probabilistic polynomial 

time proofs for the membership of an input word is not the same as the complexity class NP (Section 4).  

 

II. EXTENDED EUCLIDEAN ALGORITHM, BUCHBERGER'S ALGORITHM AND GRӦBNER BASIS 

Let 𝔽 be a field and 𝔽[𝑥1 , … , 𝑥𝑛], for some positive integer 𝑛 ≥ 2, be the integral domain of polynomials in 𝑛  independent 

variables 𝑥1 , … , 𝑥𝑛 , with coefficients in 𝔽. Let 𝒙 be a short notation for  𝐱 = (𝑥1 , … , 𝑥𝑛), 𝛼(𝐱) =  ∑ 𝑎𝑖(𝑥1 , … ,𝑑
𝑖=0

𝑥𝑛−1)𝑥𝑛
𝑖    and 𝛽(𝐱) =  ∑ 𝑏𝑖(𝑥1 , … , 𝑥𝑛−1)𝑥𝑛

𝑖𝑑
𝑖=0    be two polynomials in 𝔽[𝑥1 , … , 𝑥𝑛], both of degree 𝑑 ≥ 1. It is further 

assumed that the polynomials 𝑎𝑖(𝑥1 , … , 𝑥𝑛−1)  and 𝑏𝑖(𝑥1 , … , 𝑥𝑛−1) in 𝔽[𝑥1 , … , 𝑥𝑛−1]  are all nonzero, and that each 
requires at least 𝐿min units of space, for  0 ≤ 𝑖 ≤ 𝑑, such that they could include more than 𝐿min ≥ 2 terms with very diverse 

exponent vectors, so that their products after expansion may contain only insignificantly small number of collision terms, for 

applying cancellations or simplification of terms, or they may admit succinct representations requiring at least  𝐿min units of 
space, when their products are not expanded. 

The operation of the extended Euclidean algorithm for computation of the parametric gcd is explained in the sequel. Since 

the two input polynomials are of the same degree 𝑑 in 𝑥𝑛, an application of two consecutive steps to eliminate the highest 

degree term 𝑥𝑛
𝑑  results in two multivariate polynomials of degree 𝑑 − 1 each, such that their coefficients would need  𝐿min 

units of space. Now, by induction, an application of two consecutive steps to eliminate 𝑥𝑛
𝑑−𝑖, from the two multivariate 

polynomials obtained as the result of the last consecutive pair of steps by eliminating 𝑥𝑛
𝑑−𝑖+1, for 𝑖 = 1, 2, … , 𝑑, would result in  

2𝑖𝐿min units of space, without expansion. Thus, when the products are not expanded, the overall space requirement for the 
elimination of 𝑥𝑛 is at least 𝓞( 2𝑑𝐿min).  One more insight is concerning the final degree of any of the variables 𝑥𝑖, for 1 ≤ 𝑖 ≤
𝑛 − 1. For simplicity, let the degree of occurrence of the variable 𝑥𝑖, for some fixed index 𝑖, where 1 ≤ 𝑖 ≤ 𝑛 − 1, be 𝛿𝑖 ≥ 2, 

for each term occurring as the coefficient of 𝑥𝑖  in either input polynomial. The elimination procedure produces coefficients as 

multivariate polynomials in 𝔽[𝑥1 , … , 𝑥𝑛−1] . Assuming that the occurrence of cancellations while simplifying the 
computations is a rare event, the degree of occurrence of the variable 𝑥𝑖 in the parametric gcd can be lower bounded by 

𝓞( 2𝑑𝛿𝑖), for  1 ≤ 𝑖 ≤ 𝑛 − 1.  

Expansion and simplification of the products formed in the intermediate steps might not produce a lot of cancellations, and 
would only be expected to further blow up the space requirement. A consecutive pair steps, eliminating the term 𝑥𝑛

𝑑 , would 

take at least 𝓞(𝐿min
2 ) space, after expansion, and by induction, a consecutive pair of steps, for eliminating 𝑥𝑛

𝑑−𝑖+1, by a 
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consecutive pair steps, would need at least space 𝓞 (𝐿min
2𝑖

), after expansion, for 𝑖 = 1, 2, … , 𝑑, resulting in the overall space 
requirement of at least 𝓞 (𝐿min

2𝑖
) space, after expansion. This is the problem that causes the space explosion when the extended 

Euclidean algorithm is applied, for eliminating a single variable, from the two input multivariate polynomials. Most of the 

zeros of the parametric gcd would not lead to the common zeros of the two input multivariate polynomials. 

Buchberger's algorithm follows closely the operational principle of the extended Euclidean algorithm and, in effect, 
emulates the latter by considering the exponent vector as a whole, in the sum of terms form. The multivariate polynomials so 

produced are collected in the Grӧbner basis [1], named after the Ph D advisor of the author, presumably connoting Hilbert's 

basis theorem. 

 

III. PARAMETRIC SYLVESTER MATRICES, PARAMETRIC RESULTANT AND RABIN BASIS 

Let 𝛼(𝐱) and 𝛽(𝐱) be multivariate be two polynomials in 𝔽[𝑥1 , … , 𝑥𝑛], both of degrees 𝑑𝛼 ≥ 1 and 𝑑𝛽 ≥ 1. The Sylvester 

matrix corresponding to the polynomials 𝛼(𝐱) and 𝛽(𝐱), for the elimination of the variable  𝑥𝑛, is a 𝐷 × 𝐷 matrix, where 𝐷 =
𝑑𝛼 + 𝑑𝛽  , with nonzero entries the multivariate polynomials  𝑎𝑖(𝑥1 , … , 𝑥𝑛−1) , for 0 ≤  𝑖 ≤  𝑑𝛼, and 𝑏𝑗(𝑥1 , … , 𝑥𝑛−1), 

for  0 ≤ 𝑗 ≤ 𝑑𝛽 . It is assumed that the number of terms in the sum-of-terms form of expansion of the entries is at most 𝐿max 

each for these polynomials. The resultant, denoted by Res(𝛼(𝐱), 𝛽(𝐱)), with respect to the variable 𝑥𝑛, is the determinant of 

the 𝐷 × 𝐷 Sylvester matrix. The expansion of the determinant form as the sum of 𝐷! many product terms shows that the 

number of terms in the resultant can be at most 𝐷! 𝐿max
𝐷 < (𝐷𝐿max)𝐷  , which is much smaller than 𝐿min

2𝑑
, when 𝑑𝛼 = 𝑑𝛽 =

𝑑, 𝐷 = 2𝑑, 𝐿min ≥ 2 and 𝐿max not too large.  The observation holds even when 𝑑𝛼 ≠ 𝑑𝛽. On the other hand, if the degree of 

occurrence of a variable 𝑥𝑖  is at most Δ𝑖, for a fixed index 𝑖, where 1 ≤ 𝑖 ≤ 𝑛 − 1, in the multivariate polynomial coefficients 

of the input polynomials, then the degree of occurrence of the variable 𝑥𝑖  in Res(𝛼(𝐱), 𝛽(𝐱)), with respect to the variable 𝑥𝑛, is 

at most 𝐷Δ𝑖, which is much smaller than 2𝑑𝛿𝑖, as found in the previous section. 

However, the straightforward expansion of the determinant form results in exponential time complexity, owing to the 𝐷! 
many terms in the sum. Similarly, the Gaussian elimination method could deliver a worse performance than the extended 
Euclidean algorithm, because the intermediate results may not collapse into a small number of terms until the final result. 

The following propagation of computations of the determinants of smaller dimension square submatrices to larger square 

submatrices is useful. For the computation of the determinant of a 𝐷 × 𝐷 matrix, for a large dimension 𝐷 > 1, let the 

determinant and inverse of a 𝑘 × 𝑘 submatrix, 𝑆𝑘, be found, where 𝑆𝑘 is a submatrix of the 𝑘 × 𝐷  matrix  𝑃𝑘 , obtained by 

collecting the first 𝑘 rows of the matrix, inductively, for some 𝑘 ≥ 2, but 𝑘 ≤ 𝐷 − 1. Let 𝑃𝑘+1 be the (𝑘 + 1) × 𝐷  matrix 

obtained by adjoining the next row in the 𝐷 × 𝐷 matrix to 𝑃𝑘 . Assuming that the determinant of the given 𝐷 × 𝐷 matrix, which 

is Res(𝛼(𝐱), 𝛽(𝐱)), with respect to the variable 𝑥𝑛, for the Sylvester matrix, does not identically vanish, as an element in the 

integral domain 𝔽[𝑥1 , … , 𝑥𝑛−1], the rows of the matrix 𝑃𝑘+1 are linearly independent over the field of fractions of the integral 

domain 𝔽[𝑥1 , … , 𝑥𝑛−1]. By the equality of the row rank to the column rank, there are 𝑘 + 1 linearly independent columns 

of 𝑃𝑘+1. Now, of these linearly independent columns, 𝑘 of the columns can be chosen to be those corresponding to the columns 

of 𝑆𝑘 , because the columns corresponding to  𝑆𝑘  are linearly independent, themselves, by its invertibility, and if every other 

column of 𝑃𝑘+1 were a linear combination of the 𝑘 columns of 𝑃𝑘+1 , of dimensions (𝑘 + 1) × 1 each, corresponding to those 

of 𝑆𝑘 , then the column rank 𝑃𝑘+1 itself would be 𝑘. For the Sylvester matrix with respect to the variable 𝑥𝑛, the linear 

combination is taken over the field of fractions of the integral domain 𝔽[𝑥1 , … , 𝑥𝑛−1]. Thus, at any point, if it is not possible 

to propagate the computation of the determinant from a 𝑘 × 𝑘 submatrix to (𝑘 + 1) × (𝑘 + 1) submatrix, for the reason that 

the column rank cannot increase, after adjoining any of the remaining 𝐷 − 𝑘 rows to 𝑃𝑘 , then the determinant of the given 

matrix itself vanishes, and, for the Sylvester matrix, Res(𝛼(𝐱), 𝛽(𝐱)), with respect to the variable 𝑥𝑛, itself identically 

vanishes. Given 𝑆𝑘 , det(𝑆𝑘) and 𝑆𝑘
−1, the computations required for identifying an appropriate column in 𝑃𝑘+1, in order to form 

the (𝑘 + 1) × (𝑘 + 1) matrix 𝑆𝑘+1 , its determinant det(𝑆𝑘+1) and its 𝑆𝑘+1
−1  can be computed using standard formulas from 

matrix algebra. This method of computation of the parametric resultant avoids needless space and time explosion, that can be 

observed in the Gaussian elimination method. 

If Res(𝛼(𝐱), 𝛽(𝐱)) = 0, for some interpretation of the variables 𝑥𝑖 = 𝜉𝑖 in the algebraic closure of 𝔽, for 1 ≤ 𝑖 ≤ 𝑛 − 1, and 

neither of 𝛼(𝐱) and 𝛽(𝐱) vanishes identically as respective single variable polynomials in 𝑥𝑛, for the ground instances of 𝑥𝑖 =
𝜉𝑖, for 1 ≤ 𝑖 ≤ 𝑛 − 1, , then 𝛼(𝐱) and 𝛽(𝐱) share a common zero in the algebraic closure of 𝔽. This property is called the 

minimality of the reduction step, for the elimination of the variable 𝑥𝑛, from the two participating multivariate polynomials. 

The collection of multivariate polynomials as obtained by computing the parametric resultant of two multivariate polynomials, 
at a time, with respect to any of the independent variables, is called a Rabin basis. 
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IV. PROOF SHOWING THAT  PSPACE  CAN BE NEITHER  NP   NOR  P 

A. Proof Showing that NPSPACE-with-proof-in-PSPACE = NP 

For the definitions of the computational complexity classes denoted by P, NP, NPSPACE and PSPACE, the readers are 

referred to [5], where NPSPACE appears as NPS and PSPACE as PS. As an additional complexity class, let NPSPACE-with-

proof-in-PSPACE be the collection of languages over an alphabet containing at least two symbols, such that, for the 

acceptability of an input word, for each language independently, a nondeterministic algorithm requiring space bounded by a 

polynomial (specific to the particular language) in the string length of the input word, as with NPSPACE, exists, but with an 

additional property that a proof of acceptance can be automatically generated with respect to any particular system of logic 

with its own rules of inference. Some of the rules of inference may be specialized to the particular language. The size of the 
proof must be bounded by some polynomial in the string length of the input word, the proof itself is assumed to be machine 

checkable for its validity, and the corresponding decision problem of proof checking is required to belong to P. It is easy to see 

that the complexity class NP is included in NPSPACE-with-proof-in-PSPACE, because of the deterministic polynomial time 

verification condition for the languages in NP.  

For the converse inclusion, let Σ be an alphabet of at least two distinct symbols, and let ℒ ⊆ Σ∗  be a language in NPSPACE-

with-proof-in-PSPACE. By assumption, there is a polynomial 𝑝ℒ(|𝜔|), for every word  𝜔 ∈ Σ∗, where |𝜔| is the string length 

of 𝜔, such that whenever 𝜔 ∈  ℒ, there is a proof attesting to this fact, of at most  𝑝ℒ(|𝜔|) bits of information, relative to a 

particular fixed system of logic, together with the rules of inference, perhaps specialized for the language ℒ. The time required 

to check the validity of each step in the proof is taken to be bounded by a fixed, but sufficiently large, constant. The syntax 

checking of the proof is also assumed to require time bounded by a polynomial in the size of the proof. Thus, for every 𝜔 ∈ ℒ, 

the proof that 𝜔 indeed belongs to ℒ can be guessed, checked for syntactic correctness of the proof, and finally checked for the 

validity of the proof itself, in overall time bounded by some polynomial in |𝜔|. For an external user,  𝑝ℒ(|𝜔|) may still remain 

oblivious, as the membership of ℒ to NPSPACE-with-proof-in-PSPACE requires only its existence. 

B. A Specific Computational Problem in PSPACE  Belonging to Neither NP Nor P 

Let p be a large prime number, and ℤp be the finite field of integers with arithmetic operations mod p. Let 𝑚, 𝑛 ≥ 5  be 

positive integers, and  𝑓(𝑡,   𝑥) =  ∑  𝑎𝑖(𝑡)𝑥𝑖𝑛−1
𝑖=0  +  𝑥𝑛 ∈  ℤp[𝑡, 𝑥], where  𝑎𝑖(𝑡) ∈  ℤp[𝑡] are nonzero polynomials, with 

undetermined coefficients for the purpose of description of the computational problem, for  0 ≤ 𝑖 ≤ 𝑛 − 1. Let the degree of 

occurrence of 𝑡 among all  𝑎𝑖(𝑡), for  0 ≤ 𝑖 ≤ 𝑛 − 1, be at most 𝑚, and it is assumed, for convenience, that there is exactly one 

polynomial of degree 𝑚, and that all the remaining 𝑛 − 1 polynomials are of degree at most 𝑚 − 1. 

The computational question is, “what is the number of values of 𝑡 in the algebraic closure of ℤp, for which there can be a 

solution, for 𝑥 ∈ ℤp, such that  𝑓(𝑡,   𝑥) = 0 ?” This question is akin to the problems studied along the lines of [7]. Since the 

polynomials 𝑎𝑖(𝑡), for  0 ≤ 𝑖 ≤ 𝑛 − 1, are all of degree at most 𝑚, each, it suffices to search for values of 𝑡 in extension fields 

of  ℤp of degree at most 𝑚. As a refinement based on this observation, the computational task is to enumerate (produce as 

output) the number of solutions for 𝑡 in the extension field of degree 𝑑 over  ℤp, for each degree 𝑑, where 1 ≤ 𝑑 ≤ 𝑚, such 

that  𝑓(𝑡,   𝑥) = 0, for some 𝑥 ∈ ℤp. Obviously, the computational problem is in PSPACE. In [2], the authors discuss another 

similar computational problem, but do not assert whether the problem they study indeed belongs to PSPACE. Instead, their 

contention is restricted to the hardness of solving simultaneous multivariate polynomial equations, in general. 

It is easily observed that 𝑔(𝑡) =   Res(𝑓(𝑡, 𝑥), (𝑥p − 𝑥)) is a polynomial of degree exactly  𝑚p, and does not depend on 𝑛, 

by the convenient assumption made. Also, if 𝑔(𝑡) =  0, nether of 𝑓(𝑡, 𝑥) and  (𝑥p − 𝑥)  vanishes, since the coefficients of the 

leading degree term in both the polynomials are equal to the constant 1. However, the multiplicity of occurrence of a root 

of 𝑔(𝑡) must be accurately accounted for : for example, the two polynomials  (𝜙(𝑡) + (𝜓(𝑡))
2

+  𝑥)  and  (𝜙(𝑡)  +  𝑥)  share 

 a common zero in the algebraic closure of ℤp , exactly when (𝜓(𝑡))
2

= 0 , but each such value of 𝑡 in the algebraic closure of 

 ℤp must be taken into account as occurring with only multiplicity one. Thus, ℎ(𝑡) = gcd( 𝑔(𝑡), 𝑔′(𝑡)), where 𝑔′(𝑡) is the 

formal derivative of the polynomial 𝑔(𝑡), must be computed, and finally, the degree of 𝑡 in the polynomial  
𝑔(𝑡)

ℎ(𝑡)
  yields the 

answer to the first question. As to the second question, the degree of gcd of  
𝑔(𝑡)

ℎ(𝑡)
  with  (𝑥p𝑑

− 𝑥)  yields the number of values 

of 𝑡 in the degree 𝑑 extension of  ℤp , such that  𝑓(𝑡,   𝑥) = 0, for some 𝑥 ∈ ℤp, for 1 ≤ 𝑑 ≤ 𝑚. 

It is quite a simple matter to generalize the problem to higher dimensions. Let 𝑓(𝐱) ∈  ℤp[𝑥1, …,   𝑥𝑛], for some integer 𝑛 ≥

3, but requiring the number of zeros in the extensions of degree at most 𝑚𝑖  larger than 2, for 1 ≤ 𝑖 ≤ 𝑛, including zeros 

in ∏  𝐺𝐹( p , 𝑑𝑖)
𝑛
𝑖=1  , for all possible index vectors (𝑑1, …  , 𝑑𝑛)$, where 1 ≤ 𝑑𝑖 ≤ 𝑚𝑖  and 𝐺𝐹( p , 𝑑𝑖)  is the 

degree  𝑑𝑖   extension of  ℤp. It is worth noting that a comparison of  𝑚𝑖   to the degree of occurrence of  𝑥𝑖   is omitted, for the 
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purpose of stating the problem in its most generality. The enumeration problem can be easily shown to be in PSPACE, 

because  𝑚𝑖  , for 1 ≤ 𝑖 ≤ 𝑛, are fixed inputs to the instance. If it is required to consider values for  𝑥𝑖   in degree  𝑑𝑖   extensions 

of  ℤp, that are not in any smaller dimension extension, then the condition as to whether (𝑥p𝑗
− 𝑥) ≠ 0 holds, for  1 ≤ 𝑗 ≤

𝑑𝑖 − 1, must be checked for. Of course, a primitive element can be chosen in degree  𝑑𝑖   extensions of  ℤp, and the primitive 

element can be rised to integer powers, such that the exponents are relatively prime to (p𝑑𝑖 − 1). Now, in the algebraic proof, 

if such a condition must be expressed, then the principle of inclusion and exclusion must also be applied, in addition to the 

division by gcd with derivatives, as may be required, for example, in the expression for the Mӧbius inversion formula. An 

algebraic proof of validity of the output of the PSPACE algorithm for this problem --- i.e., proof of certification for the validity 
of its output as a specific indicator of an algebraic expression --- would be definitely enormously large in its size. 

Accommodating more equations and rising the same question concerning the number of solutions to the systems of 

simultaneous multivariate equations, in general, the contention that PSPACE  ≠ NP  can be more aptly testified, because the 

solution space cannot be bounded by a polynomial, disallowing any claim of producing a direct polynomial time algebraic 

proof, for the validation of the answer produced by a nondeterministic algorithm.  

The philosophic question under investigation is whether there can be a shorter form of solution for the computational 

problem exhibited to be in PSPACE. The answer to the question is that the algebraic form, depicted as the solution to the 

problem, holds for all the prime numbers occurring in place of the field characteristics and for all the other indeterminate 

parameters as part of the problem instances  ― where it may be recalled that the degree of the resultant of  𝑓(𝑥, 𝑡) and (𝑥p −
𝑥) in the first problem in two variables, 𝑥 and 𝑡, did not depend on the degree 𝑛 of 𝑥  ―  and hence there cannot be a shorter 

form, by Herbrand's theorem. This situation should not be confused with the way the determinant is computed. In the case of 

the determinant, there was an easier way to compute it, and gradually, it is shown to be equal to the corresponding multilinear 

alternating form, and in contrast, in the context of the specific computational problem shown to belong to PSPACE, there is 

simply no alternative algebraic proof attesting the validity of the solution produced by the algorithm requiring space bounded 

by a polynomial in appropriate values of the parameters of the problem instances. 

C. Implications of the Fact that IP  = PSPACE 

In [6], it is shown that IP  = PSPACE , where IP  is the class of computational problems that can be probabilistically proved 

for the validation of an assumed solutions, interactively. Savitch's theorem [5] shows that NPSPACE = PSPACE. Allowing for 

the nondeterministic choices of space bounded by a polynomial in the string length of the input word,  the class of languages 

that admit probabilistic polynomial time proofs, by nondeterminstic polynomial space algorithms, is exactly IP. Let 

Probabilistic-P be the class of languages acceptable by probabilistic algorithms with probabilistic polynomial time proofs 

attesting the membership of an input word each such language. Tentatively, if it is assumed that Probabilistic-P = P, then 

clearly, it must be the case that IP = NPSPACE = PSPACE = NP. However, PSPACE  ≠  NP, by the discussion of the last 

subsection, Thus, Probabilistic-P  ≠  P. 

V. CONCLUSIONS 

This paper presents an original reduction method for solving simultaneous multivariate polynomial equations, by eliminating 

one variable, from two equations, taken at a time. The reduction method is shown to satisfy a certain minimality criterion, and 
hence becomes optimal in respect of the constraints stated. A mathematical problem that is in PSPACE but that which cannot 

be in either of NP and P is also presented. As an afterthought, the trace of execution of an algorithm, even allowing for 

nondeterministic choices of sizes bounded by some polynomial in the appropriate values of the input parameters for the 

instances, must also be bounded in size by some polynomial in those parameter values. The trace may be supplied as the input 

to a debugger program for validation of its operation. This part may be included in the polynomial time certification for the 

algorithm, for each given input instance. The contentments assert that PSPACE  ≠  NP and PSPACE  ≠  P, affirmatively. For 

probabilistic algorithms, the class of languages decidable by deterministic algorithms with probabilistic polynomial time proofs 

for the membership of an input word is not the same as the complexity class P. 
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