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Abstract - Rough sets and fuzzy sets are two different but complementary concepts that provide effective mathematical tools 

for handling imperfect information. Their hybrid form, namely, fuzzy rough sets are very useful in dealing with real world data 

that involve vagueness and indiscernibility. In this paper, fuzzy rough approximations of a fuzzy set in a fuzzy approximation 

space are defined using normalized fuzzy divergence measures and their properties are investigated. Also, it is proved that the 

present approach is a generalization of both the Pawlak’s rough set approach and the fuzzy rough set approach. Moreover, 

the proposed definition gives better approximations to a set than the original fuzzy rough approximations. 
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I. INTRODUCTION 

Z. Pawlak [10] put forward the notion of rough set approximations in the early 1980’s with an objective to provide 

mathematical foundations to artificial intelligence. He proposed two approximations for a vague concept in terms of precise 

concepts defined using the euivalence classes on an approximation space. Later, there have been extensive studies on this 

theory and many generalizations and applications have been proposed [1,9,18,20]. Being a generalization of set theory, rough 

set theory has often been compared and contrasted with the fuzzy set theory. 

Fuzzy sets [19] and rough sets model two different types of uncertainty namely vagueness and indiscernibility 

respectively. Fuzzy set theory addresses the problem of ambiguity in the belongingness of an object in a set, whereas rough set 

theory addresses the problem of ambiguity caused by the existence of a boundary region for the set. A fuzzy set is 

characterized by a membership function giving individual importance to each element in the universal set, whereas a rough set 

is characterized by an indiscernibility relation giving importance to equivalence classes. 

The first attempt to define fuzzy rough set in a fuzzy approximation space was made by A. Nakamura in 1988 [8]. D. 

Dubois and H. Prade [3] gave another definition by incorporating the membership values of the fuzzy equivalence relation in 

the definition of fuzzy rough approximations. Subsequently, substantial research has been done in this direction and many 

extensions and applications have been proposed [4,6,12,15,16,17]. A comprehensive study of the different approaches can be 

found in L. D’eer et al [2]. The present authors defined fuzzy rough sets on an information system based on the divergence 

between the fuzzy sets corresponding to the attributes and applied it to feature selection [13,14]. 

In this paper, the concept of divergence based fuzzy rough sets is extended to fuzzy approximation spaces. New fuzzy 

rough approximations of a fuzzy set in a fuzzy approximation space are defined using normalized divergence measures of 

fuzzy sets. The properties of the divergence based fuzzy rough approximations are explored. Moreover, it is proved that the 

present approach is a generalization of the crisp rough set approximations and the fuzzy rough approximations. Also, the 

proposed approximations of a fuzzy set are found to be nearer to the set than the existing fuzzy rough approximations. The rest 

of the paper is organised as follows: Section 2 gives some preliminary definitions and a brief review of the existing fuzzy 

rough set models. The concept of divergence based fuzzy rough sets in a fuzzy approximation space are introduced in section 3 

and their properties are studied. Section 4 gives the conclusion. 

II. PRELIMINARIES 

This section gives some preliminary concepts. The basic notions of rough set theory and fuzzy set theory as described 

in [3] and [9] respectively, are followed throughout this paper. 

A. Fuzzy Set Theory 

Definition 1. Let 𝑈 be a non-empty finite set of objects and 𝑅 be a fuzzy equivalence relation on 𝑈. The fuzzy equivalence 

classes [5] of 𝑅 are defined ∀𝑥 ∈ 𝑈  as,  [𝑥]𝑅(𝑦) = 𝑅(𝑥, 𝑦), ∀𝑦 ∈ 𝑈. 
Definition 2. Let ℱ(𝑈) be the family of all fuzzy sets on 𝑈. Then a function 𝐷: ℱ(𝑈) × 𝐹(𝑈) → 𝑅 is a divergence measure [7] 

if and only if ∀𝐴, 𝐵 ∈ ℱ(𝑈),  
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i) 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴) 
ii) 𝐷(𝐴, 𝐴) = 0  
iii) 𝑚𝑎𝑥{𝐷(𝐴 ∪ 𝐶, 𝐵 ∪ 𝐶), 𝐷(𝐴 ∩ 𝐶, 𝐵 ∩ 𝐶)} ≤ 𝐷(𝐴, 𝐵). 

B. Rough Set Theory 

Definition 3. Let (𝑈, 𝑅) be an approximation space, where 𝑅 is an equivalence relation defined on 𝑈. The lower and upper 

approximations [11] of 𝐴 ⊆ 𝑈 with respect to 𝑅 are respectively defined as  

                𝑅(𝐴) = {𝑥 ∈ 𝑈 ∶  [𝑥]𝑅 ⊆ 𝐴}                                                                  (1) 

            𝑅(𝐴) = {𝑥 ∈ 𝑈 ∶  [𝑥]𝑅 ∩ 𝐴 ≠  ∅}.                                                              (2) 

Definition 4. For 𝐴 ⊆ 𝑈, the sets 𝑅(𝐴), 𝑈 − 𝑅(𝐴), and 𝑅(𝐴) −  𝑅(𝐴) are respectively called the positive region (POS(A)), the 

negative region (NEG(A)) and the boundary region (BND(A)) of 𝐴 with respect to 𝑅 [11]. 

C. Fuzzy Rough Sets 

Fuzzy rough sets incorporate the two distinct but related concepts of vagueness and indiscernibility. A fuzzy 

approximation space is a pair (𝑈, 𝑅), where 𝑈 is a non-empty set of objects and 𝑅 is a fuzzy equivalence relation. The first 

attempt to define fuzzy rough sets in a fuzzy approximation space was done by A. Nakamura [8]. He defined the lower and 

upper approximations of a fuzzy set 𝐴 on 𝑈 as the fuzzy sets on 𝑈 respectively given by 𝜇𝑅 (𝐴)(𝑥) = 𝑖𝑛𝑓𝑅(𝑥,𝑦)≥𝛼{𝜇𝐴𝑦} and 

𝜇𝑅(𝐴)(𝑥) = 𝑠𝑢𝑝𝑅(𝑥,𝑦)≥𝛼{𝜇𝐴(𝑦)}.  

Later, Dubois and Prade [2] defined fuzzy rough approximations as 

𝜇𝑅 (𝐴)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{max[1 − 𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦)]}                                                       (3) 

𝜇𝑅(𝐴)(𝑥) = 𝑠𝑢𝑝𝑦∈ 𝑈{min[𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦)]}                                                              (4) 

Throughout this paper, fuzzy rough approximations refer to the approximations given by equations (3) and (4). 

III. DIVERGENCE BASED FUZZY ROUGH APPROXIMATIONS 

Consider a fuzzy approximation space (𝑈, 𝑅), 𝑈 being a non-empty finite set of objects and 𝑅 being a fuzzy 

equivalence relation on 𝑈. Let 𝐷(𝐴, 𝐵) be a normalized measure of divergence between fuzzy sets. Then, 𝐷([𝑥]𝑅 , [𝑦]𝑅) 

measure the extent of dissimilarity between the objects x and y, with respect to the corresponding fuzzy equivalence classes. 

We define a function 𝐷𝑥 ∶ 𝑈 →  [0,1] for each 𝑥 ∈  𝑈, by                       

𝐷𝑥(𝑦)  =  𝐷([𝑥]𝑅 , [𝑦]𝑅), ∀𝑦 ∈ 𝑈.                                                                     (5) 

Definition 5. The DFR-lower and upper approximations 𝑅𝐷(𝐴) and 𝑅𝐷(𝐴) of 𝐴 ∈ ℱ(𝑈), corresponding to the divergence 

measure 𝐷 are respectively defined ∀𝑥 ∈  𝑈 as 

𝜇𝑅𝐷(𝐴)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{max[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)]}                                                              (6) 

𝜇𝑅𝐷(𝐴)(𝑥) = 𝑠𝑢𝑝𝑦∈ 𝑈{min[1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)]}.                                                       (7) 

The following proposition shows that the above approximations are fuzzy subsets of 𝑈. 

Proposition 1. In a fuzzy approximation space, the DFR-lower and upper approximations of a fuzzy set are fuzzy subsets of 𝑈. 

Proof: Since 𝜇𝐴(𝑦), 𝐷𝑥(𝑦) ∈ [0,1], ∀𝑥, 𝑦 ∈ 𝑈, we get, 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)] ∈ [0,1]. 

Using equation (6), 𝜇𝑅𝐷(𝐴)(𝑥) ∈ [0,1], ∀𝑥 ∈ 𝑈. Similarly,  𝜇𝑅𝐷(𝐴)(𝑥) ∈ [0,1], ∀𝑥 ∈ 𝑈.  

The DFR-approximations are different from the original fuzzy rough approximations. This fact is illustrated in the 

following example. 

Example 1. Consider 𝑈 =  {𝑎1, 𝑎2, 𝑎3, 𝑎4} and define a fuzzy equivalence relation 𝑅 as 

R 𝑎1 𝑎2 𝑎3 𝑎4 

𝑎1 1 .8 0 .4 
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𝑎2 .8 1 0 .4 

𝑎3 0 0 1 0 

𝑎4 .4 .4 0 1 

Consider the t-conorm given by 𝔗(𝑚, 𝑛) = min(1, 𝑚 + 𝑛) for 𝑚, 𝑛 ∈ [0,1] and let 𝐷(𝐴, 𝐵) = 𝔗𝑥∈𝑈|𝐴(𝑥) − 𝐵(𝑥)|. 
Consider the fuzzy set 𝐴 = {(𝑎1, .2), (𝑎2, .1), (𝑎3, .6), (𝑎4, .9)}. The DFR-approximations of 𝐴 with respect to 𝐷 are given by 

𝑅𝐷(𝐴) = {(𝑎1, .2), (𝑎2, .1), (𝑎3, .6), (𝑎4, .9)} and 𝑅𝐷(𝐴) = {(𝑎1, .2), (𝑎2, .2), (𝑎3, .6), (𝑎4, .9)}  respectively. The fuzzy rough 

approximations of 𝐴 computed using equations (3) and (4) are given by 𝑅(𝐴) =  {(𝑎1, .2), (𝑎2, .1), (𝑎3, .6), (𝑎4, .6)} and 

𝑅(𝐴) = {(𝑎1, .4), (𝑎2, .4), (𝑎3, .6), (𝑎4, .9)} respectively. It is obvious that, 𝑅𝐷(𝐴)  ≠ 𝑅(𝐴) and 𝑅𝐷(𝐴) ≠ 𝑅(𝐴). Also, 

𝑅𝐷(𝐴)  ⊃  𝑅(𝐴) and 𝑅𝐷(𝐴)  ⊂  𝑅(𝐴). 

The following two theorems present the properties of the DFR-approximations. 

Theorem 1. Let 𝜑 and 𝑈 denote the fuzzy empty set and the fuzzy universal set respectively and let 𝐴, 𝐵 ∈ ℱ(𝑈). Then, 

i) 𝑅𝐷(𝜑) = 𝜑 = 𝑅𝐷(𝜑) , 𝑅𝐷(𝑈) = 𝑈 = 𝑅𝐷(𝑈) 

ii) 𝑅𝐷(𝐴) ⊆ 𝐴 ⊆ 𝑅𝐷(𝐴) 

iii)  𝐴 ⊆ 𝐵 ⇒ 𝑅𝐷(𝐴) ⊆ 𝑅𝐷(𝐵) 𝑎𝑛𝑑 𝑅𝐷(𝐴) ⊆ 𝑅𝐷(𝐵) 

iv) 𝑅𝐷(𝛼̂) = 𝛼̂ = 𝑅𝐷(𝛼̂) , ∀𝛼 ∈ [0,1] 

v) (𝑅𝐷(𝐴𝐶))
𝐶

= 𝑅𝐷(𝐴) 𝑎𝑛𝑑 (𝑅𝐷(𝐴𝐶))
𝐶

= 𝑅𝐷(𝐴) 

Proof. 

i) We have, µ𝜑(𝑥) = 0 and 𝐷𝑥(𝑥) =  0, ∀𝑥 ∈ 𝑈. Hence, 𝑚𝑎𝑥[𝐷𝑥(𝑥), µ𝜑(𝑥)] = 0. 

Therefore, µ𝑅𝐷(𝜑)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝜑(𝑦)]} = 0. 

Also, 𝑚𝑖𝑛[1 − 𝐷𝑥(𝑥), µ𝜑(𝑥)] = 0, ∀𝑥 ∈  𝑈. So, µ𝑅𝐷(𝜑)(𝑥) = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 𝜇𝜑(𝑦)]} = 0. 

Thus, 𝑅𝐷(𝜑) =  𝜑 = 𝑅𝐷(𝜑).   

Also, µ𝑈(𝑦) = 1, ∀𝑦 ∈ 𝑈 ⇒ 𝑚𝑎𝑥[𝐷𝑥(𝑦), µ𝑈(𝑦)] = 1, ∀𝑦 ∈  𝑈.  
Therefore, µ𝑅𝐷(𝑈)(𝑥) = 𝑖𝑛𝑓𝑦∈𝑈  𝑚𝑎𝑥[𝐷𝑥(𝑦), µ𝑈(𝑦)] = 1. 

Since 𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), µ𝑈(𝑦)] = 1 − 𝐷𝑥(𝑦), ∀𝑦 ∈  𝑈, µ𝑅𝐷(𝑈)(𝑥) = 𝑠𝑢𝑝𝑦∈ 𝑈{1 − 𝐷𝑥(𝑦)}. 

Also, 𝐷𝑥(𝑥)  =  0. Therefore, µ𝑅𝐷(𝑈)(𝑥) = 1, ∀𝑥 ∈  𝑈. Thus, 𝑅𝐷(𝑈)  = 𝑈 = 𝑅𝐷(𝑈). 

ii) 𝐷𝑥(𝑥) = 0 ⇒ 𝑚𝑎𝑥[𝐷𝑥(𝑥), µ𝐴(𝑥)] = µ𝐴(𝑥), 𝑚𝑖𝑛[1 − 𝐷𝑥(𝑥), µ𝐴(𝑥)] = µ𝐴(𝑥), ∀𝑥 ∈ 𝑈.  
  Hence, µ𝑅𝐷(𝐴)(𝑥) ≤ µ𝐴(𝑥), µ𝑅𝐷(𝐴)(𝑥) ≥ µ𝐴(𝑥), ∀𝑥 ∈  𝑈.  

  Thus, 𝑅𝐷(𝐴)  ⊆  𝐴 ⊆  𝑅𝐷(𝐴), ∀𝐴 ∈  ℱ(𝑈). 

iii) If 𝐴 ⊆ 𝐵, then µ𝐴(𝑦)  ≤  µ𝐵(𝑦), ∀𝑦 ∈ 𝑈. 

  So, ∀𝑥 ∈ 𝑈, 𝑚𝑎𝑥[𝐷𝑥(𝑦), µ𝐴(𝑦)]  ≤  𝑚𝑎𝑥[𝐷𝑥(𝑦), µ𝐵(𝑦)] and 𝑚𝑖𝑛[𝐷𝑥(𝑦), µ𝐴(𝑦)] ≤ 𝑚𝑖𝑛[𝐷𝑥(𝑦), µ𝐵(𝑦)].   

  It follows that µ𝑅𝐷(𝐴)(𝑥))  ≤  µ𝑅𝐷(𝐵)(𝑥) and µ𝑅𝐷(𝐴)(𝑥))  ≤  µ𝑅𝐷(𝐵)(𝑥). 

  Hence, 𝑅𝐷(𝐴) ⊆ 𝑅𝐷(𝐵) 𝑎𝑛𝑑 𝑅𝐷(𝐴) ⊆ 𝑅𝐷(𝐵) 

iv) µ𝛼̂(𝑦) = 𝛼, ∀𝑥 ∈ 𝑈 ⇒ 𝑚𝑎𝑥[𝐷𝑥(𝑥), µ𝛼̂(𝑦)] = 𝑚𝑎𝑥[𝐷𝑥(𝑥), 𝛼] ≥  𝛼 = µ𝛼̂(𝑥) , ∀𝑦 ∈ 𝑈. 

So, µ𝑅𝐷(𝛼̂)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝛼̂(𝑦)]} ≥  µ𝛼̂(𝑥). Hence, 𝑅𝐷(𝛼̂) ⊇ 𝛼̂. 

Using property (ii), 𝑅𝐷(𝛼̂) ⊆ 𝛼̂. Thus, 𝑅𝐷(𝛼̂) = 𝛼̂. 

Similarly, 𝑅𝐷(𝛼̂) = 𝛼̂. 

v) ∀𝑥 ∈ 𝑈, µ
(𝑅𝐷(𝐴𝐶))

𝐶(𝑥) = 1 − µ𝑅𝐷(𝐴𝐶)(𝑥) = 1 − 𝑖𝑛𝑓𝑦∈𝑈  𝑚𝑎𝑥[𝐷𝑥(𝑦), µ𝐴𝐶(𝑦)] 

                          = 𝑠𝑢𝑝𝑦∈ 𝑈{1 − 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴𝐶 (𝑦)]} = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 1 − 𝜇𝐴𝐶(𝑦)]} 
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                          = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)]} = µ𝑅𝐷(𝐴)(𝑥)). 

Therefore, (𝑅𝐷(𝐴𝐶))
𝐶

 = 𝑅𝐷(𝐴), ∀ 𝐴 ∈ ℱ(𝑈).  

Similarly, (𝑅𝐷(𝐴𝐶))
𝐶

=  𝑅𝐷(𝐴), ∀ 𝐴 ∈ ℱ(𝑈). 

Theorem 2. For all 𝐴, 𝐵 ∈  ℱ(𝑈), 

i) 𝑅𝐷(𝐴 ∩ 𝐵)  =  𝑅𝐷(𝐴) ∩ 𝑅𝐷(𝐵) 

ii) 𝑅𝐷(𝐴 ∩ 𝐵) ⊆  𝑅𝐷(𝐴) ∩ 𝑅𝐷(𝐵) 

iii) 𝑅𝐷(𝐴 ∪ 𝐵) ⊇ 𝑅𝐷(𝐴) ∪ 𝑅𝐷(𝐵) 

iv) 𝑅𝐷(𝐴 ∪ 𝐵) = 𝑅𝐷(𝐴) ∪ 𝑅𝐷(𝐵) 

v) 𝑅𝐷(𝐴 ∩ 𝛼̂) =  𝑅𝐷(𝐴) ∩ 𝛼̂ 

vi) 𝑅𝐷(𝐴 ∪ 𝛼̂) =  𝑅𝐷(𝐴) ∪ 𝛼̂ 

Proof. 

i) 𝜇𝑅𝐷(𝐴∩𝐵)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴∩𝐵(𝑦)]}  = 𝑖𝑛𝑓𝑦∈ 𝑈 {𝑚𝑎𝑥 [𝐷𝑥(𝑦), 𝑚𝑖n
 

(𝜇𝐴(𝑦), 𝜇𝐵(𝑦))]} 

 = 𝑖𝑛𝑓𝑦∈ 𝑈 {𝑚𝑖𝑛 [𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) , 𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]} 

 = 𝑚𝑖𝑛 {𝑖𝑛𝑓𝑦∈ 𝑈 [𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] , 𝑖𝑛𝑓𝑦∈ 𝑈 [ 𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]}              

 = 𝑚𝑖𝑛{𝜇𝑅𝐷(𝐴)(𝑥), 𝜇𝑅𝐷(𝐵)(𝑥)} = 𝜇
(𝑅𝐷(𝐴)∩𝑅𝐷(𝐵))

(𝑥) . 

 Thus, 𝑅𝐷(𝐴 ∩ 𝐵)  =  𝑅𝐷(𝐴) ∩ 𝑅𝐷(𝐵) 

ii) µ𝑅𝐷(𝐴∩𝐵)(𝑥)) = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 𝜇𝐴∩𝐵(𝑦)]}   = 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑖𝑛 [1 − 𝐷𝑥(𝑦), 𝑚𝑖n
 

(𝜇𝐴(𝑦), 𝜇𝐵(𝑦))]} 

 = 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑖𝑛 [𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) , 𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]} 

 ≤ 𝑚𝑖𝑛 {𝑠𝑢𝑝𝑦∈ 𝑈 [𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] , 𝑠𝑢𝑝𝑦∈ 𝑈 [ 𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]} 

 = 𝑚𝑖𝑛{µ𝑅𝐷(𝐴)(𝑥)), µ𝑅𝐷(𝐵)(𝑥))} = 𝜇
(𝑅𝐷(𝐴)∩𝑅𝐷(𝐵))

(𝑥) 

                    Thus, 𝑅𝐷(𝐴 ∩ 𝐵) ⊆  𝑅𝐷(𝐴) ∩ 𝑅𝐷(𝐵). 

iii) 𝜇𝑅𝐷(𝐴∪𝐵)(𝑥) = 𝑖𝑛𝑓𝑦∈ 𝑈{𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴∪𝐵(𝑦)]} = 𝑖𝑛𝑓𝑦∈ 𝑈 {𝑚𝑎𝑥 [𝐷𝑥(𝑦), 𝑚𝑎𝑥
 

(𝜇𝐴(𝑦), 𝜇𝐵(𝑦))]}          

= 𝑖𝑛𝑓𝑦∈ 𝑈 {𝑚𝑎𝑥 [𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) , 𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]}            

≥ 𝑚𝑎𝑥 {𝑖𝑛𝑓𝑦∈ 𝑈 [𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] , 𝑖𝑛𝑓𝑦∈ 𝑈 [ 𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]}              

= 𝑚𝑎𝑥 {𝜇𝑅𝐷(𝐴)(𝑥), 𝜇𝑅𝐷(𝐵)(𝑥)} = 𝜇
(𝑅𝐷(𝐴)∪𝑅𝐷(𝐵))

(𝑥) . 

       Thus, 𝑅𝐷(𝐴 ∪ 𝐵) ⊇ 𝑅𝐷(𝐴) ∪ 𝑅𝐷(𝐵). 

iv) 𝜇𝑅𝐷(𝐴∪𝐵)(𝑥) = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 𝜇𝐴∪𝐵(𝑦)]}  = 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑖𝑛 [1 − 𝐷𝑥(𝑦), 𝑚𝑎𝑥
 

(𝜇𝐴(𝑦), 𝜇𝐵(𝑦))]} 

= 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑎𝑥 [𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) , 𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]}  

= 𝑚𝑎𝑥 {𝑠𝑢𝑝𝑦∈ 𝑈[𝑚𝑖𝑛(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] , 𝑠𝑢𝑝𝑦∈ 𝑈 [ 𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐵(𝑦))]}             

= 𝑚𝑎𝑥{𝜇𝑅𝐷(𝐴)(𝑥), 𝜇𝑅𝐷(𝐵)(𝑥)} = 𝜇
(𝑅𝐷(𝐴)∪𝑅𝐷(𝐵))

(𝑥) . 

          Thus, 𝑅𝐷(𝐴 ∪ 𝐵) = 𝑅𝐷(𝐴) ∪ 𝑅𝐷(𝐵). 
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v) µ𝑅𝐷(𝐴∩𝛼̂)(𝑥)) = 𝑠𝑢𝑝𝑦∈ 𝑈{𝑚𝑖𝑛[1 − 𝐷𝑥(𝑦), 𝜇𝐴∩𝛼̂(𝑦)]} = 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑖𝑛 [1 − 𝐷𝑥(𝑦), 𝑚𝑖n
 

(𝜇𝐴(𝑦), 𝛼)]}   

   = 𝑠𝑢𝑝𝑦∈ 𝑈 {𝑚𝑖𝑛 [𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) , 𝛼]} 

 = 𝑚𝑖𝑛 {𝑠𝑢𝑝𝑦∈ 𝑈 [𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] , 𝛼}   

 = 𝑚𝑖𝑛{µ𝑅𝐷(𝐴)(𝑥)), µ𝛼̂(𝑥))} = 𝜇𝑅𝐷(𝐴)∩𝛼̂(𝑥) 

              Thus, 𝑅𝐷(𝐴 ∩ 𝛼̂) =  𝑅𝐷(𝐴) ∩ 𝛼̂ 

vi) The proof is similar to that of (v) 

Theorem 3. If 𝐷 and 𝐷′ are two measures of divergence of fuzzy sets and if 𝐷(𝐴, 𝐵)  ≤ 𝐷′(𝐴, 𝐵), ∀𝐴, 𝐵 ∈  ℱ(𝑈), then, 

𝑅𝐷(𝐴) ≤  𝑅𝐷′(𝐴) and 𝑅𝐷((𝐴) ≥  𝑅𝐷′((𝐴) . 

Proof.  

Given, 𝐷(𝐴, 𝐵) ≤ 𝐷′(𝐴, 𝐵), ∀𝐴, 𝐵 ∈ ℱ(𝑈). So, 𝐷𝑥(𝑦) ≤ 𝐷′𝑥(𝑦) , and 1 − 𝐷𝑥(𝑦) ≥ 1 − 𝐷′
𝑥(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑈. 

It follows that, 𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) ≤ 𝑚𝑎𝑥
 

(𝐷′𝑥(𝑦), 𝜇𝐴(𝑦)) and 𝑚𝑖𝑛
 

(1 − 𝐷𝑥(𝑦), 𝜇𝐴(𝑦)) ≥ 𝑚𝑖𝑛
 

(1 − 𝐷′𝑥(𝑦), 𝜇𝐴(𝑦)). 

By the property of infimum and supremum, 𝑅𝐷(𝐴) ≤ 𝑅𝐷′(𝐴) and 𝑅𝐷(𝐴) ≥  𝑅𝐷′(𝐴). 

The DFR-approximations are generalizations of the crisp rough approximations. This is proved in the next theorem. 

Lemma 1. Consider a crisp equivalence relation 𝑅 on 𝑈. Let 𝔗 be a fuzzy t-conorm and 𝐷(𝐴, 𝐵) = 𝔗𝑥∈𝑈|𝜇𝐴(𝑥) − 𝜇𝐵(𝑥)|. 
Then, 𝐷𝑥(𝑦) = 0, ∀𝑦 ∈ [𝑥]𝑅  and 𝐷𝑥(𝑦) = 1, ∀𝑦 ∉ [𝑥]𝑅. 

Proof.  

We have, 𝐷𝑥(𝑦) = 𝐷([𝑥]𝑅 , [𝑦]𝑅) = 𝔗𝑧∈𝑈|𝜇[𝑥]𝑅
(𝑧) − 𝜇[𝑦]𝑅

(𝑧)| = 𝔗𝑧∈𝑈|𝑅(𝑥, 𝑧) − 𝑅(𝑦, 𝑧)|. 

The characteristic function of 𝑅 acts as the corresponding fuzzy equivalence relation. That is; 

𝑅(𝑥, 𝑦) = 𝜒𝑅(𝑥, 𝑦) = {
1, 𝑖𝑓 (𝑥, 𝑦) ∈ 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Also, 𝑦 ∈ [𝑥]𝑅 ⇒  [𝑥]𝑅 = [𝑦]𝑅. Hence, 𝐷𝑥(𝑦) = 𝐷([𝑥]𝑅 , [𝑦]𝑅) = 𝐷([𝑥]𝑅 , [𝑥]𝑅) = 0. 

If 𝑦 ∉ [𝑥]𝑅, then [𝑥]𝑅 ∩ [𝑦]𝑅 =  𝜑.  

So, for 𝑧 ∈  𝑈, there are three cases namely, 𝑧 ∈ [𝑥]𝑅 , 𝑧 ∈ [𝑦]𝑅 and 𝑧 ∈ ([𝑥]𝑅 ∪ [𝑦]𝑅)𝐶 . 

If 𝑧 ∈ [𝑥]𝑅, then 𝑧 ∉ [𝑦]𝑅. So, 𝑅(𝑥, 𝑧) = 1 and 𝑅(𝑦, 𝑧) = 0. Therefore, |𝑅(𝑥, 𝑧) − 𝑅(𝑦, 𝑧)| = 1. 

Similarly, if 𝑧 ∈ [𝑦]𝑅, | 𝑅(𝑥, 𝑧) − 𝑅(𝑦, 𝑧)| = 1. If 𝑧 ∈ ([𝑥]𝑅 ∪ [𝑦]𝑅)𝐶, then 𝑅(𝑥, 𝑧) = 𝑅(𝑦, 𝑧) = 0. 

Hence, |𝑅(𝑥, 𝑧)  −  𝑅(𝑦, 𝑧)|  =  0. 

Therefore 𝐷𝑥(𝑦) = 𝔗𝑧∈([𝑥]𝑅∪[𝑦]𝑅)|𝑅(𝑥, 𝑧) −  𝑅(𝑦, 𝑧)| = 1. 

Theorem 4. In the crisp case, the divergence based fuzzy rough approximations with respect to the divergence measure 

𝐷(𝐴, 𝐵) = 𝔗𝑥∈𝑈|𝜇𝐴(𝑥) − 𝜇𝐵(𝑥)| coincides with Pawlak’s rough set approximations. 

Proof. 

Let 𝑈 be a non-empty finite set of objects and 𝑅 be a crisp equivalence relation defined on 𝑈. The fuzzy equivalence relation 

corresponding to 𝑅 is given by equation (6). Let 𝐴 ⊆ 𝑈 be a crisp set. The fuzzy set corresponding to 𝐴 is given by the 
characteristic function, 

                          𝜇𝐴(𝑥) = 𝜒𝐴(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                (7) 

The fuzzy set corresponding to the crisp rough lower approximation of 𝐴 is given by 

                          𝜇𝑅(𝐴)(𝑥) = 𝜒𝑅(𝐴)(𝑥) = {
1, 𝑖𝑓 [𝑥]𝑅 ⊆ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                 (8) 

The DFR-lower approximation of 𝐴 is obtained using equation (4) as  𝜇𝑅𝐷(𝐴)(𝑥)  = 𝑖𝑛𝑓𝑦∈ 𝑈{𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)]}. 

Let [𝑥]𝑅 ⊆ 𝐴. If 𝑦 ∈ [𝑥]𝑅, then 𝑦 ∈ 𝐴 and 𝜇𝐴(𝑦) = 1. So, 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)] = 1. 

If 𝑦 ∉ [𝑥]𝑅, then 𝐷𝑥(𝑦) = 1, using lemma 1. Hence, 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)] = 1. 
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Thus, 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)] = 1, ∀𝑦 ∈ 𝑈. 

Therefore, 𝜇𝑅𝐷(𝐴)(𝑥) = 1. 

Now let [𝑥]𝑅 ⊈ 𝐴. Then there exists 𝑧 ∈ [𝑥]𝑅 such that 𝑧 ∉ 𝐴. Clearly, 𝜇𝐴(𝑧)  =  0. Also, 𝐷𝑥(𝑧) = 0 by lemma 1. 

Thus 𝑚𝑎𝑥[𝐷𝑥(𝑧), 𝜇𝐴(𝑧)] = 0. By the property of infimum, 𝜇𝑅𝐷(𝐴)(𝑥) = 0. 

Thus, we get, 𝜇𝑅𝐷(𝐴)(𝑥) = {
1, 𝑖𝑓 [𝑥]𝑅 ⊆ 𝐴
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

= 𝜇𝑅(𝐴)(𝑥). 

Similarly, we can prove that 𝜇𝑅𝐷(𝐴)(𝑥) = 𝜇𝑅(𝐴)(𝑥). 

Theorem 5. Let 𝔗 be a fuzzy t-conorm and consider the class of divergence measures 𝐷(𝐴, 𝐵) = 𝔗𝑥∈𝑈|𝜇𝐴(𝑥) − 𝜇𝐵(𝑥)|. Then, 

𝑅(𝐴) ⊆ 𝑅𝐷(𝐴) ⊆ 𝐴 ⊆ 𝑅𝐷(𝐴) ⊆ 𝑅(𝐴). 

Proof.  

We have, 𝐷𝑥(𝑦) = 𝐷([𝑥]𝑅 , [𝑦]𝑅) = 𝔗𝑧∈𝑈|𝑅(𝑥, 𝑧) −  𝑅(𝑦, 𝑧)|. 

Since R is reflexive and symmetric, for 𝑧 = 𝑥, |𝑅(𝑥, 𝑧) − 𝑅(𝑦, 𝑧)| = |𝑅(𝑥, 𝑥) − 𝑅(𝑦, 𝑥)| = 1 − 𝑅(𝑥, 𝑦). 

So, 𝐷𝑥(𝑦) ≥ 1 − 𝑅(𝑥, 𝑦), as 𝔗 is a t-conorm. 

Hence, 𝑚𝑎𝑥[𝐷𝑥(𝑦), 𝜇𝐴(𝑦)] ≥  𝑚𝑎𝑥[1 − 𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦)], ∀𝑦 ∈ 𝑈.  

It follows that, 𝑖𝑛𝑓𝑦∈ 𝑈 [𝑚𝑎𝑥
 

(𝐷𝑥(𝑦), 𝜇𝐴(𝑦))] ≥ 𝑖𝑛𝑓𝑦∈ 𝑈 [𝑚𝑎𝑥
 

(1 − 𝑅(𝑥, 𝑦), 𝜇𝐴(𝑦))] , ∀𝑦 ∈ 𝑈.  

Using equations (1) and (4) we get, 𝑅𝐷(𝐴)  ⊇  𝑅(𝐴). Similarly, 𝑅𝐷(𝐴)  ⊆  𝑅(𝐴). 

Therefore, from property (ii) of theorem 3.4, we get 𝑅(𝐴) ⊆ 𝑅𝐷(𝐴) ⊆ 𝐴 ⊆ 𝑅𝐷(𝐴) ⊆ 𝑅(𝐴).  

Next, we prove that the fuzzy rough approximations are the particular case of the proposed DFR-approximations 

corresponding to the divergence measure using the max operator as t-conorm. Thus, the DFR-approximations are the 

generalizations of the fuzzy rough approximations as well. 

Theorem 6. For the divergence measure of fuzzy sets defined by 𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥𝑥∈𝑈|𝜇𝐴(𝑥) − 𝜇𝐵(𝑥)|, 𝑅(𝐴) = 𝑅𝐷(𝐴) 

and 𝑅𝐷(𝐴) = 𝑅(𝐴). 

Proof. 

Let 𝐴 ∈ ℱ(𝑈). It is enough to prove that 𝐷𝑥(𝑦) = 1 − 𝑅(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑈. 

We have, 𝐷𝑥(𝑦) =  𝐷([𝑥]𝑅 , [𝑦]𝑅) = 𝑚𝑎𝑥𝑧∈𝑈|𝑅(𝑥, 𝑧) −  𝑅(𝑦, 𝑧)|.  

As 𝑈 is finite, this maximum corresponds to some 𝑧′ ∈ 𝑈. 

We may also assume that 𝑅(𝑥, 𝑧′) ≥ 𝑅(𝑦, 𝑧′). So, 𝐷𝑥(𝑦) = 𝑅(𝑥, 𝑧′) − 𝑅(𝑦, 𝑧′). 

Then, 𝑅 is transitive ⇒  𝑅(𝑥, 𝑦)  ≥  𝑚𝑎𝑥𝑧∈𝑈𝑚𝑖𝑛(𝑅(𝑥, 𝑧), 𝑅(𝑧, 𝑦)) 

 ⇒  𝑅(𝑥, 𝑦)  ≥  𝑚𝑖𝑛(𝑅(𝑥, 𝑧), 𝑅(𝑧, 𝑦)), ∀𝑧 ∈  𝑈   

 ⇒  𝑅(𝑥, 𝑦)  ≥  𝑚𝑖𝑛(𝑅(𝑥, 𝑧′), 𝑅(𝑧′, 𝑦))   ⇒  𝑅(𝑥, 𝑦)  ≥  𝑅(𝑧′, 𝑦). 

At this point, there arise two cases: 

Case I- 𝑅(𝑥, 𝑦)  ≥  𝑅(𝑥, 𝑧′)  ≥  𝑅(𝑦, 𝑧′). 𝑅 being transitive, 𝑅(𝑦, 𝑧′)  ≥  𝑚𝑖𝑛(𝑅(𝑦, 𝑥), 𝑅(𝑥, 𝑧′)). 

This can happen only if 𝑅(𝑥, 𝑧′) = 𝑅(𝑦, 𝑧′). Then, 𝑥 ∈ [𝑧′]𝑅 and 𝑦 ∈ [𝑧′]𝑅. 

So, 𝐷𝑥(𝑦) = 0 and as 𝐷𝑥(𝑦) ≥ 1 − 𝑅(𝑥, 𝑦), 1 − 𝑅(𝑥, 𝑦) = 0. 

Therefore, 𝐷𝑥(𝑦) = 1 − 𝑅(𝑥, 𝑦). 

Case II- 𝑅(𝑥, 𝑧′) ≥ 𝑅(𝑥, 𝑦) ≥ 𝑅(𝑦, 𝑧′). 𝑅 being transitive, 𝑅(𝑦, 𝑧′) ≥ 𝑚𝑖𝑛(𝑅(𝑦, 𝑥), 𝑅(𝑥, 𝑧′)). 

This can happen only if 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑧′).  

So, 𝐷𝑥(𝑦) = 𝑅(𝑥, 𝑧′) − 𝑅(𝑦, 𝑧′) = 𝑅(𝑥, 𝑧′) − 𝑅(𝑥, 𝑦) ≤ 1 − 𝑅(𝑥, 𝑦). 

Since 𝐷𝑥(𝑦) ≥ 1 − 𝑅(𝑥, 𝑦), 𝐷𝑥(𝑦) = 1 − 𝑅(𝑥, 𝑦).  

It follows that 𝐷𝑥(𝑦) = 1 − 𝑅(𝑥, 𝑦), ∀𝑥, 𝑦 ∈  𝑈 and hence, 𝑅(𝐴) = 𝑅𝐷(𝐴) and 𝑅𝐷(𝐴) = 𝑅(𝐴). 
 

VI. CONCLUSIONS 
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 The fuzzy rough set theory has been found to be a very effective tool for dealing with imperfect knowledge. In this 

paper, the DFR-approximations of a fuzzy set in a fuzzy approximation space have been defined using measures of divergence 

between fuzzy sets. Further, it has been verified that the proposed approach is a generalization of the fuzzy rough 

approximations proposed by Dubois and Prade and they coincide with Pawlak’s rough set approximations in the crisp case. 

Moreover, the divergence based fuzzy rough approximations of a fuzzy set were found to be nearer to the set than the existing 
fuzzy rough approximations. The future work includes further studies on divergence based fuzzy rough sets and their 

applications to decision making. 
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