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Abstract:
Our aim in this research paper is to elaborate two new kinematics of deformation
of a particle fluid in a planar and spatial vortex for mathematical modelization
of these natural phenomenons. Incompressibility condition, Rotational and di-
vergence of velocity tensor are calculated in every case and in also two examples
of fluid flow. The pressure is interpret by using a Bernoulli theorem. As results,
we have: the same incompressible condition in the case of horizontal acceler-
ated flow than in the case of a shearing flow and we have the pressure which
decreases in the two motion. We have the same rotational between the planar
vortex flow and the spatial vortex flow, what means that there is no influence
of the z component in the rotional of these two vortex flows when ε = 1. And
we also show that for specific values of ε and Θ, we have the same values in
calculated expressions between the planar vortex flow and the spatial vortex flow.
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1 Introduction

The notion of fluid refers to the absence of an organized structure of matter at
the microscopic scale, thus allowing large-amplitude movements of atoms. It
therefore that fluids group together the liquid and gaseous states [1].
The study of fluids plays a very important role nowadays because it allows
the development of models for improving the performance of machines in the
maritime, land or space fields. A fluid can be viscous, compressible or incom-
pressible.
When we focus about viscosity, an exact analysis of radiative effects on the
magnetohydrodynamic (MHD) free convection flow of an electrically conduct-
ing incompressible viscous fluid over a vertical plate is studied where the non-
dimensional continuity, momentum, and energy equations are solved using ap-
propriate transformation [2]. A solution in the explicit form of the equation of
the momentum diffusion for a viscous fluid flowing around a plate taking into
account deceleration with three characteristic regions of a viscous flow have been
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given in [3].
In the case of incompressible flows, a new scalar projection method presented
for simulating incompressible flows with variable density is proposed where the
first phase of the projection is purely kinematics. The predicted velocity field
is subjected to a discrete Hodge-Helmholtz decomposition [4]. A solution of an
incompressible fluid flow is also studied in [5].
However the study of kinematics plays a very important role because it con-
stitutes for most of the time, the starting point of a study in mechanics of
continuous medium[6,7,8]
In this paper, we will firstly do a mathematical formulation of a mechanical fluid
flow study by definitions of some tensors using in this area. We will secondly
apply those formulations in twa examples of kinematics on fluid dynamic to
determine incompressible condition and calculate rotational and divergence in
any case.
As a contribution we will propose two new kinematics of deformation for vortex
flow in order to bring a new tool in the modelization of vortex dynamic. The
incompressible condition, the rotational and divergence will also be given for
our new kinematics.
The theorem of Bernoulli will be used to analyze the behaviour of the pressure
in every case.

2 Mathematical formulation
Let’s consider a continuous system where a material point which can be a fluid
particle occupies the position X = (X1, X2, X3) before the deformation and the
position x = (x1, x2, x2) after deformation, where x1,x2,x3 are function of X,
we mean defined by the following kinematics:

x1 = x1 (X) ; x2 = x2 (X) ; x3 = x3 (X) ; (1)

By deforming in space and in time, the fluid paticle obtains a speed v which
depends on the deformed configuration and therefore on the initial configuration.
This speed is represented by:

v1 = v1 (X) ; v2 = v2 (X) ; v3 = v3 (X) ; (2)

where vi = ∂xi/∂t.
To describe the local deformation, we use the deformation gradient tensor noted
F which is also called the tangent linear application. This tensor allow to have
the volume change from his determinant which is always positive, so that:

F =

 ∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 . (3)

In continuum mechanics, it is important to specify that from the deformation
gradient tensor F, We can measure the strain rate by calculating the familiar
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tensors that are: right Cauchy-Green tensor in Lagrangian configuration which
is noted C and left Cauchy-Green tensor in Eulerian configuration which is
noted B, with:

C = FTF; B = FFT. (4)

It should be noted that these two tensors although they differ by their formula
describe the study in an equivalent way.
These Cauchy-Green tensors have adjoints tensors which are noted C∗ and B∗

defined by:

C∗ = det (C) C−1;
B∗ = det (B) B−1.

(5)

In isotropic deformation which concern fluid flow, we can calculate the three
first elementary invariants which are:

I1 = tr(C) = tr(B);
I2 = tr(C∗) = tr(B∗);
I3 = det (C) = det (B) .

(6)

In mechanics, a deformation is said to be incompressible if the third isotropic
invariant is equal to 1.

I3 = 1. (7)

These previous mathematical tensors play a very important role in mechanics
and engineering.
As you can see, we have defined only the isotropic elementary invariants, this
is due to the fact that fluids are considered to be isotropic media due to the
ability to move in all directions (there is no preferred direction for movement).

For what’s coming, we give two examples of kinematics of deformation on fluid
flow where we will study the speed, the condition of incompressibility, the ro-
tational and the divergence. The same will be done for two new kinematics
which represents our contribution in the modeling of planar and spatial vortex
phenomenons. For the interpretation of the pressure from the speed we will use
the theorem of Bernoulli which says that during the flow of a fluid the pressure
decreases with the increase of the speed.

3 Some fluid flow kinematic
In this section, we give some kinematics of fluid flow find in the literature. We
focus on the study of incopressibility behaviour condition and calculation of
some expressions as rotational and divergence. the trajectory and vilocity are
also similated.
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3.1 Accelerated horizontal flow
In fluid dynamic, a fluid particle can follow a rectilinear trajectory in a constant,
accelerated or decelereted motion.
Let’s study a fuid particle flow accelerated horizontaly as a water droplet on
water surface discribing a trajectory given by the following kinematic:

x = αXt; y = Y ; z = Z; (8)

where α is the initial vilocity and t the time variable. The behaviour is given
by the following graphics where we can see the rectilinear motion.

As usually, to calculate the vilocity components, we derivate by the time every
component of the kinematic of defomation above. From that we obtain:

vx = αX; vy = 0; vz = 0; (9)

Here we can see that the speed depends only on the one component which is
that of the variable X but also we have the others components which are null.
The deformation gradient of this transformation becomes:

F =

 αt 0 0
0 1 0
0 0 1

 . (10)

According to our kinematic, the gradient tensor has only the main components
which are not null; mean its gives a digonal matrix.
The Langrangian tensor of Cauchy-Green given from the gradient tensor by

C =

 (αt)2 0 0
0 1 0
0 0 1

 . (11)

In order to find the condition of incompressibility which mean that there is no
volume change of the fluid paticle, we calculate the isotropic invariants:

I1 = (αt)2 + 2;
I2 = 2 (αt)2 + 1;

I3 = (αt)2
.

(12)
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The fact that α and t are positive gives us the following incompressibility con-
dition of a horizontal accelerated fluid flow :

t = 1
α

(13)

Even if we give the condition of incompressibility, we can see if that is easy or
complicate or even impossible to have it by calculating the rotational and the
divergence of the speed, that give:

−→
rot (−→v ) = −→0 ; div−→v = α. (14)

The rotational is null which goes in the same way than the kinematic which rep-
resents a rectilinear motion. The divergence is equal to α > 0 and mathemati-
cally, that means that the volume change during the motion with a increasing
volume.

The graghic shows how the particle is accelerated during the motion with the
path of the velocity, a behaviour which increases the volume of the fluid particle.
As a consequence, the pressure of a horizontally accelerated fluid flow decreases
horizontally during motion according to the theorem of Bernoulli.

3.2 Shearing flow
Now we consider a fluid particle which follows a shearing motion. As an example
many cases can be given in aerodynamic.
Let’s study a fuid particle flow with a shear represented by the kinematic below:

x = αY t; y = X; z = Z; (15)

where also α is the initial vilocity and t the time variable. The kinematic is
illustrated by the graphics below where we can see the red rectangles represent-
ing the trajectory.
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In our shear motion we have the first cinematique component in deformed con-
figuration which depends only to the second variable in initial configuration.
what gives the following velocity components:

vx = αY ; vy = 0; vz = 0; (16)

It is this previous dependence which allows us to have a shearing motion.
It follows the calculation of the deformation gradient and we obtain:

F =

 0 αt 0
1 0 0
0 0 1

 . (17)

Differently to what happen in the accelerated horizontal motion the deformation
gradient tensor is not now a digonal matrix.
The Langrangian tensor of Cauchy-Green is given from the gradient tensor by

C =

 1 0 0
0 (αt)2 0
0 0 1

 . (18)

We can note that even if the deformation gradient tensor is not a digonal matrix,
the Langragian Cauchy-Green tensor gives a digonal matrix.
The successif determination of the isotropic invariants and the incompressible
condition gives:

I1 = (αt)2 + 2;
I2 = 2 (αt)2 + 1;

I3 = (αt)2 ;

t = 1
α
.

(19)

The difference of kinematic than in the case of the horizontal accelerated fluid
flow have no influence because we obtain the same third isotropic invariant and
then the same imcompressibilty condition.
The determination of the rotational and the divergence of the speed gives:

−→
rot (−→v ) = −α−→ez ; div−→v = 0. (20)
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The result shows that there exist a rotation of our fluid particle but no diver-
gence.
The lack of the divergence means that it more easy for the fluid particle to
conserve is volume during all the motion.

The graphic shows that the velocity increases during the motion which mathe-
matically means that we are in the case of an shearing motion with an acceler-
ation.
The analysis of the speed shows that in the kinematics of shearing, we have
the pressure of the fluid which decreases during the motion according to the
theorem of Bernoulli.

Mathematically, these results mean that if α has the same value than t in all
the period of the motion, the fluid particle will stay with the same volume in
any time. As an interesting result, this part shows that when we can con-
trol an initial velocity of a fluid particle by increasing it in same way that the
time, the particle will stay with the same volume in the two previous kinematics.

4 New kinematics for planar and spatial vortex
A vortex is a phenomenon which can be natural or generate by a technological
engine and has many. A rotative flow is in fluid dynamics, a region of a fluid
in which the flow is primarily a rotational movement around an axis, rectilinear
or curved. This type of movement is called vortex flow.
In this section we propose two new kinematics of modelization of a particle in-
side a vortex depeding to the way that the radius decreases, increase or being
constant and in the way we are in the planar or spatial vortex. Our aim is
to give a kinematic which generalize a bihaviour of a fluid particle by using a
pertubation parameter to controle the varition of the radius we need. We will
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establish the condition on the paramater that gives an incompressible transfor-
mation on the particle. some similations will also be done.

4.1 planar vortex flow
In this subsection, we consider a fuid particle with a rotative planar flow given
by the kinematic below:

x = εRcos (Θt) ; y = εRsin (Θt) ; z = Z; (21)

where t the time variable, R represents the radius supposed to be constant and
ε the perturbation parameter.
The trajectory of the motion is given by the following graphics where we can
see how the fluid particle rotate around an axis.

To see what kind of motion we have, we calculate the velocity from the kinematic
above, so it yields:

vx = −εRΘsin (Θt) ; vy = εRΘcos (Θt) ; vz = 0; (22)
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It is very important to specify that V = εRΘ that is why the velocity will
follows the same path of ε. So according to the Bernoulli theorem, the pressure
has a contrary variation with ε and it is constant when parameter is constant.

With our transformation kinematic, the deformation gradient tensor becomes a
symetric matrix given by:

F =

 εcos (Θt) −εRΘsin (Θt) 0
εsin (Θt) εRΘcos (Θt) 0

0 0 1

 . (23)

And as in previous cases, we calculate the Langrangian tensor of Cauchy-Green
given from the gradient tensor by:

C =

 ε2 0 0
0 (εRΘ)2 0
0 0 1

 . (24)

We can note also that the deformation gradient tensor is not a digonal ma- trix,
but the Lagrangian Cauchy-Green tensor gives a digonal matrix.
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We have the isotropic invariants of the Lagrangian Cauchy-Green tensor which
are defined as by:

I1 = ε2 +
(
ε2RΘ

)2 + 1;

I2 = (εRΘ)2 + ε2 +
(
ε2RΘ

)2 ;

I3 =
(
ε2RΘ

)2
.

(25)

And then the incompressibility condition from the third isotropic elementary
invariant is:

Θ = 1
ε2R

. (26)

A condition which not now depends on the time variable compared with the
two previous kinematics.
The rotational and the divergence of the speed are

−→
rot (−→v ) = εΘcos (Θt) (1 +RΘ)−→ez ;
div−→v = −εΘsin (Θt) (1 +RΘ) .

(27)

And with the condition Θ = −1/R, the previous equations become:
−→
rot (−→v ) = −→0 ; div−→v = 0. (28)

The null value of the rotational not means that there is no rotation component
but there is the oposition of the existing components which makes the sum null.
The divergence is equal to zero means that there is no divergence.

4.2 Spatial vortex flow
Let us now consider a fluid particle inside a vortex with a helical trajectory
discribed by the following kinematic:

x = Rcos (Θt) ε (Z) ; y = Rsin (Θt) ε (Z) ; z = Zt; (29)

where R is the initial radius, Θ the angle before deformation and ε = ε(Z) a
function of Z representing here the perturbation parameter. And according to
the values of the parameter, we can have the following gaphics which illustrate
the trajectory.
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From this kinematics, we can find the particule speed components by derivation
of the deformation kinematic components according to the time. what gives:

Vx = −ΘRsin (Θt) ε (Z) ; Vy = ΘRcos (Θt) ε (Z) ; Vz = Z; (30)
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As it were predict by the velocity components, variation of speed is done only
in the plane (x, y). And as previously the velocity follows the same path of ε.
So according to the Bernoulli theorem, the pressure follows a contrary variation
with ε and is constant when parameter is constant.
The deformation gradient tensor of the this tranformation becomes:

F =

 cos (Θt) ε −ΘRsin (Θt) ε ε
′
Rcos (Θt)

sin (Θt) ε ΘRcos (Θt) ε ε
′
Rsin (Θt)

0 0 1

 . (31)

It should be remembered that the two tensors of Cauchy-Green are equivalent
in terms of result, the only difference is at the level of the configuration which
is Eulerian in one tensor and Lagrangian in the other. It is for this reason that
we will continue our work using the Langrangian tensor of Cauchy-Green given
from the gradient tensor by:

C =

 ε2 0 Rεε
′

0 R2Θ2ε2 0
Rεε

′ 0 R2
(
ε

′
)2

+ 1

 . (32)
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By calculating the elementary isotropic invariants, we obtain:

I1 = ε2 + (RΘε)2 +
(
Rε

′
)2

+ 1;

I2 = ε2 +R2Θ2ε4 + (RΘε)2
((

Rε
′
)2

+ 1
)

;

I3 = ε2

(33)

The condition of incompressibility on fluid gives:

ε = 1 (34)

To know if we are in the presence of a rotative flow or a variable density (volume)
or not, we calculate the divergence. This gives us:

−→
rot (−→v ) = −ΘRε

′
cos (Θt) (−→er +−→eθ) + εΘcos (Θt) (1 +RΘ)−→ez ;

div−→v = −εΘsin (Θt) (1 +RΘ) + 1.
(35)

In the particular case of a rotative flow with a constant value of the perturbation
parameter (ε = 1), we have:

−→
rot (−→v ) = Θcos (Θt) (1 +RΘ)−→ez ;
div−→v = −Θsin (Θt) (1 +RΘ) + 1.

(36)

From the previous result we can see that we have the same rotational than in the
case of a planar rotative flow. Then if we consider that our initial component z
is independent of time (z = Z) and with the condition Θ = −1/R, we end up
with:

−→
rot (−→v ) = −→0 ;

div−→v = 0.
(37)

If ε = 1 is constant and for Θ = −1/R, then we get the model of the planar
rotative flow studied previously.

Remark:
We have the same incompressible condition in the case of horizontal accelerated
flow than in the case of a shearing flow. We also have the pressure which de-
creases in these two motions.
We have the same rotational between the planar rotative flow and the spatial
rotative flow when ε = 1. That’s mean there is no influence of the z component
in the rotional of these two motions.
Another important result of our contribution is that if ε is constant (ε = 1)
and for Θ = −1/R, then we get the same expressions values in the two vortex
kinematics.
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5 Conclusion
In this mathematical research, we have proposed as a work to elaborate two new
kinematics for vortex modelization. Conditions of incompressibilty of two fluid
flows, rotational and divergence of velocity tensor have been given. Pressure is
interpret by using a Bernoulli theorem.
We start by a mathematical formulation with the calculation of some mechan-
ical tensors and isotropic invariants. In application, we give two examples of
fluid flow where the mathematical formulation was applied. We also prppose
two new kinematics and applyed the mathematical formulation.
As a first result, we have the same incompressible condition in the case of hor-
izontal accelerated flow than in the case of a shearing flow and we have the
pressure which decreases in the two motions.
As a second result, we have the same rotational between the planar rotative
flow and the spatial rotative flow when ε = 1, so there is no influence of the z
component in the rotional of these two motion.
And the third result of our contribution is that if ε is constant (ε = 1) and for
Θ = −1/R, then we get results between the rotative planar flow and the spatial
rotative flow.
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