Certain Subclasses of Bi-Univalent and Meromorphic Functions Associated With Al-Oboudi Differential Operator

D. D. Bobalade^{#1}, N. D. Sangle^{*2}

^{#1}Department of Mathematics, Shivaji University, Kolhapur (M.S.), India 416004. #2Department of Mathematics, D. Y. Patil College of Engineering and Technology, Kasaba Bawada, Kolhapur (M.S.), India 416006.

Abstract - In this paper, we introduce two new subclasses of meromorphic and bi-univalent functions defined by Al-Oboudi differential operator on $\Delta = \{z \in \mathbb{C}: 1 < |z| < \infty\}$. Also we obtain bounds of coefficients $|b_0|$ and $|b_1|$ for functions in this subclasses.

Keywords -- Al-Oboudi differential operator, Bi-univalent functions, Coefficient bounds, Meromorphic Bi-univalent functions.

I. INTRODUCTION

Let Σ be the class of functions f of the form

$$f(z) = z + \sum_{l=0}^{\infty} \frac{b_l}{z^l} , \qquad (1)$$

 $f(z) = z + \sum_{l=0}^{\infty} \frac{b_l}{z^l}, \qquad (1)$ which are meromorphic univalent in the domain $\Delta = \{z \in \mathbb{C} : 1 < |z| < \infty\}$. Since every function f belong to Σ has an inverse function f^{-1} exist. Inverse function satisfies conditions:

$$f^{-1}(f(z)) = z, (z \in \Delta),$$

and

$$f(f^{-1}(w)) = w, w \in \Delta \quad (M < |w| < \infty, M > 0),$$

where

$$f^{-1}(w) = q(w) = w - b_0 - \frac{b_1}{w} - \frac{b_2 + b_0 b_1}{w^2} - \frac{b_3 + 2b_0 b_2 + b_0^2 b_1 + b_1^2}{w^3} + \cdots$$
 (2)

If f and f^{-1} are meromorphic univalent in Δ then $f \in \Sigma$ is said to be meromorphic bi-univalent in Δ . The class of meromorphic bi-univalent functions of the form (1) in Δ is denoted by Σ_M .

Recently, several researcher has been studied various subclasses of meromorphic univalent functions and estimates the bounds of coefficients of meromorphic univalent functions and inverse of meromorphic univalent functions in Δ ([2], [3], [9], [10], [11]).

Let \mathcal{A} be the class of functions h of the form

$$h(z) = z + \sum_{l=2}^{\infty} a_l z^l \tag{3}$$

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$.

Now, Al-Oboudi [1] introduced the Al-Oboudi operator $D_{\delta}^k : \mathcal{A} \to \mathcal{A}$ and defined as

 $D^k h(z) = D_{\delta}^k h(z) = z + \sum_{l=2}^{\infty} [1 + (l-1)\delta]^k a_l z^l, \quad k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \delta \ge 0, \text{ where } h \in \mathcal{A} \text{ of the form (3)}.$

Amol Patil et.al. [7] extend the Al-Oboudi operator
$$D_{\delta}^k : \Sigma \to \Sigma$$
 and defined as
$$D^k f(z) = D_{\delta}^k f(z) = z + (1 - \delta)^k b_0 + \sum_{l=1}^{\infty} [1 - (l+1)\delta]^k b_l z^{-l}, \quad k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \delta > 1,$$

where $f \in \Sigma$ of the form (1).

In 2014, H. Orhan et.al. [6] define the subclass $\Sigma_M^*(\mu, \lambda, \beta)$ consisting of meromorphic functions f(z) of the form (1) satisfies the following conditions:

$$f \in \Sigma_M, \Re\left[(1 - \lambda) \left(\frac{f(z)}{z} \right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu - 1} \right] > \beta \quad (z \in \Delta),$$

and

$$\Re\left[(1-\lambda)\left(\frac{q(w)}{w}\right)^{\mu}+\lambda q'(w)\left(\frac{q(w)}{w}\right)^{\mu-1}\right]>\beta\quad(w\in\Delta),$$

where $\lambda \ge 1$, $\lambda > \mu$, $\mu \ge 0$, $0 \le \beta < 1$ and q is function given by (2).

Also, H. Orhan et.al. [6] define the subclass $\Sigma_M^*(\mu,\lambda,\alpha)$ consisting of meromorphic functions f(z) of the form (1) satisfies the following conditions:

$$f \in \Sigma_M, \left| arg \left[(1-\lambda) \left(\frac{f(z)}{z} \right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} \right] \right| < \frac{\alpha\pi}{2} \quad (z \in \Delta),$$

and

$$\left| arg \left[(1-\lambda) \left(\frac{q(w)}{w} \right)^{\mu} + \lambda q'(w) \left(\frac{q(w)}{w} \right)^{\mu-1} \right] \right| < \frac{\alpha \pi}{2} \quad (w \in \Delta),$$

where $\lambda \ge 1$, $\lambda > \mu$, $\mu \ge 0$, $0 < \alpha \le 1$ and q is function given by (2).

Motivated from above work, we introduced new subclasses of bi-univalent and meromorphic functions by using Al-Oboudi Differential operator. Also obtain the coefficient bounds $|b_0|$ and $|b_1|$ for functions in this new subclasses.

Lemma 1.1. [8] If $p \in \mathcal{P}$ then $|p_n| \le 2$ $(n \in \mathbb{N})$, where \mathcal{P} is the family of all analytic functions p(z) in \mathbb{U} , for which $\Re(p(z)) > 0$ $(z \in \mathbb{U})$ and $p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$ $(z \in \mathbb{U})$.

II. COEFFICIENT ESTIMATES

Definition 2.1. A function f(z) of the form (1) is said to be in the class $\sum_{k=1}^{\infty} (k, \delta, \mu, \lambda, \beta)$, if

$$f \in \Sigma_{M}, \Re\left[(1 - \lambda) \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu} + \lambda \left(D_{\delta}^{k} f(z) \right)^{'} \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu - 1} \right] > \beta \quad (z \in \Delta), \tag{4}$$

and

$$\Re\left[(1-\lambda)\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu} + \lambda\left(D_{\delta}^{k}q(w)\right)^{\prime}\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu-1}\right] > \beta \quad (w \in \Delta), \tag{5}$$

where $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \lambda \ge 1, \lambda > \mu, \mu \ge 0, \delta > 1$ and $0 \le \beta < 1$.

If we put k = 0 in the class $\Sigma_M^*(k, \delta, \mu, \lambda, \beta)$, then we get class $\Sigma_M^*(\mu, \lambda, \beta)$, studied by H. Orhan et.al.[6].

If we put $k = 0, \mu = 0, \lambda = 1$ in the class $\Sigma_M^*(k, \delta, \mu, \lambda, \beta)$, then we get class $\Sigma_M^*(\beta)$, studied by Halim et. al. [4].

Definition 2.2. A function f(z) of the form (1) is said to be in the class $\Sigma_M^*(k, \delta, \mu, \lambda, \alpha)$, if

$$f \in \Sigma_{M}, \left| arg \left[(1 - \lambda) \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu} + \lambda \left(D_{\delta}^{k} f(z) \right)^{'} \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu - 1} \right] \right| < \frac{\alpha \pi}{2} \quad (z \in \Delta), \tag{6}$$

and

$$\left| arg \left[(1 - \lambda) \left(\frac{D_{\delta}^{k} q(w)}{w} \right)^{\mu} + \lambda \left(D_{\delta}^{k} q(w) \right)^{\prime} \left(\frac{D_{\delta}^{k} q(w)}{w} \right)^{\mu - 1} \right] \right| < \frac{\alpha \pi}{2} \quad (w \in \Delta), \tag{7}$$

where $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \lambda \ge 1, \lambda > \mu, \mu \ge 0, \delta > 1$ and $0 < \alpha \le 1$. If we put k = 0 in the class $\Sigma_M^*(k, \delta, \mu, \lambda, \alpha)$, then we get class $\Sigma_M^*(\mu, \lambda, \alpha)$, studied by H. Orhan et.al [6].

If we put $k=0, \mu=0, \lambda=1$ in the class $\Sigma_M^*(k,\delta,\mu,\lambda,\alpha)$, then we get class $\Sigma_M^*(\alpha)$, studied by Halim et. al. [4]

Theorem 2.3. Let function f(z) of the form (1) be in the class $\Sigma_M^*(k,\delta,\mu,\lambda,\beta)$. Then $|b_0| \leq \frac{2(1-\beta)}{(\lambda-\mu)(\delta-1)^k}$

$$|b_0| \le \frac{2(1-\beta)}{(\lambda-\mu)(\delta-1)^k} \tag{8}$$

and

$$|b_1| \le \frac{2(1-\beta)}{(2\delta-1)^k} \sqrt{\frac{(1-\mu)^2(1-\beta)^2}{(\lambda-\mu)^4} + \frac{1}{(2\lambda-\mu)^2}}.$$
(9)

Proof. From conditions (4) and (5), we have

$$(1 - \lambda) \left(\frac{D_{\delta}^k f(z)}{z} \right)^{\mu} + \lambda \left(D_{\delta}^k f(z) \right)^{\mu} \left(\frac{D_{\delta}^k f(z)}{z} \right)^{\mu - 1} = \beta + (1 - \beta)h(z), (z \in \Delta)$$

$$(10)$$

and

$$(1-\lambda)\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu} + \lambda\left(D_{\delta}^{k}q(w)\right)^{\mu}\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu-1} = \beta + (1-\beta)p(w), (w \in \Delta), \tag{11}$$

where h(z) and p(w) are functions such that it's real part positive in Δ and have forms

$$h(z) = 1 + \frac{h_1}{z} + \frac{h_2}{z^2} + \frac{h_3}{z^3} + \cdots$$
 (12)

and

$$p(w) = 1 + \frac{p_1}{w} + \frac{p_2}{w^2} + \frac{p_3}{w^3} + \cdots$$
 (13)

Implies

$$(1 - \lambda) \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu} + \lambda \left(D_{\delta}^{k} f(z) \right)^{'} \left(\frac{D_{\delta}^{k} f(z)}{z} \right)^{\mu - 1} = 1 + \frac{(1 - \beta)h_{1}}{z} + \frac{(1 - \beta)h_{2}}{z^{2}} + \frac{(1 - \beta)h_{3}}{z^{3}} + \cdots, (z \in \Delta)$$
(14)

and

$$(1 - \lambda) \left(\frac{D_{\delta}^{k} q(w)}{w} \right)^{\mu} + \lambda \left(D_{\delta}^{k} q(w) \right)^{\mu} \left(\frac{D_{\delta}^{k} q(w)}{w} \right)^{\mu - 1} = 1 + \frac{(1 - \beta)p_{1}}{w} + \frac{(1 - \beta)p_{2}}{w^{2}} + \frac{(1 - \beta)p_{3}}{w^{3}} + \dots (w \in \Delta).$$
 (15)

Now, equating the coefficients in equation (14) and (15), we obtain

$$(\mu - \lambda)(1 - \delta)^k b_0 = (1 - \beta)h_1, \tag{16}$$

$$(\mu - 2\lambda) \left[(1 - 2\delta)^k b_1 + \left(\frac{\mu - 1}{2} \right) (1 - \delta)^{2k} b_0^2 \right] = (1 - \beta) h_2, \tag{17}$$

$$-(\mu - \lambda)(1 - \delta)^k b_0 = (1 - \beta)p_1 \tag{18}$$

and

$$(\mu - 2\lambda) \left[-(1 - 2\delta)^k b_1 + \left(\frac{\mu - 1}{2}\right) (1 - \delta)^{2k} b_0^2 \right] = (1 - \beta) p_2. \tag{19}$$

From equation (16) and equation (18), we get

$$h_1 = -p_1 \tag{20}$$

and

$$2(\mu - \lambda)^2 (1 - \delta)^{2k} b_0^2 = (1 - \beta)^2 [h_1^2 + p_1^2]. \tag{21}$$

Therefore, From equation (21), we get

$$b_0^2 = \frac{(1-\beta)^2 [h_1^2 + p_1^2]}{2(\mu - \lambda)^2 (1-\delta)^{2k}}$$
 (22)

 $b_0^2 = \frac{(1-\beta)^2[h_1^2 + p_1^2]}{2(\mu - \lambda)^2(1-\delta)^{2k}}$ (22) Since $\Re(h(z)) > 0$ in Δ , the function $h(1/z) \in \mathcal{P}$ and hence the coefficients h_l and similarly the coefficients p_l of the function h and p satisfy the inequality in Lemma 1.1. Hence $|h_l| \le 2$, $|p_l| \le 2$ and apply on (22), we get $|b_0| \le \frac{2(1-\beta)}{(\lambda-\mu)(\delta-1)^k}$.

$$|b_0| \le \frac{2(1-\beta)}{(\lambda-\mu)(\delta-1)^k}.$$

Taking product of equations (17) and (19), we get

$$b_1^2 = \frac{(\mu - 1)^2 (1 - \delta)^{4k} b_0^4}{4(1 - 2\delta)^{2k}} - \frac{(1 - \beta)^2 h_2 p_2}{(1 - 2\delta)^{2k} (u - 2\lambda)^2}.$$
By using equation (22) in equation (23) and by Lemma 1.1, $|h_l| \le 2$, $|p_l| \le 2$, we get

$$|b_1| \leq \frac{2(1-\beta)}{(2\delta-1)^k} \sqrt{\frac{(1-\mu)^2(1-\beta)^2}{(\lambda-\mu)^4} + \frac{1}{(2\lambda-\mu)^2}}.$$

This complete the proof.

If we take k = 0 in Theorem (2.3), then we get following corollary:

Corollary 2.4. [6] Let function f(z) of the form (1) be in the class $\Sigma_M^*(\mu, \lambda, \beta)$. Then $|b_0| \leq \frac{2(1-\beta)}{(\lambda-\mu)}$

$$|b_0| \le \frac{2(1-\beta)}{(\lambda-\mu)}$$

and

$$|b_1| \leq 2(1-\beta) \sqrt{\frac{(1-\mu)^2(1-\beta)^2}{(\lambda-\mu)^4} + \frac{1}{(2\lambda-\mu)^2}}.$$

If we take $k = 0, \mu = 0, \lambda = 1$ in Theorem (2), then we get following corollary:

Corollary 2.5. [4] Let function f(z) of the form (1) be in the class $\Sigma_M^*(\beta)$. Then

$$|b_0| \le 2(1-\beta)$$
 and $|b_1| \le (1-\beta)\sqrt{4\beta^2 - 8\beta + 5}$.

Theorem 2.6. Let function f(z) of the form (1) be in the class $\Sigma_M^*(k, \delta, \mu, \lambda, \alpha)$. Then $|b_0| \leq \frac{2\alpha}{(\lambda - \mu)(\delta - 1)^k}$

$$|b_0| \le \frac{2\alpha}{(\lambda - \mu)(\delta - 1)^k} \tag{24}$$

and

$$|b_1| \le \frac{2\alpha^2}{(2\delta - 1)^k} \sqrt{\frac{(1 - \mu)^2}{(\lambda - \mu)^4} + \frac{1}{(2\lambda - \mu)^2}}.$$
 (25)

Proof. From conditions (6) and (7), we have

$$(1-\lambda)\left(\frac{D_{\delta}^{k}f(z)}{z}\right)^{\mu} + \lambda\left(D_{\delta}^{k}f(z)\right)^{\mu}\left(\frac{D_{\delta}^{k}f(z)}{z}\right)^{\mu-1} = [h(z)]^{\alpha}, (z \in \Delta)$$
(26)

and

$$(1-\lambda)\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu} + \lambda\left(D_{\delta}^{k}q(w)\right)'\left(\frac{D_{\delta}^{k}q(w)}{w}\right)^{\mu-1} = [p(w)]^{\alpha}, (w \in \Delta), \tag{27}$$

where h(z) and p(w) are functions such that it's real part positive in Δ and have forms

$$h(z) = 1 + \frac{h_1}{z} + \frac{h_2}{z^2} + \frac{h_3}{z^3} + \cdots$$
 (28)

and

$$p(w) = 1 + \frac{p_1}{w} + \frac{p_2}{w^2} + \frac{p_3}{w^3} + \cdots$$
 (29)

 $p(w)=1+\frac{p_1}{w}+\frac{p_2}{w^2}+\frac{p_3}{w^3}+\cdots.$ Now, equating the coefficients in equations (26) and (27), we obtain

$$(\mu - \lambda)(1 - \delta)^k b_0 = \alpha h_1,\tag{30}$$

$$(\mu - 2\lambda) \left[(1 - 2\delta)^k b_1 + \left(\frac{\mu - 1}{2} \right) (1 - \delta)^{2k} b_0^2 \right] = \frac{1}{2} \left[\alpha (\alpha - 1) h_1^2 + 2\alpha h_2 \right], \tag{31}$$

$$-(\mu - \lambda)(1 - \delta)^k b_0 = \alpha p_1 \tag{32}$$

and

$$(\mu - 2\lambda) \left[-(1 - 2\delta)^k b_1 + \left(\frac{\mu - 1}{2}\right) (1 - \delta)^{2k} b_0^2 \right] = \frac{1}{2} \left[\alpha(\alpha - 1) p_1^2 + 2\alpha p_2 \right]. \tag{33}$$

From equation (30) and equation (32), we get

$$h_1 = -p_1 \tag{34}$$

and

$$2(\mu - \lambda)^2 (1 - \delta)^{2k} b_0^2 = \alpha^2 [h_1^2 + p_1^2]. \tag{35}$$

Therefore, From equation (35), we get

$$b_0^2 = \frac{\alpha^2 [h_1^2 + p_1^2]}{2(\mu - \lambda)^2 (1 - \delta)^{2k}} \tag{36}$$

Therefore, From equation (35), we get $b_0^2 = \frac{\alpha^2 [h_1^2 + p_1^2]}{2(\mu - \lambda)^2 (1 - \delta)^{2k}}$ As discussed in the proof of Theorem 2.3, by Lemma 1.1, $|h_l| \le 2$, $|p_l| \le 2$ and apply on (36), we get

$$|b_0| \le \frac{2\alpha}{(\lambda - \mu)(\delta - 1)^k}.$$

Now, squaring and adding equations (31) and (33), we get

$$2(2\lambda - \mu)^{2} \left[4(1 - 2\delta)^{2k} b_{1}^{2} + (\mu - 1)^{2} (1 - \delta)^{4k} b_{0}^{4} \right] = \alpha^{2} (\alpha - 1)^{2} \left[p_{1}^{4} + q_{1}^{4} \right] + 4\alpha^{2} \left[p_{1}^{2} + q_{1}^{2} \right] + \alpha^{2} (\alpha - 1) \left[p_{1}^{2} p_{2} + q_{1}^{2} q_{2} \right]$$
(37)

From equation (36) and equation (37), we get
$$b_1^2 = \frac{\alpha^2(\alpha-1)^2[p_1^4+q_1^4] + 4\alpha^2[p_1^2+q_1^2] + \alpha^2(\alpha-1)[p_1^2p_2+q_1^2q_2]}{8(\mu-2\lambda)^2(1-2\delta)^{2k}} - \frac{(\mu-1)^2\alpha^4[p_1^2+q_1^2]^2}{16(1-2\delta)^{2k}(u-\lambda)^4}.$$
By Lemma 1.1, $|h_l| \le 2$ and $|p_l| \le 2$. Hence

$$|b_1| \le \frac{2\alpha^2}{(2\delta - 1)^k} \sqrt{\frac{(1 - \mu)^2}{(\lambda - \mu)^4} + \frac{1}{(2\lambda - \mu)^2}}$$
.

This complete the proof.

If we take k = 0 in Theorem (2.6), then we get following corollary:

Corollary 2.7. [6] Let function f(z) of the form (1) be in the class $\Sigma_M^*(\mu, \lambda, \alpha)$. Then

$$|b_0| \leq \frac{2\alpha}{(\lambda - \mu)} \quad \text{ and } \quad |b_1| \leq 2\alpha^2 \sqrt{\frac{(1 - \mu)^2}{(\lambda - \mu)^4} + \frac{1}{(2\lambda - \mu)^2}}.$$

If we take k = 0, $\mu = 0$, $\lambda = 1$ in Theorem (2.6), then we get following corollary:

Corollary 2.8. [4] Let function f(z) of the form (1) be in the class $\Sigma_M^*(\alpha)$. Then

$$|b_0| \le 2\alpha$$
 and $|b_1| \le \sqrt{5}\alpha^2$.

REFERENCES

- F. M. Ai-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. of Math. and Math. Sci., 27 (2004) 1429-1436.
- P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and [2] Tokyo, (1983).
- Saideh Hajiparvaneh and Ahmad Zireh, Coefficients estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Fac. Sci. [3] Univ. Ank. Ser. A1 Math. Stat., 681 (2019) 654-662.
- S. A. Halim, S. G. Hamidi and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089, preprint (2011). [4]
- Y .Kubota, Coefficients of meromorphic univalent functions, Kodai Math. Sem. Rep., 282(3) (1976) 253-261.
- H. Orhan, N. Mangesh and V. K. Balaji, Initial coefficient bounds for certain subclasses of meromorphic bi-univalent functions, Asian European [6] J.Math., 7 (1) (2014) 1-9. DOI: 10.1142/S1793557114500053.
- [7] Amol B. Patil and Uday H. Naik, Coefficient estimates for a new subclass of meromorphic bi-univalent functions defined by Al-Oboudi differential operator, Global Journal of Pure and Applied Mathematics, 139 (2017) 4405-4414.
- C. Pommerenke, Univalent Functions, Vandenhoeck Ruprecht, G"ottingen, 1975.
- M. Schiffer, Surun probleme dextremum de la representation conforme, Bull. Soc. Math. France, 66 (1938) 48-55.
- H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010) 1188-
- Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate [11] problems, Appl. Math. Comput., 218(23) (2012) 11461-11465.