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Abstract 
Thermo-physical data of copper nanoparticles in water based nanofluid in cylindrical Couette flow regime was investigated. 

The governing momentum, energy and specie concentration equations were transformed into dimensionless form and a regular 

perturbation and approximation with Frobenius method were used and solutions obtained to determine the effect of some 
chosen material parameters in the presence and absence of Brownian motion. Analyses of the results show that an early onset 

of transition from Newtonian fluid to non-Newtonian fluid was observed when the Reynolds number is still within Newtonian 

fluid domain. Effect of the material parameters considered on the skin friction, rate of heat and mass transfer coefficients were 

discussed as well as calculation of mass flux, mean temperature and mean specie concentration of the copper nanofluid.   
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I. INTRODUCTION 

Couette, studied the flow of fluid with its motion brought about by the relative movement of two concentric cylinders of 
varying radii.  It is a flow of viscous incompressible fluid between two infinite parallel plates separated by a distance (d). A 

typical example of Couette flow is the earth and atmosphere with its constituents between them. The study of fluid flows 

through porous plates, surfaces or media cannot be overemphasized. Many natural and physical processes, such as the 

movement of xylem and phloem cells in plants, perspiration in animals and diffusion through permeable membrane involve the 

flow of fluid. The search for fluids with improved thermal conductivity and viscosity led Choi [1], to call a mixture nanofluid. 

The mixture is said to be a colloidal suspension composed of a base fluid and nanoparticles with sizes in the range 1nm – 

100nm. Materials in nano-scale show surprising physical, chemical, biological, mechanical and electrical properties compared 

to some materials at higher scale. The enhanced or improved heat transfer properties of nanofluids make its applications in 

cooling technologies, nuclear reactors and transport desirable. Others are electronics and biomedicine [2]. The transport 

phenomena around cylindrical objects which Couette flow is key are subjects of great value in practical and theoretical studies 

with their attendant industrial importance. Thermal exposure of foods and cooling of electronics are few of the areas it is 
applied. The importance of fluid as a heat transfer medium largely depends on its heat transfer efficiency that can be studied 

from the thermo-physical properties of the fluid. One cardinal property of nanofluids is that, a sizeable quantity of 

nanoparticles is what is required to add to a base fluid and an exceptional heat enhancement property several times more 

expected theoretically. These improved properties of nanofluid over and above conventional base fluids are found to improve 

efficiency and reduce cost. Take to be a bridge between cutting edge nanotechnology and traditional thermal science, 

nanofluids have established itself as modern heat transfer media with far improved heat transfer potentials. Theoretical (Singh 

[3]) and experimental (Bearman [4], Angrilli et al [5], Taniguchi and Miyakoshi [6]), studies in flow and heat transport of 

circular cylinder were carried out because of its application in process industries. Some studies of nanofluids flow in different 

geometries are abounded. The transient free convection flow of nanoparticles between two long parallel plates was investigated 

by Narahari et al [7] and useful deductions on the wall temperature and wall heat flux were made. Azhar et al [8], opined that 

heat transfer fluid flows enhancement is more pronounced in fractional nanofluids than in ordinary nanofluids in the study of 

free convection flow of some water based fractional nanofluids over a moving infinite vertical plate. Santra et al [9], carried out 
a study on heat transfer due to copper oxide in water based nanofluid between two parallel plates maintained at equal 

temperatures for Reynolds number with laminar flow regime and nanoparticles volume fractions. Sandip et al [10], stated that 

vortex formation exhibits symmetric wave characteristics in the study of symmetric vorticity distribution on circular cylinders 

in cross flow for different volume fractions of water based nanofluids. Ahmed et al [11], reported that the Nusselt number 
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increases in the study of a squeezed nanofluid flow between two parallel plates. Study of models of both single phase and multi 

phase nanofluid and their solutions were carried out by Turkyilmazoglu [12] and the results showed that the Nusselt number is 

enhanced as the diffusion parameter in the multi phase model increases. Laplace transform technique was employed by 

Loganathan et al [13] to analyze the effects of heat generation and nanoparticle volume concentration on an unsteady free 

convective flow of a nanofluid past an impulsively started infinite vertical plate. Hajizadeh et al [14], investigated the free 
convection flow of nanofluids between two vertical plates with damped thermal flux and comparison between the fluids with 

thermal memory and the ordinary fluid is made. Brownian motion is one of the concepts for the thermal conductivity 

enhancement of nanofluids. Its principle helps in manufacturing communication engineering silicon and germanium oxide 

optical fibers. A nanoflow past a horizontal circular cylinder considering the twin effect of Brownian motion and 

thermophoresis was investigated by Reddy et al [15] and their deductions supported the enhancement of thermal conductivity 

by Brownian motion. The same effect of thermophoresis and Brownian motion was considered by Sacharitha et al [16] on slip 

nanoflow past symmetric channel while kandasamy et al [17] and Ambuchezhian et al [18] studied the effect together with 

thermal stratification of a nanofluid. Some studies such as  Xuan et al [19], Das et al [20], Kumar et al [21] and Bhattacharya et 

al [22], in their models proposed, were criticized that the Brownian motion is a weak factor in the determination of thermal 

conductivity enhancement. Magnetic fields exist everywhere in space, it implies that Magnetohydrodynamics (MHD) 

phenomena must occur wherever conducting fluids are available. For a particular liquid metal MHD, magnetic fields are used 

to levitate samples of liquid metal and to control their shape. The advent of studies of thermonuclear fusion reaction enhanced 
problems associated with the behaviour of a high temperature plasmas in a magnetic field. As a result of the wide application 

of magnetic field,  Reddy et al [23], Sreenivasulu et al [24], Tamoror [25], Parida et al [26], Nayak et al [27], Abbas et al  [28] 

and Souayeh et al [29] all tackled the effect of magnetic Hartmann number in the study of their different fluid flow regimes. 

Based on the aforementioned features and applications, our proposed study on MHD Couette flow of nanofluid in a radiative 

porous medium is to among other considerations, compare the presence and absence of Brownian motion on the temperature 

and velocity profiles of the Couette copper nanoparticles in water based fluid, determine the transition to non-Newtonian fluid 

flow using Reynolds number regime as well as the calculation of skin friction,  rate of heat transfer coefficient and rate of mass 

transfer coefficient.   

II. MODELING THE PHYSICAL PROBLEM 

The flow of copper nanofluid within two infinite concentric cylindrical surfaces of inner and outer radii r  and r   

respectively, having distance of separation d. The inner cylinder is moving upward and downward while the outer cylinder is at 

rest. The governing partial differential equations in cylindrical form are given as   
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Subject to the Couette flow boundary conditions     Utdvtv rr  ,,0,0 ,     00,,1,0  TtT , 

    0,,1,0  tCtC  (Ngiangia and Orukari [30]) 
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where  
rv  is velocity of nanofluid, r   is radius of nanoparticles, t   is time, C is nanofluid concentration,  nf  is density of 

nanofluid, nf  is viscosity of nanofluid,   is electrical conductivity of base fluid, B  is imposed magnetic induction, g is 

acceleration due to gravity, nf  is thermal expansion due to temperature, nf   is thermal expansion due to concentration, T is 

temperature of nanofluid, 0T  is free stream temperature, 0C  is free stream concentration, nfk  is thermal conductivity of 

nanofluid,  
nfpC  is specific heat at constant pressure of nanofluid, 

rq  is radiation term,
2

rk  is chemical reaction term, D is 

chemical molecular diffusivity,  d is distance between the plates and U is characteristic velocity 

 

In order to consider the effect of radiation on an optically thick model in which the thermal layer becomes very thick or highly 

absorbing as described by Rosseland approximation, Cogley et al [31] as  
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where 
Bk  is the Stefan-Boltzmann constant and   is the absorption coefficient. If temperature difference within the flow of 

the nanofluid is sufficiently small, we can approximate 
4T  using Taylor series expansion about 

T  and neglect higher order 

terms, the expression results into  

 
434 34   TTTT                                                                                                (6) 

 

 According to Hamilton and Crosser model [32], effective dynamic viscosity and effective thermal conductivity which are valid 

for both spherical and non spherical shapes nanoparticles are defined as 
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Following the model proposed by Koo and Kleinstrever ([33 and 34]) in determining the thermal conductivity enhancement, a 

modification proposed by Ngiangia and Nwabuzor [35] is given as  
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The function  ,Tf  can vary continuously with particle volume fraction 

as      63.13430.17224705.004.6,   TTf . 

The empirical shape factor is given by 
13  n ,   is the sphericity,   is related to particle motion, fk and sk  are thermal 

conductivities of base fluid and solid nanoparticles respectively. According to the work of Tiwari and Das [36] and Asma et al  

[37], density of nanofluid ( nf ), thermal expansion due to temperature of nanofluid ( nf ),  thermal expansion due to 

concentration of nanofluid ( nf  ),  specific heat at constant pressure of nanofluid  
nfpC  are respectively 
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  sfnf   1        

  sfnf   1                                                                                     (8) 

      
spfpnfp CCC   1  

where the nanoparticles volume fractions is given by sDm
6


  , m is the number of particles per unit volume and sD  is 

the average diameter of the particles,  f  and s   are the  densities of the base fluid and solid nanoparticles, f  and s  are 

the thermal expansion due to temperature of base fluid and solid nanoparticles, f   and s   are the thermal expansion due to 

concentration of base fluid and solid nanoparticles and  
fpC and  

spC are the specific heat at constant pressure  due to base 

fluid and solid nanoparticles.  

 

 Dimensional Analysis 
 

Dimensional homogeneity of the governing nanofluid equations using the Buckinham-  theorem is stated 
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Rewriting equations (1) – (4) in dimensionless form, the modeled equations are transformed into   
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Subject to the transformed boundary conditions     Ututu  ,1,0,0 ,     00,,1,0   t      0,,1,0  tCtC  

 

where Re is Reynolds’ number, Pr is Prandtl number, Sc is Schmidt number,  Gr  is thermal  Grashofs number, cGr  is 

modified Grashofs number, N is dimensionless radiation term,  is dimensionless temperature, u is dimensionless velocity, C 

is dimensionless concentration,   is dimensionless porosity term, M is magnetic Hartmann number, 0k  is dimensionless 

chemical reaction term and r is dimensionless radius of  nanoparticles.  
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III. METHOD OF SOLUTION 
As a necessary condition and for science and engineering applications, it is assumed that the nanofluid is incompressible. 

Equation (9), therefore, takes the form 
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where B is integration constant. 

 
In view of equation (13), equations (10) – (12) take the form 
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Using the transformation technique adopted by Aaiza et al [38] and Ngiangia and Akaezue [39], a regular perturbation of the 

form  
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 where   is  dimensionless free stream frequency. 

 

Equation (19) is put into equation (16), equation (18) substituted into equation (15) and equations (17) – (19) is put into 
equation (14), the simplified equations result into 
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Subject to the modified boundary conditions 

    Ututu  ,1,0,0 00 ,     Ututu  ,1,0,0 11
    00,,1,0 00   t  

    0,,1,0 11  tCtC ,     0,,1,0 00  tCtC . Prime denotes derivative with respect to r 

 

Equation (25) is tested and proved finite with the presence of singular point, hence analytic (Gupta [40], Raisinghania [41]), 

therefore, analytical feasible solution is possible. Using Frobenius method, a solution of the form 
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 is assumed. 

 

The expression in equation (26) is substituted into equation (25) and after simplification, obtained an indicial equation of the 

form  
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is obtained with the solution as  
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The recursion formula is given by  
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 and the solution after imposing the boundary conditions     0,,1,0 00  tCtC  

 is given by  
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 Using the same approach, the recurrence relation of equation (24) is given as  
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and solution after imposing the boundary conditions     0,,1,0 11  tCtC  is  
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To determine the solution of equation (23), 5A , which Brownian motion is part, is  temperature dependent, therefore, 

simplified to take the form  
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61615 rcArAbAaA                                                        (33) 

 

  )(5.1 r  and )(5.0 r  are approximated using Taylor’s series expansion about 1 and neglect powers of )(r    2 and 

simplify, equation (23) can be written as  
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and its solution, taken )(0 rve  is given as  
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Similarly, adopting the same method and procedure, the solution of equation (22) is therefore, 
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 Binomial series expansion of the second term of equation (35) is carried out and terminated at 
2r , the  complete expression 

together with equation  (30) is put into equation (21) and the result is given as   
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The complete solution, which is a combination of the complimentary function and the particular integral after the imposition of 

the boundary conditions     Ututu  ,1,0,0 00  

is  
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Similarly, following the same method, series expansion of equation (36) is done together with equation (32) is put into 

equation (20) and the expression takes the form  
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  and the complete solution is given as  
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Finally, equations (38) and (40) is put into equation (17), equations (35) and (36) is put into equation (18) and equations (30) 

and (32) is put into equation (19) and the resulting expression takes the form     
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SPECIAL CASE 

 

In the absence of Brownian motion  15 aA  , equations (41) and (42) reduced to  
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The mass flux  ,  the mean temperature m  and the mean specie concentration mC   are obtained by evaluating the integrals 
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IV. SKIN FRICTION   , NUSSELT NUMBER  Nu  AND SHERWOOD NUMBER  Sh  

The shearing stress, Nusselt number and Sherwood number are applicable physical parameters worthy of mention in nanofluids 

flow through concentric cylindrical surfaces in porous medium. 

 

 Skin Friction 

 

The skin friction is given by 
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 Heat Transfer Coefficient or Nusselt Number (Nu) 

 

Literatures have shown that the heat transfer coefficient or Nusselt number is a better indicator than the effective thermal 

conductivity of nanofluids, particularly when such nanofluids are used as coolants and other functions in industries, in the 

determination of the effect of temperature on nanofluids. Taking the Taylor series expansion of equation (42) about the point 

1r  and neglecting powers of  1r , it is determined as   
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 Mass Transfer Coefficient or Sherwood Number (Sh)   
 

The Sherwood number is calculated thus,  
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Special case 

 

In the absence of Brownian motion  15 aA  , equations (44) and (45) reduced to the form  

 



Ngiangia, Alalibo et al. / IJMTT, 67(5), 126-149, 2021 
 

137 

 
4131

0

,
aa

r

tru

r








                                                                                            (52) 

 

 








Nu
r

tr

r 0

,
.....

Pr24

Pr

1

1 








 Ba

Na tie
Ba

iNa 
.....)

Pr24

PrPr
(

1

1 











                         (53) 

 
V. RESULTS AND DISCUSSIONS 

Results 

In order to get physical insight and numerical validation of the problem, an approximate value of   

12310380658.1,1,015.0  JKxkUBtnmDs B  are chosen. The values of other parameters made use of 

are  

10.0,07.0,04.0,01.0,3.5,3.4,3.3,3.2

15.5,15.4,15.3,15.2,09.0,07.0,05.0,03.0,02.4,02.3,02.2,02.1

92.1,82.1,72.1,62.1,01.1,91.0,81.0,71.0Pr,41.1,11.1,81.0,51.0

47.3,47.2,47.1,47.0,35.4,35.3,35.2,35.1,400,.300,200,100Re
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Table 1: Sphericity   and empirical shape factor n for nanoparticles (Aaiza et al [38]) 

Model          Cylinder                 

                    0.62                      

 

n                  4.83871                

 

 

Table 2: Constants a and b empirical shape factor (Aaiza et al [38])   

Model                 Cylinder                 

a                             13.5                        

 

b                             904.4                     

 

 

Table 3: Thermo physical properties of  Cu  nanoparticles and OH 2
 (Aaiza et al [38]) 

Property OH 2  Cu  

 
nfpC (J/kgK)                                      4179 385 

 (kg/m
3

)                                              997.1 8933 

nfk (W/mk)                           0.613 401 

nf  12 sm  0.00089 0.00046 

 )(10 15  kx  21 1.67 
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Fig. 1: Concentration profile C  against boundary layer r  for varying chemical reaction 
0k  

 

Fig. 2: Concentration profile C  against boundary layer r  for varying Schmidt number Sc 
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Fig. 3: Concentration profile C  against boundary layer r  for varying free stream frequency   
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Fig. 4: Temperature profile   against boundary layer r  for varying Prandtl number Pr 
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Fig. 5: Temperature profile   against boundary layer r  for varying Radiation term N 
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Fig. 6: Temperature profile   against boundary layer r  for varying free stream frequency   
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Fig. 7: Temperature profile   against boundary layer r  for varying Nanoparticle volume fractions   
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Fig. 8: Velocity profile u  against boundary layer r  for varying permeability term   
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Fig. 9: Velocity profile u  against boundary layer r  for varying Hartmann number M  
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Fig. 10: Velocity profile u  against boundary layer r  for varying nanoparticle volume fractions   
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Fig. 11: Velocity profile u  against boundary layer r  for varying Reynolds number Re  
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Fig. 12: Velocity profile u  against boundary layer r  for varying Prandtl number Pr  
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Fig. 13: Velocity profile u  against boundary layer r  for varying free stream frequency   
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Fig. 14: Velocity profile u  against boundary layer r  for varying radiation term N  
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Fig. 15: Velocity profile u  against boundary layer r  for varying Schmidt number Sc  
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Fig. 16: Velocity profile u  against boundary layer r  for varying modified Grashof number cGr  
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Fig. 17: Velocity profile u  against boundary layer r  for varying thermal Grashof number Gr  
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Fig. 18: Velocity profile u  against boundary layer r  for varying chemical reaction term 0k  

 

Table 4: Numerical values of mean Nusselt number for various values of Prandtl number  

Pr Nu(Presence of Brownian 

motion) 

Nu (Absence of Brownian 

motion) 

0.71 -9073.28 9.65906 

   



Ngiangia, Alalibo et al. / IJMTT, 67(5), 126-149, 2021 
 

144 

0.81 -9709.87 11.7557 

   

0.91 -10346.50 14.1526 

    

1.01 -10983.00 16.9191 

 

 

Table 5: Numerical values of mean Nusselt number for various values of nanoparticles volume fractions   

)( 3nm  Nu(Presence of Brownian 

motion) 

Nu(Absence of Brownian 

motion) 

0.03 -9073.28 9.65906 

   

0.05 -9200.79 8.88206 

   

0.07 -9510.03 8.24468 

    

0.09 -25307.80 7.71255 

 

 

Table 6: Numerical values of mean Nusselt number for various values of radiations (N)  

N Nu(Presence of Brownian 

motion) 

Nu(Absence of Brownian 

motion) 

1.62 -9073.28 9.65906 

   

1.72 -9352.28 9.94046 

   

1.82 -9631.27 10.2219 
    

1.92 -9910.27 10.5033 

 

 

Table 7: Numerical values of mean Nusselt number for various values of free stream frequency    

  Nu(Presence of Brownian 

motion) 

Nu(Absence of Brownian 

motion) 

2.3 9073.28 9.65906 

   

3.3 -11038.10 31.5701 

   
4.3 -13002.80 101.488 

    

5.3 -14967.60 319.699 

 

 

Table 8: Numerical values of skin friction for various values of free stream frequency ( ) 

    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

2.3 3.35317 0.308809 

   

3.3 3.27248 -0.0311142 

   

4.3 3.22621 -0.371037 

    

5.3 3.19622 -0.71096 
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Table 9: Numerical values of skin friction for various values of nanoparticle volume fractions ( )( 3nm ) 

)( 3nm    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

0.03 3.35317 0.308809 
   

0.05 3.62573 -0.0292914 

   

0.07 3.88231 -0.342038 

    

0.09 4.1247 -0.635677 
 

Table 10: Numerical values of skin friction for various values of modified Grashof number ( cGr ) 

cGr    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

1.02 3.35317 0.308809 

   

2.02 6.64059 -2.60943 

   

3.02 9.92801 -4.58319 

    

4.02 13.2154 -6.55695 
 

Table 11: Numerical values of skin friction for various values of thermal Grashof number ( Gr )  

Gr    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

1.35            -- 0.308809 

   

2.35            -- 0.189323 
   

3.35             -- 1.49443 

    

4.35             -- 2.79953 
 

Table 12: Numerical values of skin friction for various values of Prandtl number  

Pr   (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

0.71             -- 0.308809 

   

0.81              -- -0.733334 

   

0.91             -- -0.296126 

    
1.01             -- 0.208513 

 
Table 13: Numerical values of skin friction for various values of radiations (N)  

N   (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

1.62               -- 0.308809 
   

1.72              -- -1.04846 

   

1.82              -- -0.981135 

    
1.92               -- -0.913812 
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Table 14: Numerical values of skin friction for various values of Schmidt number (Sc)  

Sc   (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

2.15 3.35317 0.308809 

   

3.15 3.35317 -1.11578 

   

4.15   3.35317           -1.11578 

    

5.15 3.35317 -1.11578 
 

Table 15: Numerical values of skin friction for various values of chemical reaction ( 0k )  

0k    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

0.51 3.35317 0.308809 

   

0.81 3.35317 -1.11578 

   
1.11   3.35317           -1.11578 

    

1.41 3.35317 -1.11578 
 

Table 16: Numerical values of skin friction for various values of porosity term (  )  

    (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

0.01 3.35317             -- 
   

0.04 3.19551            -- 

   

0.07   3.05471                      -- 

    

0.10 2.92812             -- 
 

Table 17: Numerical values of skin friction for various values of Hartmann number (  )  

M   (Presence of Brownian 

motion) 

  (Absence of Brownian 

motion) 

0.47 3.35317             -- 

   

1.47 1.44036            -- 

   

2.47   0.991113                    -- 

    
3.47 0.770432             -- 
 

Table 18: Numerical values of Sherwood number for various values of chemical reaction ( 0k ), Schmidt number ( Sc ) and 

free stream frequency ( ) 

0k  Sh Sc  Sh   Sh 

0.51 -11.4703 2.15 -11.4703 2.3 -11.4703 

      

0.81 -11.4703 3.15 -11.4703 3.3 -44.736 

      

1.11   -11.4703 4.15 -11.4703 4.3 -158.455 

       

1.41 -11.4703 5.15 -11.4703 5.3 -530.894 
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DISCUSSION 
Chemical reaction influence is discussed in Fig.1. Increase in chemical reaction rate of the nanofluid, enhances the 

concentration.  

Fig.2 presents the impact of Schmidt number on the concentration of the nanofluid. It is observed that an increase in the 

Schmidt number, showes a corresponding increase in the concentration of the copper nanofluid. 
Free stream frequency effect as shown in Fig.3, revealed that its increase, enhances the concentration of the nanofluid. 

Prandtl number influence is depicted in Fig.4. An increase in Prandtl number corresponds to a decrease in the temperature 

profile of the nanofluid. The reason is that, values of Prandtl number less than 1 of nanofluid is highly conductive. 

Fig.5 illustrates the effect of the radiation parameter on the temperature profile of the nanofluid. It is observed that increase in 

radiation leads to lower temperature of the nanofluid. 

Increase in the free stream frequency is associated with an increase in the temperature profile of the nanofluid and this effect is 

illustrated in Fig.6. 

One of the important considerations in the description of nanofluid is the nanoparticle volume fraction. It influences almost all 

nanofluid parameters. Fig.7, shows that, increase in nanoparticle volume fraction corresponds to an increase in temperature 

profile caused by increased concentration of the copper nanofluid. 

The effect of porosity on the velocity profile of the nanofluid is shown in Fig.8. It is noticed that an increase in porosity leads 

to an increase in velocity profile of the copper nanofluid. This is, as a result of increase in size of pore spaces of the porous 
medium. 

Fig.9 portrays the influence of magnetic Hartmann number on the velocity profile. It is observed that the velocity profile of the 

nanofluid decreases with an increasing Hartmann number. The magnetic Hartmann number is a resistive force or Lorentz force 

on the fluid flow and reduces the motion of electrically conducting fluid. 

The nanoparticle volume fraction is a distinguishing factor between ordinary fluid and nanofluid description. As observed in 

Fig.10, its increase, leads to a corresponding increase in the velocity profile of the copper nanofluid. 

The Reynolds number range serves as a guide or describes the transition from Newtonian fluid to non-Newtonian fluid owing 

to increase viscosity. As shown in Fig.11, initial increase in Reynolds number  300Re    results in an increase in the 

velocity profile but suddenly starts to decrease as Reynolds number is increased beyond 300, meaning increased viscosity and 

buttress the fact that the copper nanofluid has moved into the non-Newtonian domain when the Reynolds number is still within 

the Newtonian domain  3000Re1  . This early onset of transition is a vital characteristic of copper nanofluid. 

Copper nanofluid possesses abnormal high conductivity, it is therefore not surprising that an increase in Prandtl number as 

shown in Fig.12, corresponds to an increase in the velocity profile of the fluid. 

Fig.13 reveals that an increase in free stream frequency of the nanofluid leads to a decrease in the velocity profile of the 

nanofluid. 

 As depicted in Fig.14, the nanofluid is warmth as a result of radiation and the resultant effect is increase in the velocity of the 

fluid. 

Fig.15 shows that an increase in Schmidt number results to an increase in molecular diffusivity which leads to an increase in 

the velocity profile of the nanofluid. 

Fig.16 and Fig.17 displayed the effect of thermal Grashof number and modified Grashof number respectively on the velocity 

profile of the nanofluid. Increase in thermal Grashof number  Gr  means cooling the cylindrical plates while increase in 

modified Grashof number  cGr  means lowering the concentration of the nanofluid around the plates and both effects increase 

the velocity profile of the fluid. 
Increase in the chemical reaction term as depicted in Fig.18, results in a gradual increase in the velocity profile of the fluid due 

to the reaction rate. 

Tables 4, 6 and 7 showed numerical values of Nusselt numbers in the presence and absence of Brownian motion. As increase 

in the Prandtl number, radiation and free stream frequency correspond to decreasing Nusselt number in the presence of 

Brownian motion while an increase is observed when Brownian motion is not involved. 

According to Table 5, increase in the nanoparticle volume fraction, decreases the Nusselt number in both the presence and 

absence of Brownian motion. 

The free stream frequency, decreases the skin friction in the presence and absence of Brownian motion an illustrated in Table 

8. 

Tables 9 and 10 displayed that nanoparticle volume fraction and modified Grashof number, increased as the skin friction 

increases in the presence of Brownian motion but decreased in the absence of Brownian motion. 
According to Table 11, the skin friction increases in the absence of Brownian motion but not applicable to the presence of 

Brownian motion. 
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Tables 12 and 13 showed that skin friction is not applicable in the presence of Brownian motion but decreases in the absence 

of Brownian motion for corresponding increases in Prandtl number and radiation term. 

Marginal decrease is observed in both the presence and absence of Brownian motion in the skin friction as Schmidt number 

and chemical reaction term increases as shown in Tables 14 and 15. 

Tables 16 and 17 revealed that decrease in skin friction is observed in the presence of Brownian motion but not applicable in 
the absence of Brownian motion as the magnetic Hartmann number and porosity increases. 

Table 18 illustrates that; the Sherwood number decreases as approximation extends up to 8 decimal places when chemical 

reaction term and Schmidt number increases but decreases as free stream frequency increases.  

                     

VI. CONCLUSION 

The approximate analytical solution to copper nanofluid in Couette flow regime with the effect of magnetic field and modified 

model for thermal conductivity is the kernel of this work. The key findings are that the effect of nanoparticle volume fractions 

and that of Brownian motion cannot be over emphasized. The transition of the copper nanofluid from Newtonian fluid to non-

newtonian fluid domain when the Reynolds number increase is still within the laminar flow range is one important 

characteristics of copper nanofluid. 
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