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Abstract: The purpose of this paper is to present coincidence point and common fixed point results for three and four self-

expansive mappings in b- metric spaces. The results presented in this paper generalize and extend several well-known 

results in the literature. 
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I. INTRODUCTION 

It is well known that contractive type conditions play an important role in the study of fixed-point theory. The Banach 

contraction mapping [1] is one of the conclusive results of analysis. He established the existence and uniqueness theorem 

for a solution of an operator equation 𝑇𝑥 = 𝑥, by using a contraction condition. It is a very popular tool in solving 

problems in different areas of mathematics. 

The idea of b- metric space was initiated by the works of Bourbaki [16], Bakhtin [2] and Czerwik [3] and [4], which gave 

an axiom and proved the contraction mapping principle in B- metric spaces that generalized the famous Banach contraction 

mapping theorem. In 1981, Gillespie and Williams [5] introduced a new class of maps where the existing constant is 

greater than one. In the sequel, the concept of expansive mapping has been introduced by Daffer, P. Z. and Kaneko, H. [6] 

and obtain fixed point results. After that various authors have been studied fixed point theorems in metric spaces for 

expansive mappings see for instance [Daheriya, et al. [7] and Huang, X. et al. [8]. 

In 2015, Jain, R. et al. [9] obtained some results for fixed point and coincidence point for expansive mappings in b- metric 

space. Further, in [10] he is proved that fixed point and common fixed point theorems for expansive mappings in 

parametric space and parametric b- metric spaces with coincidence point. 

 In the same year, Mohanta, S.K. [11], obtained sufficient conditions for existence of points of coincidence and common 

fixed points for a pair of self mappings satisfying expansive type conditions in b- metric spaces. We prove the coincidence 

point theorem for expanding maps without assuming subjectivity of the maps there in metric spaces. 

Our results extend and generalize of the results Mohanta, S.K. [11] for expansive mapping in b- metric spaces. 

II. Preliminary Notes 

In this section we need to recall some basic notations, definitions, and necessary results from existing literature. 

Definition 2.1 [8]: Let X be a non-empty set and 𝑠 ≥ 1 be a given real number. A function 𝑑: 𝑋 × 𝑋 → 𝑅+ is said to be b- 

metric on 𝑋, if the following condition hold: 

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋; 
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(iii) 𝑑(𝑥, 𝑦) ≤ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)], for all 𝑥, 𝑦 ∈ 𝑋.  Then the pair (𝑋, 𝑑) is called a b- metric Space. Observe that, if 

𝑠 = 1, then the ordinary triangle inequality in a metric space is satisfied, however it does not hold true when 𝑠 > 1. 

Then the class of b- metric spaces is effectively larger than that of ordinary metric space. i.e.  

Every metric space is a b- metric space but the converse need not be true. The following example illustrates the above 

remarks. 

Example 2.2: Let  = {−1,0,1}. Define 𝑑: 𝑋 × 𝑋 → 𝑅+ by 

                     𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),  

for all 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑥) = 0, 𝑥 ∈ 𝑋 and 𝑑(−1,0) = 3, 𝑑(−1,1) = 𝑑(0,1) = 1. Then (𝑋, 𝑑) is a b- metric space, but not a 

metric space, because the triangle inequality is not satisfied. Indeed, we have that 

    𝑑(−1,1) + 𝑑(1,0) = 1 + 1 

                                   = 2 

                                  < 3 

                                   = 𝑑(−1,0). It is easy to verify that  

                                 𝑠 = 3
2⁄ . 

Definition 2.3 [12]: Let (𝑋, 𝑑) be a b -metric space, 𝑥 ∈ 𝑋 and {𝑥𝑛} be a sequence in X. Then  

(i) {𝑥𝑛} converges to 𝑥, if and only if lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑥) = 0, we denote this by  

                                       lim
𝑛→∞

𝑥𝑛 = 𝑥 or 𝑥 → 𝑥(𝑛 → ∞). 

(ii) {𝑥𝑛} is a Cauchy sequence if and only if    

lim
𝑛,𝑚→∞

𝑑(𝑥𝑛 , 𝑥𝑚) = 0. 

(iii) (𝑋, 𝑑) is complete, if and only if every Cauchy    

              sequence in 𝑋 is convergent. 

 

Remark 2.4[12]: Let (𝑋, 𝑑) be a b- metric space, then the following assertions hold: 

(i) A convergent sequence has a unique limit. 

(ii) Each convergent sequence is Cauchy. 

(iii) In general, b -metric is not continuous. 

Definition 2.5[11]: Let (𝑋, 𝑑) be a metric space with the coefficient 𝑠 ≥ 1 and let 𝑇: 𝑋 → 𝑋 be a given mapping. We say 

that 𝑇 is continuous at 𝑥0 ∈ 𝑋, we have 𝑥𝑛 → 𝑥0 as 𝑛 → ∞.If 𝑇 is continuous at each point 𝑥0 ∈ 𝑋, Then we say that 𝑇is 

continuous on 𝑋. 

Definition 2.6: Let (𝑋, 𝑑) be a metric space with the coefficient 𝑠 ≥ 1. A mapping let 𝑇: 𝑋 → 𝑋 is called expansive if there 

exists a real constant 𝑘 > 𝑠 such that 

                       𝑑(𝑇𝑥, 𝑇𝑦) ≥ 𝑘𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋. 

  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. 𝟕[𝟏𝟒]: Let 𝑇 and 𝑆 be self-mappings of a set 𝑋. If  𝑦 = 𝑇𝑥 = 𝑆𝑥 ,  for some 𝑥 ∈ 𝑋, then x is called a 

coincidence point of 𝑇 and 𝑆. and 𝑦 is called a point of coincidence of 𝑇 and 𝑆. 

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟐. 𝟖[𝟏𝟒]: Let 𝑆 and 𝑇 be a weakly compatible self-mapping of a non-empty set 𝑋. If S and T have a unique 

point of coincidence   𝑦 = 𝑇𝑥 = 𝑆𝑥 ,  for some 𝑥 ∈ 𝑋, then  𝑦 is the unique common fixed point of coin 𝑇 and 𝑆. 

Definition 2.9[15]: The mapping 𝑓, 𝑔: 𝑋 → 𝑋 are weakly compatible, if for every 𝑥 ∈ 𝑋, the following condition holds: 

                                   𝑓(𝑔𝑥) = 𝑔(𝑓𝑥), whenever 𝑓𝑥 = 𝑔𝑥. 
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Lemma 2.10: Suppose (𝑋, 𝑑) be a b- metric space and {𝑦𝑛] be a sequence in X such that 

                         𝑑(𝑦𝑛+1, 𝑦𝑛+2) ≤ 𝜆𝑑(𝑦𝑛 , 𝑦𝑛+1),  

Where, = 0,1,2,3, …. , and e 0 ≤ 𝜆 < 1. 

Then the sequence {𝑦𝑛} is Cauchy sequence in 𝑋 provided by 𝑠𝜆 < 1. 

3. Main Results                        

Theorem 3.1. Let (𝑋, 𝑑) be a complete 𝑏- metric space with the coefficient 𝑠 ≥ 1.Suppose the mapping 𝑓, 𝑔, ℎ: 𝑋 → 𝑋 

satisfying the condition 

         𝑑(𝑓𝑥, 𝑓𝑦) ≥ 𝛼1 𝑑(𝑓𝑥, ℎ𝑥) + 𝛼2 𝑑(𝑔𝑦, ℎ𝑦) 

                          +𝛼3 𝑑(𝑓𝑥, ℎ𝑦) +  𝛼4 𝑑(𝑔𝑦, ℎ𝑥) 

                           +𝛼5 𝑑(𝑓𝑥, 𝑔𝑦)  …..(3.1.1)                                             

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 ≥ 0 with 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4, +𝛼5 > 𝑠. Assume the following hypothesis: 

(1) 𝛼2 + 𝛼3 > 𝑠(1 − 𝛼1) ≥ 𝛼5) or 

            𝛼1 + 𝛼2 > 𝑠(1 − 𝛼3) ≥ 𝛼4) 

(2) 𝑓(𝑋)  ⊆ ℎ(𝑋) and  𝑔(𝑋) ⊆ ℎ(𝑋). 

If 𝑓(𝑥) 𝑜𝑟 𝑔(𝑋) 𝑜𝑟 ℎ(𝑋) area complete subspace of 𝑋. Then 𝑓, 𝑔 and ℎ have a point of   coincidence in 𝑋. Moreover, 𝛼2 +

𝛼4 + 𝛼5 >1 and 𝑓, 𝑔 and ℎ are weakly compatible. Then  𝑓, 𝑔 and ℎ have a unique common fixed point in 𝑋. 

Proof: Let 𝑥0 ∈ 𝑋, then we have 𝑓𝑥0 ∈ 𝑓(𝑋). Since 𝑓(𝑋) ⊆ ℎ(𝑋) there exists 𝑥1 ∈ 𝑋 such that 𝑓𝑥0 = ℎ𝑥1. From 𝑥1 ∈ 𝑋 

then 𝑔𝑥1 ∈ 𝑔(𝑋). Since 𝑔(𝑋) ⊆ ℎ(𝑋) there exists 𝑥2 ∈ 𝑋such that 𝑔𝑥1 = ℎ𝑥2. From 𝑥2 ∈ 𝑋, then 𝑓𝑥2 ∈ 𝑓(𝑋). Since 

𝑓(𝑋) ⊆ ℎ(𝑋), there exists 𝑥3 ∈ 𝑋 such that 𝑓𝑥1 = ℎ𝑥3. 

Now from 𝑥3 ∈ 𝑋,  then 𝑔𝑥3 ∈ 𝑔(𝑋). Since 𝑔(𝑋) ⊆ ℎ(𝑋) there exists 𝑥4 ∈ 𝑋 such that 𝑔𝑥 − 3 = ℎ𝑥4. Continuing this 

process for all having chosen 𝑥𝑛 ∈ 𝑋, we obtain 𝑥𝑛+1 ∈ 𝑋 such that 

          𝑓𝑥2𝑛 = ℎ𝑥2𝑛+1   and  𝑔𝑥2𝑛+1 = ℎ𝑥2𝑛+2,  

       for all 𝑛 = 0,1,2 … 

In general, we can define a sequence {𝑧𝑛} we have  

             𝑧2𝑛 = 𝑓𝑥2𝑛 = ℎ𝑥2𝑛+1    and  

         𝑧2𝑛+1 = 𝑔𝑥2𝑛+1 = ℎ𝑥2𝑛+2, …..             (3.1.2) 

for all 𝑛 = 0,1,2, … ..                         

From (3.1.1) and (3.1.2), we have 

         𝑑( 𝑧2𝑛−1, 𝑧2𝑛) = 𝑑(ℎ𝑥2𝑛 , ℎ𝑥2𝑛+1) 

                                ≥  𝛼1𝑑(𝐹𝑥2𝑛 , ℎ𝑥2𝑛) 

                                + 𝛼2𝑑(𝑔𝑥2𝑛+1, ℎ𝑥2𝑛+1) 

+𝛼3𝑑(𝑓𝑥2𝑛 , ℎ𝑥2𝑛+1) 

                               +𝛼4𝑑(𝑔𝑥2𝑛+1, ℎ𝑥2𝑛) 

                              + 𝛼5𝑑(𝑓𝑥2𝑛 , 𝑔𝑥2𝑛+1) 

                              =𝛼1𝑑(𝑧2𝑛−1, 𝑧2𝑛) +  𝛼2𝑑(𝑧2𝑛+1, 𝑧2𝑛)     

                              +𝛼3𝑑(𝑧2𝑛 , 𝑧2𝑛) 

                              + 𝛼4𝑑(𝑧2𝑛+1, 𝑧2𝑛) + 𝛼5𝑑(𝑧2𝑛−1, 𝑧2𝑛+1) 

 ≥ 𝛼1𝑑(𝑧2𝑛−1, 𝑧2𝑛) +  𝛼2𝑑(𝑧2𝑛+1, 𝑧2𝑛)           +𝛼3𝑑(𝑧2𝑛 , 𝑧2𝑛)  + 𝛼4𝑑(𝑧2𝑛+1, 𝑧2𝑛)  

+ 
𝛼5

𝑠
[𝑑(𝑧2𝑛−1, 𝑧2𝑛) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛)],   
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 ≥ (𝛼2 + 𝛼4 +
𝛼5

𝑠
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

   + (𝛼1 +
𝛼5

𝑠
 ) 𝑑(𝑧2𝑛−1, 𝑧2𝑛). 

Implies that, 

 1-(𝛼1 +
𝛼5

𝑠
 )  𝑑(𝑧2𝑛−1, 𝑧2𝑛) ≥  (𝛼2 + 𝛼4 +

𝛼5

𝑠
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

       ⇒  𝑑(𝑧2𝑛+1, 𝑧2𝑛)   =     
1−𝛼1−𝛼5/𝑠

𝑠(𝛼2+𝛼4+𝛼5)
 𝑑(𝑧2𝑛−1, 𝑧2𝑛) 

                   Put 𝑟 =  
1−𝛼1−𝛼5/𝑠

𝑠(𝛼2+𝛼4+𝛼5)
, then we have 

            𝑑(𝑧2𝑛+1, 𝑧2𝑛) ≤ 𝑟𝑑(𝑧2𝑛1
, 𝑧2𝑛) ….  (3.1.3)                                              

By induction, we get 

       𝑑(𝑧2𝑛+1, 𝑧2𝑛)  ≤ 𝑟𝑛𝑑(𝑧0, 𝑧1) ….       (3.1.4)                                            

For 𝑚, 𝑛 ∈ 𝑁  with 𝑚 > 𝑛, we have repeated us of (3.1.4) 

       𝑑(𝑧2𝑛 , 𝑧2𝑚) ≤ 𝑠[𝑑(𝑧2𝑛 , 𝑧2𝑛+1) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛)] 

                           ≤ 𝑠𝑑(𝑧2𝑛 , 𝑧2𝑛+1) + 𝑠2𝑑(𝑧2𝑛+1, 𝑧2𝑛+2) 

                            + ⋯ . . + 𝑠𝑚−𝑛[𝑑(𝑧2𝑛−2, 𝑑(𝑧2𝑚−1) 

                            +𝑑(𝑧2𝑚−1, 𝑧2𝑚)]𝑑(𝑧0, 𝑧1) 

𝑑(𝑧2𝑛 , 𝑧2𝑚)  ≤ [𝑠𝑟2𝑛 + 𝑠2𝑟2𝑛+1  + 𝑠3𝑟2𝑛+2 + ⋯ + 𝑠2𝑚−2𝑛  𝑟2𝑚−2 

                                + 𝑠2𝑚−2𝑛 + ⋯ . . +𝑠2𝑚−1]𝑑(𝑧0, 𝑧1) 

                             =𝑠𝑟2𝑛[ 1 + 𝑠𝑟 + (𝑠𝑟)2 + ⋯ + (𝑠𝑟)2𝑚−2𝑛−2 + ⋯ + (𝑠𝑟)2𝑚−2𝑛−1]𝑑(𝑧0, 𝑧1) 

                       𝑠𝑟2𝑛 [
1−(𝑠𝑟)2𝑚−2𝑛−1

1−𝑠𝑟
]  𝑑(𝑧0, 𝑧1) 

Since 0 < 𝑠𝑟 < 1, thus we get  

    𝑑(𝑧2𝑛 , 𝑧2𝑚) ≤
𝑠𝑟2𝑛

1−𝑠𝑟
 𝑑(𝑧0, 𝑧1).  Thus for 𝑚, 𝑛 → ∞. We get  

         𝑑(𝑧2𝑛 , 𝑧2𝑚) → 0. 

Hence {𝑧2𝑛} is a Cauchy sequence in ℎ(𝑋). Since ℎ(𝑋) is a complete in X, so there exists 𝑧∗ ∈ ℎ(𝑋) such that      

(𝑧2𝑛 , 𝑧∗) → 0 ….                                                                                                                      (3.1.5) 

As 𝑧∗ ∈ ℎ(𝑋),  then there exists 𝑦∗ ∈ 𝑋 such that  

                  ℎ𝑦∗ = 𝑧∗.       

We claim that 𝑓, 𝑔, and ℎ have a coincidence point in X. Before that, we will show that 

                    𝑑(𝑓𝑦∗, 𝑧2𝑛) → 0. 

 From (3.1.1), we have  

   𝑑(𝑦∗, 𝑧2𝑛) = 𝑑(ℎ𝑦∗, 𝑧2𝑛) 

                     = 𝑑(ℎ𝑦∗, ℎ𝑥2𝑛+1) 

                     ≥ 𝛼1𝑑(𝑓𝑦∗, ℎ𝑦∗) + 𝛼2𝑑(𝑔𝑥2𝑛+!, ℎ𝑥2𝑛+1)  

                     + 𝛼3𝑑(𝑓𝑦∗, ℎ𝑥2𝑛+1 ) 

                    = + 𝛼4𝑑(𝑔𝑥2𝑛+1, 𝑓𝑦∗) + 𝛼5𝑑(𝑓𝑦∗, 𝑔𝑥2𝑛+1) 

                    ≥ 𝛼2𝑑( 𝑧2𝑛 , 𝑧2𝑛+1) + 𝛼3𝑑(𝑓𝑦∗, 𝑧2𝑛) 

+𝛼4𝑑(𝑧2𝑛 , 𝑓𝑦∗) + 𝛼5𝑑(𝑓𝑦∗, 𝑧2𝑛) 

                 =𝛼2𝑑(𝑧2𝑛 , 𝑧2𝑛+1) + (𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑓𝑦∗, 𝑧2𝑛) 

Implies that 
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    𝛼2𝑑(𝑧2𝑛 , 𝑧2𝑛+1) + (𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑓𝑦∗, 𝑧2𝑛) 

                                 ≤ 𝑑(𝑦∗, 𝑧2𝑛)…                                                                                    (3.1.6) 

Since 0 < 𝑟 < 1. Then for 𝑛 → ∞. We have    𝑑(𝑧2𝑛 , 𝑧2𝑛+1)  → 0…                                 (3.1.7) 

From (3.1.5), we have  

    𝑑(𝑧∗, 𝑧2𝑛) → 0, then by using (3.1.7) into (3.1.6), we get  𝑑(𝑓𝑦∗, 𝑧2𝑛) → 0 …                (3.1.8) 

Now, we will show that 𝑓, 𝑔 and ℎ have a coincidence point in 𝑋. By definition of b- metric space 

         𝑑(𝑓𝑦∗, ℎ𝑦∗)   ≤ 𝑠[𝑑(𝑓𝑦∗, 𝑧2𝑛) + 𝑑(𝑧2𝑛 , ℎ𝑦∗)] 

                               = 𝑠[𝑑(𝑓𝑦∗, 𝑧2𝑛) + 𝑑(𝑧2𝑛 , 𝑧∗)]. 

Thus, by using (3.1.5) and (3.1.8), we get 

                        (𝑓𝑦∗, ℎ𝑦∗)  = 0    …                                                                                

From (3.1.1.) and (3.1.2), we have       

          𝑑(𝑧∗, 𝑧2𝑛−1 )   =  𝑑(ℎ𝑦∗, 𝑧2𝑛−1)   

                                  = 𝑑(ℎ𝑦∗, ℎ𝑥2𝑛) 

            𝑑(𝑧∗, 𝑧2𝑛−1 ) =𝛼1𝑑(𝑓𝑦∗, ℎ𝑦∗) + 𝛼2𝑑(𝑔𝑥2𝑛, ℎ𝑥2𝑛) 

+𝛼3𝑑(𝑓𝑦∗, ℎ𝑥2𝑛) 

                                  + 𝛼4𝑑(𝑔𝑥2𝑛 , ℎ𝑦∗) 

+𝛼5𝑑(𝑓𝑦∗, 𝑔𝑥2𝑛) 

           𝑑(𝑧∗, 𝑧2𝑛−1) ≥  𝛼1𝑑(𝑦∗, 𝑦∗) + 𝛼2𝑑(𝑔𝑥2𝑛, 𝑧2𝑛−1) 

+𝛼3𝑑(𝑦∗, 𝑧2𝑛−1) 

                                   +𝛼4𝑑(𝑔𝑥2𝑛 , 𝑦∗) + 𝛼5𝑑(𝑦∗, 𝑔𝑥2𝑛). 

Thus, we have 

     (𝛼2 + 𝛼3) 𝑑(𝑧2𝑛−1 , 𝑔𝑥2𝑛) + (𝛼4 + 𝛼5)𝑑(𝑔𝑥2𝑛 , 𝑦∗) ≤ 𝑑(𝑧∗, 𝑔𝑥2𝑛−1) 

Then from (3.1.5) and (3.1.8), we have 

  𝑑(𝑧2𝑛−1 , 𝑔𝑥2𝑛) → 0…          (3.1.9)                                                                        

Thus, by triangle inequality of b- metric spaces 

    𝑑(𝑔𝑦∗, ℎ𝑦∗)  ≤ 𝑠[𝑑(𝑔𝑦∗, 𝑧2𝑛−1) + 𝑑(𝑧2𝑛−1,ℎ𝑦∗)] 

                          = 𝑠𝑑(𝑔𝑦∗, 𝑧2𝑛−1 ) + 𝑠𝑑(𝑧2𝑛−1,𝑧
∗) 

Thus, by using (3.1.5) and (3.1.9), for 𝑛 → ∞, then we get 

                                   𝑑(𝑔𝑦∗, ℎ𝑦∗) = 0.       

Thus, we have  

                                  𝑓𝑦∗ = ℎ𝑦∗ = 𝑧∗                 

                                         and 

                                  𝑓𝑦∗ = 𝑔𝑦∗ = ℎ𝑦∗ = 𝑧∗ . 

Hence 𝑓, 𝑔 and ℎ have a coincidence point. 

Now, we prove the uniqueness of the coincidence point of 𝑓, 𝑔, and ℎ. 

Suppose there exists another coincidence point 𝑤∗ of 𝑓 , 𝑔 and ℎ such that  

           𝑓𝑥 = 𝑔𝑥 = ℎ𝑥 = 𝑤∗, for some 𝑥 ∈ 𝑋. 

From (3.1.1.) we have  

  𝑑(𝑧∗, 𝑤∗) = 𝑑(ℎ𝑦∗, ℎ𝑥) 
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                   ≥ 𝛼1𝑑(𝑓𝑦∗, ℎ𝑦∗) + 𝛼2𝑑(𝑔𝑥, ℎ𝑥) 

                   +𝛼3𝑑(𝑓𝑦∗, ℎ𝑥) + 𝛼4𝑑(𝑤∗, 𝑧∗) 

                     +  𝛼5𝑑(𝑧∗, 𝑤∗) 

                     ≥ (𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑧∗, 𝑤∗).             

Thus, we have  

   1 − (𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑧∗, 𝑤∗)  ≤ 0.   

 Since(𝛼3 + 𝛼4 + 𝛼5) > 0. Then we have  

                           𝑑(𝑧∗, 𝑤∗) = 0. 

Hence 𝑧∗ = 𝑤∗.   Now, we claim that 𝑓, 𝑔 and ℎ  are common fixed point in 𝑋, then by using (3.1.1.), we get 

  𝑑(𝑧∗, ℎ𝑧∗) = 𝑑(ℎ𝑦∗, ℎ𝑧∗) 

                    ≥ 𝛼1𝑑(𝑓𝑧∗, ℎ𝑦∗) + 𝛼2𝑑(𝑔𝑧∗, ℎ𝑧∗) 

                    +𝛼3𝑑(𝑓𝑧∗, ℎ𝑧∗) + 𝛼4𝑑(𝑔𝑧∗, ℎ𝑦∗)           

                    + 𝛼5𝑑(𝑓𝑧∗, 𝑔𝑧∗)    

                     =  𝛼1𝑑(𝑧∗, ℎ𝑧∗) + 𝛼2𝑑(𝑔𝑧∗, 𝑔𝑧∗) 

                    +𝛼3𝑑(𝑧∗, ℎ𝑧∗) + 𝛼4𝑑(𝑔`𝑧∗, ℎ𝑦∗)           

                     + 𝛼5𝑑(𝑧∗, 𝑔𝑧∗)   

  𝑑(𝑧∗, ℎ𝑧∗)  ≥  𝛼1𝑑(𝑧∗, ℎ𝑧∗) + 𝛼3𝑑(𝑧∗, ℎ𝑧∗) 

                     +𝛼4𝑑(𝑧∗, ℎ𝑧∗)           

                      =  (𝛼1 + 𝛼3 + 𝛼4)𝑑(𝑧∗, ℎ𝑧∗). 

Thus, we get  

 1 − (𝛼1 + 𝛼3 + 𝛼4)𝑑(𝑧∗, ℎ𝑧∗) ≤ 0.  

Since 1 − (𝛼1 + 𝛼3 + 𝛼4) > 0,  then we obtain  

                        𝑑(𝑧∗, ℎ𝑧∗) = 0 ⇒ 𝑧∗ = ℎ𝑧∗. 

Since ℎ𝑧∗ = 𝑓𝑧∗ and ℎ𝑧∗ = 𝑔𝑧∗, so we have 𝑧∗ = 𝑓𝑧∗ = 𝑔𝑧∗ = ℎ𝑧∗. 

Hence 𝑓, 𝑔 and ℎ are common fixed point. 

 Now we shall show that 𝑓, 𝑔 and ℎ have unique fixed point. 

Suppose 𝑥∗ ∈ 𝑋 is another common fixed point of 𝑓, 𝑔 and ℎ. It means that 𝑓𝑥∗ = 𝑔𝑥∗ = ℎ𝑥∗ = 𝑥∗. By using (3.1.1), we 

have 

      𝑑(𝑧∗ , 𝑥∗) = 𝑑(ℎ𝑧∗, ℎ𝑥∗) 

                      ≥ 𝛼1𝑑(𝑓𝑧∗, ℎ𝑧∗) + 𝛼2𝑑(𝑔𝑥∗, ℎ𝑥∗) 

                      +𝛼3𝑑(𝑓𝑧∗, ℎ𝑥∗) + 𝛼4𝑑(𝑔𝑥∗, ℎ𝑧∗) 

                       + 𝛼5𝑑(𝑓𝑧∗, 𝑔𝑥∗)  

                       = 𝛼1𝑑(𝑧∗, 𝑧∗) + 𝛼2𝑑(𝑔𝑥∗, ℎ𝑥∗) 

+𝛼3𝑑(𝑧∗, 𝑥∗) + 𝛼4𝑑(𝑔𝑥∗, ℎ𝑧∗) 

                       +𝛼5𝑑(𝑧∗, 𝑔𝑥∗ 

                        ≥ (𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑧∗, 𝑥∗) 

Thus, we get 

1-(𝛼3 + 𝛼4 + 𝛼5)𝑑(𝑧∗, 𝑥∗) ≤ 0.  

Since (𝛼3 + 𝛼4 + 𝛼5) > 0, therefore, we get  

            𝑑(𝑧∗, 𝑥∗) = 0.  Thus, we have 𝑧∗ = 𝑥∗ .  
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Hence 𝑓 , 𝑔 and ℎ have unique common fixe point in X. 

Example 3.2: Let 𝑋 = [0, 1) and 𝑝 > 1 be a constant. We define 𝑑: 𝑋 × 𝑋 → ℝ+  as 𝑑(𝑥, 𝑦) =   |𝑥 − 𝑦|𝑝 , for all 𝑥, 𝑦 ∈

𝑋. Then (𝑋, 𝑑) is a b- metric space with the coefficient 𝑠 =  2𝑝−1. Let us define 𝑓, 𝑔, ℎ: 𝑋 → 𝑋 defined by 𝑓𝑥 =  
𝑥

8
 , 𝑔𝑥 =

 
𝑥

12
 and ℎ𝑥 =  

𝑥

2
 .  

Clearly, 𝑓(𝑋) ⊆ ℎ(𝑋)and 𝑔(𝑋) ⊆ ℎ(𝑋), for 𝑥, 𝑦 ∈ 𝑋.  

 Now, 𝑑(𝑓𝑥, 𝑓𝑦) =  |
𝑥

8 
−

𝑦

8
|

𝑝

, 𝑑(𝑓𝑥, ℎ𝑥) =  |
𝑥

8
−

𝑦

2
|

𝑝

= |
3𝑥

8
|

𝑝

, 𝑑(𝑔𝑦, ℎ𝑦) =  |
𝑦

12
−

𝑦

2
|

𝑝

=  |
5𝑦

12
|

𝑝

 

  𝑑(𝑓𝑥, ℎ𝑦) = |
𝑥

8
−

𝑦

2
|

𝑝

, 𝑑(𝑔𝑦, ℎ𝑥) = |
𝑦

12
−

𝑥

2
|

𝑝

  

                          And 

 𝑑(𝑓𝑥, 𝑔𝑦) =  |
𝑥

8
−

𝑦

12
|

𝑝

. 

So,  𝑑(𝑓𝑥, 𝑓𝑦) =  
1

8
 |

𝑥

2
−

𝑦

2
|

𝑝

 

                          ≥
1

6
|

3𝑥

8
|

𝑝

+  
1

6
 |

5𝑦

12
|

𝑝

+  
1

6
 |

𝑥

8
−

𝑦

2
|

𝑝

 

                          + 
1 

6
 |

𝑦

12
−

𝑥

2
|

𝑝

+  
1

6
|

𝑥

8
−

𝑦

12
|

𝑝

 

                          ≥ 𝛼1 𝑑(𝑓𝑥, ℎ𝑥) +  𝛼2 𝑑(𝑔𝑦, ℎ𝑦) 

                           + 𝛼3 𝑑(𝑓𝑥, ℎ𝑦) + 𝛼4 𝑑(𝑔𝑦, ℎ𝑥) 

                          +𝛼5 𝑑(𝑓𝑥, 𝑔𝑦). 

Thus, all conditions of theorem 3.1. are satisfies 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4, +𝛼5 >
5𝑠

6
. Note that, 0 is unique common fixed point 

of the mapping 𝑓, 𝑔 and ℎ. 

Corollary 3.3. Let (𝑋, 𝑑) be a complete 𝑏- metric space with the coefficient 𝑠 ≥ 1.Suppose the mapping 𝑓, 𝑔, : 𝑋 → 𝑋 

satisfying the condition 

    𝑑(𝑓𝑥, 𝑓𝑦) ≥ 𝛼1 𝑑(𝑓𝑥, 𝑔𝑥) + 𝛼2 𝑑(𝑓𝑦, 𝑔𝑦) 

                     +𝛼3 𝑑(𝑓𝑥, 𝑔𝑦) +  𝛼4 𝑑(𝑔𝑥, 𝑔𝑦) 

                     +𝛼5 𝑑(𝑓𝑦, 𝑔𝑥)                                                   (3.3.1) 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 ≥ 0 with 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4, +𝛼5 > 𝑠.  

Assume the following hypothesis: 

(1) 𝛼2 + 𝛼3 > 𝑠(1 − 𝛼1) ≥ 𝛼5)  

     or 𝛼1 + 𝛼2 > 𝑠(1 − 𝛼3) ≥ 𝛼4) 

(2) 𝑓(𝑋)  ⊆ ℎ(𝑋)  

(3) If 𝑓(𝑥) 𝑜𝑟 𝑔(𝑋) 𝑜𝑟 ℎ(𝑋) area complete subspace of 𝑋. Then 𝑓, 𝑔 and ℎ have a point of   coincidence in 𝑋. 

Moreover, 𝛼2 + 𝛼4 + 𝛼5 >1 and 𝑓, 𝑔 and ℎ are weakly compatible. Then     𝑓, 𝑔 and ℎ have a unique common fixed point 

in 𝑋. 

Proof: Setting  𝑓 = 𝑔 = ℎ in the theorem 3.3. the required above result. 

Corollary 3.4: Let (𝑋, 𝑑) be a complete 𝑏- metric space with the coefficient 𝑠 ≥ 1.Suppose the mapping 𝑓, 𝑔: 𝑋 → 𝑋 

satisfy the condition 

             𝑑(𝑓𝑥, 𝑓𝑦) ≥ 𝛼1 𝑑(𝑓𝑥, 𝑔𝑥) + 𝛼2 𝑑(𝑓𝑦, 𝑔𝑦) 

+𝛼3 𝑑(𝑔𝑥, 𝑔𝑦)…              (3.4.1) 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛼1, 𝛼2, 𝛼3 ≥ 0 with 𝛼1 + 𝛼2 + 𝛼3 > 𝑠. Suppose the following hypothesis are also satisfy 
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(1) 𝛼1 + 𝛼2 > 𝑠(1 − 𝛼2) or 𝛼1 + 𝛼2 > 𝑠(1 − 𝛼3). 

(2)  𝑔(𝑋)  ⊆ 𝑓(𝑋) . 

(3)  If 𝑓(𝑥) 𝑜𝑟 𝑔(𝑋) are a complete subspace of 𝑋. Then 𝑓 and 𝑔  have a point of   coincidence in 𝑋. Moreover, 

𝛼1 >1 and 𝑓 and 𝑔 are weakly compatible. Then   𝑓 and 𝑔 have a unique common fixed point in 𝑋. 

Proof: It follows by taking 𝛼3 = 𝛼5 = 0 and 𝛼4 = 𝛼3 in Corollary 3.3, then we get the result of Mohanta, S. K. (2016).  

Corollary 3.5: Let (𝑋, 𝑑) be a complete 𝑏- metric space with the coefficient 𝑠 ≥ 1.Suppose the mapping 𝑓, 𝑔: 𝑋 → 𝑋 

satisfy the condition 

               𝑑(𝑓𝑥, 𝑓𝑦) ≥ 𝛼1𝑑(𝑔𝑥, 𝑔𝑦)……                          (3.5.1) 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝛼1 ≥ 0 . Suppose the following hypothesis are also satisfy 

(1). 𝑔(𝑋)  ⊆ 𝑓(𝑋) . 

(2).  If 𝑓(𝑥) or 𝑔(𝑋) are a complete subspace of 𝑋. Then 𝑓 and 𝑔  have a point of   coincidence in 𝑋. Moreover, 𝛼1>1 and 

𝑓 and 𝑔 are weakly compatible. Then 𝑓 and 𝑔 have a unique common fixed point in 𝑋. 

Proof: It follows by taking 𝛼1 = 𝛼2 = 0 and 𝛼3 = 𝛼1  in Corollary 3.4, then we get the above result, which is corollary of 

Mohanta, S. K. (2016). 

Corollary 3.6: Let (𝑋, 𝑑) be a complete 𝑏- metric space with the coefficient 𝑠 ≥ 1.Suppose the mapping 𝑔: 𝑋 → 𝑋 satisfy 

the condition 

           𝑑(𝑔𝑥, 𝑔𝑦) ≤ 𝑘𝑑(𝑥, 𝑦)                                                (3.6.1) 

for all 𝑥, 𝑦 ∈ 𝑋 where 𝑘 ≥ (0,
1

𝑠
 ) .Then 𝑔 has a unique fixed point in 𝑋. Furthermore, the iterative sequence {𝑔𝑛𝑥} 

converges to the fixed point 

Proof: Setting 
1

𝛼1
= 𝑘 and 𝑓 = 𝐼, the identity mapping on 𝑋, in 3.5, which is b- metric version of Banach contraction 

principle. 

Example 3.7: Let 𝑋 = ℝ+and 𝑑: 𝑋 × 𝑋 → ℝ+  as 𝑑(𝑥, 𝑦) =   {max (𝑥, 𝑦)}2, for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑑) is a b- metric 

space with the coefficient 𝑠 =  2. Define 𝑓, 𝑔, ℎ: 𝑋 → 𝑋 defined by 𝑓𝑥 =  
𝑥

2
 , 𝑔𝑥 =  

𝑥

5
  for all 𝑥, 𝑦 ∈ 𝑋, we have 𝑑(𝑓𝑥, 𝑓𝑦) ≥

6𝑑(𝑔𝑥, 𝑔𝑦). 𝑖. 𝑒. the condition of corollary 3.3 holds for 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 and 𝛼5= 6. Therefore, we have all hypothesis 

of corollary 3.3. and 0 is the coincidence point of 𝑓 and 𝑔. 

Theorem 3.8: Let 𝑃, 𝑄, 𝑅 and 𝑆 are four surjective mappings of a complete 𝑏 − metric space(𝑋, 𝑑) with coefficient 𝑠 ≥ 1. 

Satisfying the following inequalities: 

     𝑑(𝑃(𝑄𝑥), 𝑄𝑥) +
𝑘

𝑠
𝑑(𝑃(𝑄𝑥), 𝑥) ≥ 𝛼𝑑(𝑄𝑥, 𝑥) …   (3.8.1)                           

     𝑑(𝑄(𝑃𝑥), 𝑃𝑥) +
𝑘

𝑠
 𝑑(𝑄(𝑃𝑥), 𝑥) ≥  𝛽𝑑(𝑃𝑥, 𝑥) … (3.8.2) 

                         and 

    𝑑(𝑅(𝑆𝑥), 𝑆𝑥) +
𝑘

𝑠
𝑑(𝑅(𝑆𝑥), 𝑥) ≥ 𝛾𝑑(𝑆𝑥, 𝑥) … ..    (3.8.3)                               

   𝑑(𝑆(𝑅𝑥), 𝑅𝑥) +
𝑘

𝑠
𝑑(𝑆(𝑅𝑥), 𝑥) ≥ 𝛼𝑑(𝑅𝑥, 𝑥)…      (3.8.4)                                

   for 𝑥 ∈ 𝑋, where 𝛼, 𝛽, 𝛾, 𝑘 are non-negative real numbers with 𝛼 > 𝑠 + (1 + 𝑠)𝑘, 𝛽 > 𝑠 + (1 + 𝑠)𝑘, 𝛾 > 𝑠 + (1 +

𝑠)𝑘 and ƛ > 𝑠 + (1 + 𝑠)𝑘. If 𝑃, 𝑄, 𝑅 and 𝑆 are continuous, then 𝑃, 𝑄, 𝑅 and 𝑆  have a common fixed point in 𝑋.                   

Proof: Let 𝑤0  be an arbitrary point in X. Since P is surjective there exists 𝑤1 ∈ 𝑋 such that  
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                                 𝑤1 = 𝑃𝑤0 . 

Again, Q is surjective there exists 𝑤2 ∈ 𝑋 such that   

                                𝑤2 = 𝑄 𝑤1.  

And 𝑅 is surjective there exists 𝑤3 ∈ 𝑋 such that 

                               𝑤3 = 𝑅𝑤2 . 

Also, S be a surjective there exists 𝑤4 ∈ 𝑋  such that 

                              𝑤4 = 𝑆𝑤3.  

Continuing this process.  We can construct a sequence {𝑤𝑛} in X such that 

                              𝑤2𝑛 = 𝑃𝑤2𝑛+1…                        (3.8.5)                                               

                                                And 

                   𝑤2𝑛+1 = 𝑄𝑤2𝑛+2                                     (3.8.6)                                                      

                                               

   also                  

               𝑤2𝑛+2=𝑅𝑤2𝑛+3                                           (3.8.7) 

              𝑤2𝑛+3=𝑆𝑤2𝑛+4                                             (3.8.8)     

Now from (3.8.1), we have, for 𝑛 ∈ ℕ ∪ {0}     

     𝑑(𝑃(𝑄𝑤2𝑛+2), 𝑄𝑤2𝑛+2) +  
𝑘

𝑠
𝑑(𝑃(𝑄𝑤2𝑛+2), 𝑤2𝑛+2) 

                                           ≥   𝛼𝑑( 𝑄𝑤2𝑛+2, 𝑤2𝑛+2),   

 which implies that    

     𝑑(𝑤2𝑛 , 𝑤2𝑛+1) +  
𝑘

𝑠
𝑑(𝑤2𝑛 , 𝑤2𝑛+2) 

                                      ≥ 𝛼𝑑( 𝑤2𝑛+1, 𝑤2𝑛+2)  

Hence, we have  

       𝛼𝑑( 𝑤2𝑛+1, 𝑤2𝑛+2)  ≤ 𝑑(𝑤2𝑛 , 𝑤2𝑛+1) 

                                       +𝑠𝑘[𝑑(𝑤2𝑛 , 𝑤2𝑛+1) 

                                       +𝑑(𝑤2𝑛+1, 𝑤2𝑛+1)      

Therefore, 

        𝑑( 𝑤2𝑛+1, 𝑤2𝑛+2)  ≤  
1+𝑠𝑘

𝛼−𝑠𝑘
 𝑑(𝑤2𝑛 , 𝑤2𝑛+1) …  (3.8.9)                                               

Now, we using (3.8.2) by argument similar to that used above, we obtain that 

             𝑑(𝑤2𝑛 , 𝑤2𝑛+1) ≤
1+𝑠𝑘

𝛽−𝑠𝑘
 𝑑(𝑤2𝑛−1, 𝑤2𝑛)… (3.8.10)                                               

On the other hand, we have by (3.8.3) 

       𝑑(𝑅(𝑆𝑤2𝑛+4), 𝑆𝑤2𝑛+4) +  
𝑘

𝑠
𝑑(𝑅(𝑆𝑤2𝑛+4), 𝑤2𝑛+4) 

                                    ≥ 𝛾𝑑( 𝑆𝑤2𝑛+4, 𝑤2𝑛+4),   

 which implies that    

        𝑑(𝑤2𝑛+2, 𝑤2𝑛+3) +  
𝑘

𝑠
𝑑(𝑤2𝑛+2, 𝑤2𝑛+4) 

                                    ≥ 𝛾𝑑( 𝑤2𝑛+2, 𝑤2𝑛+4)  

Hence, we have  

   𝛾𝑑( 𝑤2𝑛+2, 𝑤2𝑛+4)  ≤ 𝑑(𝑤2𝑛+2, 𝑤2𝑛+3) 

                                   +𝑠𝑘[𝑑(𝑤2𝑛+2, 𝑤2𝑛+3) 
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                                   +𝑑(𝑤2𝑛+3, 𝑤2𝑛+4)      

Therefore, 

    𝑑( 𝑤2𝑛+3, 𝑤2𝑛+4)  ≤  
1+𝑠𝑘

𝛾−𝑠𝑘
 𝑑(𝑤2𝑛+2, 𝑤2𝑛+3) …. (3.8.11) 

..                      

Next, we using (3.8.4) by an argument similar to that used above, we obtain that, 

  𝑑( 𝑤2𝑛+2, 𝑤2𝑛+3)  ≤  
1+𝑠𝑘

𝜆−𝑠𝑘
 𝑑(𝑤2𝑛+2, 𝑤2𝑛+3) …. (3.8.12)                              

                   Let 𝛿 = max {
1+𝑠𝑘

𝛼−𝑠𝑘
,

1+𝑠𝑘

𝛽−𝑠𝑘
 ,

1+𝑠𝑘

𝛾−𝑠𝑘
 &

1+𝑠𝑘

𝜆−𝑠𝑘
} <

1

𝑠
          

Combining (3.8.9), (3.8.10), (3.8.11) and (3.8.12), we get 

         𝑑(𝑥2𝑛, 𝑥2𝑛+1) ≤ 𝛿𝑑(𝑥2𝑛−1, 𝑥2𝑛) 

                                   & 

     𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) ≤ 𝛿𝑑(𝑥2𝑛 , 𝑥2𝑛+1)         

 Where 𝛿 ∈ [0,
1

𝑠
 )  for all 𝑛 ∈ ℕ ∪ {0}.   By repeating this process, we have 

        𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) ≤ 𝛿𝑛𝑑(𝑥0, 𝑥1).                

Then by Lemma 2.10, {𝑥2𝑛} is a Cauchy sequence in complete b-metric space. Then there exists 𝑤∗ ∈ 𝑋 such that      

                             𝑤2𝑛 → 𝑤∗ as 𝑛 → ∞.  

Therefore, 𝑤2𝑛+1 → 𝑤∗ and 𝑤2𝑛+2 → 𝑤∗ as 𝑛 → ∞. The continuity of 𝑃, 𝑄, 𝑅 and 𝑆. 

 implies that, 𝑃𝑤2𝑛+1 → 𝑃𝑤∗. But 𝑃𝑤2𝑛+1 = 𝑤2𝑛 → 𝑤∗ as 𝑛 → ∞. Thus 𝑃𝑤∗ = 𝑤∗.  

Now, since 𝑄 is continuous, then 𝑄𝑤2𝑛+1 → 𝑄𝑤∗as 𝑛 → ∞. But 𝑄𝑤2𝑛+1 = 𝑤2𝑛+1 = 𝑤∗.  

Thus, 𝑄𝑤∗ = 𝑤∗.  

Similarly, 𝑅 and 𝑆 are continuous, so, 𝑅𝑤2𝑛+3 → 𝑅𝑤∗  and 𝑆𝑤2𝑛+4 → 𝑆𝑤∗ as 𝑛 → ∞. 𝑖. 𝑒. 𝑤2𝑛 → 𝑃𝑤∗, 𝑤2𝑛+1 →

𝑄𝑤∗, 𝑤2𝑛+2 → 𝑅𝑤∗ and 𝑤2𝑛+3 → 𝑆𝑤∗ as 𝑛 → ∞. The uniqueness of limit yields that 

                         𝑤∗=𝑃𝑤∗ = 𝑄𝑤∗ = 𝑅𝑤∗ = 𝑆𝑤∗. 

Hence, 𝑤∗ is a common fixed point of 𝑃, 𝑄, 𝑅 and 𝑆. 

Corollary 3.9: Let 𝑃 and 𝑅 are two surjective mappings of a complete 𝑏 −metric space(𝑋, 𝑑) with coefficient 𝑠 ≥ 1. 

Satisfying the following inequalities: 

      𝑑(𝑃2𝑥, 𝑃𝑥) +
𝑘

𝑠
𝑑(𝑃2, 𝑥) ≥ 𝛼𝑑(𝑃𝑥, 𝑥) …     (3.9.1) 

                                               and       

  𝑑(𝑅2𝑥, 𝑅𝑥) +
𝑘

𝑠
 𝑑(𝑅2𝑥, 𝑥) ≥  𝛽𝑑(𝑅𝑥, 𝑥)……   (3.9.2) 

For 𝑥 ∈ 𝑋, where 𝛼, 𝛽, 𝑘 > 0 with 𝛼 > 𝑠(1 + 𝑠)𝑘, 

 𝛽 > 𝑠(1 + 𝑠)𝑘. Then 𝑃 and 𝑅 have a common fixed point in 𝑋. 

Proof: It follows from theorem 6.2.8 by taking 𝑄 = 𝑃, 𝑆 = 𝑅 and 𝛽 = 𝛼 and 𝜆 = 𝛾 = 𝛽. Then we get the above result. 

Corollary 3.10: Let 𝑃: 𝑋 → 𝑋 be a  surjective mappings on a complete 𝑏 − metric space(𝑋, 𝑑) with coefficient 𝑠 ≥ 1. 

Satisfying the following inequalities: 

     𝑑(𝑃2𝑥, 𝑃𝑥) +
𝑘

𝑠
𝑑(𝑑(𝑃2𝑥, 𝑥) ≥ 𝛼𝑑(𝑃𝑥, 𝑥)….   (3.10.1) 

For 𝑥 ∈ 𝑋, where 𝛼, 𝑘 > 0 with 𝛼 > 𝑠(1 + 𝑠)𝑘 .Then 𝑃 has a unique fixed point in 𝑋.  

Example 3.11: Let 𝑋 = [0, ∞) and define 𝑑: 𝑋 × 𝑋 → ℝ+ by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|2, for all  𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑑) is a 

complete b – metric space with 𝑠 = 2. Define 𝑃: 𝑋 → 𝑋 by 𝑃𝑥 =  2𝑥. Now 
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 𝑑(𝑃2𝑥, 𝑃𝑥) +
𝑘

𝑠
 𝑑(𝑑(𝑃2𝑥, 𝑥) = 𝑑(4𝑥, 2𝑥) + 𝑑(4𝑥, 𝑥) 

                                                   =  |4𝑥 − 2𝑥|2 + |4𝑥 − 𝑥|2 

                                                   = 4𝑥2 + 9𝑥2 

                                                    = 13𝑥2 

                                                    ≥ 12𝑥2   

                                                    = 12|2𝑥 − 𝑥|2 

                                                    = 12𝑑(𝑃𝑥, 𝑥). 

For all 𝑥 ∈ X. Hence 𝑘 = 1  and 𝛼 = 12.  

Clearly, 12 = 𝛼 > 𝑠(1 + 𝑠)𝑘 

                   = 6. 

Thus, 𝑃 satisfies all the hypothesis of corollary 6.2.10 and 0 is the unique fixed point of 𝑃                                                         
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