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Abstract — In this paper, a method for constructing a near optimal normal basis for algebraic extensions of a finite field is 

described. In each extension, except for the squares of the basis elements, the product of two distinct elements in the normal 

basis can be expressed as a linear combination of those two basis elements, with coefficients in a much smaller subfield.  
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I.  INTRODUCTION 

In this paper, a method for constructing a near optimal normal basis for an algebraic extension of specific dimension 

(degree) over a finite field is described. The optimality criteria are that the multiplication tables have as few nonzero entries as 

possible. The extensions can be classified as either Artin-Schreier extensions, where the degree of extension is the same the 

characteristic of the finite field, or other extensions, where the degree of extension is relatively prime with the characteristic of 
the finite field. Previous results on optimal normal bases for finite field extensions are mostly based on those studied in [4]. 

Algorithms for construction of finite fields of specified number elements are described in [1, 6], and randomized algorithms in] 

5, 7], while permutation polynomials and irreducible polynomials over a given finite field are presented in [2]. 

 

II.  ARTIN-SCHREIER EXTENSIONS OF FINITE FIELDS 

 

A. Normality of the Basis Elements Produced by Artin-Schreier Extensions 

Throughout the paper, let 𝑝 be a fixed prime number as well as the characteristic of a finite field 𝔽, and ℤ𝑝 be the prime 

field, with elements represented by 0, 1, … , 𝑝 − 2 and 𝑝 − 1, and equipped with arithmetic operations of addition and 

multiplication modulo 𝑝. The lemma below plays an important role in the results that follow: 

Lemma 1.  Let 𝔽 and  𝔼 be finite fields containing 𝑝𝑛 and  𝑝𝑚𝑛  elements, respectively, for some prime number 𝑝 and positive 

integers 𝑚 and 𝑛, such that 𝑚 ≥ 2.. Let {𝛿𝑝𝑖𝑛
∶   0 ≤  𝑖 ≤  𝑚 − 1} be a basis for 𝔼 as an extension field 𝔽, for some 𝛿 ∈  𝔼. 

Then, for every 𝑑 ∈  𝔽, such that [𝑚𝑑 +  ∑ 𝛿𝑝𝑗𝑛𝑚−1
𝑗=0 ] ≠  0, the set  {(𝛿 + 𝑑)𝑝𝑖𝑛

∶   0 ≤  𝑖 ≤  𝑚 − 1}  is also a basis for 𝔼 as an 

extension field of  𝔽. 

Proof.   The linear span of the set  {(𝛿 + 𝑑)𝑝𝑖𝑛
∶   0 ≤  𝑖 ≤  𝑚 − 1}  is the same as that of  {(𝛿 + 𝑑)} ∪ {(𝛿 + 𝑑)𝑝𝑖𝑛

−

(𝛿 + 𝑑) ∶   1 ≤  𝑖 ≤  𝑚 − 1} , which, in turn, is the sane as that of  {(𝛿 + 𝑑)}  ∪ {(𝛿 + 𝑑)𝑝𝑖𝑛
− (𝛿 + 𝑑)𝑝(𝑖−1)𝑛

∶   1 ≤  𝑖 ≤  𝑚 −

1} = {(𝛿 + 𝑑)}  ∪ {𝛿𝑝𝑖𝑛
− 𝛿𝑝(𝑖−1)𝑛

∶   1 ≤  𝑖 ≤  𝑚 − 1}. If 𝑑 =  0, the set {𝛿𝑝𝑖𝑛
− 𝛿𝑝(𝑖−1)𝑛

∶   1 ≤  𝑖 ≤  𝑚 − 1} is linearly 

independent over 𝔽, by the hypothesis. Now, for some sequence of elements 𝑐𝑖 ∈ 𝔽,  1 ≤  𝑖 ≤  𝑚 − 1, if (𝛿 + 𝑑)  =

 ∑ 𝑐𝑖 ((𝛿 + 𝑑)𝑝𝑖𝑛
− (𝛿 + 𝑑)𝑝(𝑖−1)𝑛

 )𝑚−1
𝑖=1   =   ∑ 𝑐𝑖 (𝛿𝑝𝑖𝑛

− 𝛿𝑝(𝑖−1)𝑛
 )𝑚−1

𝑖=1 , then    𝑑 =  −(1 + 𝑐1)𝛿 + ∑ (𝑐𝑖 − 𝑐𝑖+1)𝑚−2
𝑖=1 𝛿𝑝𝑖𝑛

+

𝑐𝑚−1𝛿𝑝(𝑚−1)𝑛
.  However, since  𝑑 = 𝑑 ( ∑ 𝛿𝑝𝑖𝑛𝑚−1

𝑖=0 )
−1

∑ 𝛿𝑝𝑖𝑛𝑚−1
𝑖=0   is the unique expression for 𝑑 , as a linear combination of  

𝛿𝑝𝑖𝑛
, for 0 ≤ 𝑖 ≤ 𝑚 − 1,  it follows that  𝑐1 = −(1 + 𝜏)  ,  𝑐𝑖+1 = 𝑐𝑖 − 𝜏, for  1 ≤  𝑖 ≤  𝑚 − 2, and 𝑐𝑚−1  = 𝜏, where   𝜏 =

 𝑑 ( ∑ 𝛿𝑝𝑖𝑛𝑚−1
𝑖=0 )

−1

. By induction on 𝑖, it can be deduced from the first two requirements that  𝑐𝑖 =  −(1 + 𝑖𝜏), for 1 ≤ 𝑖 ≤ 𝑚 −

1, and for the last requirement, 𝑐𝑚+1 = 𝜏 to be consistent with  𝑐𝑚−1 =  −(1 + (𝑚 − 1)𝜏), as deduced from the previous 

requirements, 𝑚𝜏 =  −1, which is contrary to the hypothesis on 𝑚 and 𝑑. Thus, the coefficients 𝑐𝑖 ∈ 𝔽,  1 ≤  𝑖 ≤  𝑚 − 1, such 

that  (𝛿 + 𝑑)  =  ∑ 𝑐𝑖 ((𝛿 + 𝑑)𝑝𝑖𝑛
− (𝛿 + 𝑑)𝑝(𝑖−1)𝑛

 )𝑚−1
𝑖=1  cannot exist, assuming that the set {𝛿𝑝𝑖𝑛

∶   0 ≤  𝑖 ≤  𝑚 − 1}  is 

linearly independent over 𝔽.                           ∎ 
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The following result allows construction of many normal elements in an Artin-Schreier extension of a finite field: 

Theorem 1.  (Normal Bases of the Artin-Schreier-Extensions) 

Let 𝔽 be a finite dimensional extension field of  ℤ𝑝, of vector space dimension 𝑛, for some positive integer 𝑛. Let  𝛼 ∈

 𝔽  \  {0}   be such that the polynomial  𝑥𝑝 − 𝑥 − 𝛼  is irreducible over 𝔽 , and  𝔼 =  𝔽[𝛽]/(𝛽𝑝 − 𝛽 − 𝛼).  Then, for every 𝑐 ∈

𝔽, the set  { (𝛽(𝑝−1) + 𝑐)
𝑝𝑖𝑛

∶ 0 ≤ 𝑖 ≤ 𝑝 − 1} is a basis for  𝔼 as an extension field of  𝔽.  

Proof. The linear span of  { (𝛽(𝑝−1) + 𝑐)
𝑝𝑖𝑛

∶ 0 ≤ 𝑖 ≤ 𝑝 − 1} is the same as that of  {(𝛽(𝑝−1) + 𝑐)} ∪ { (𝛽(𝑝−1) + 𝑐)
𝑝𝑖𝑛

−

 (𝛽(𝑝−1) + 𝑐) ∶ 1 ≤ 𝑖 ≤ 𝑝 − 1}. Now, 𝛽𝑝𝑙
− 𝛽 =   ∑ (𝛽𝑝𝑖+1

− 𝛽𝑝𝑖
)𝑙−1

𝑖=0 =  ∑ (𝛽𝑝 − 𝛽)𝑝𝑖𝑙−1
𝑖=0 =  ∑ 𝛼𝑝𝑖𝑙−1

𝑖=0 , for 0 ≤ 𝑙 ≤ 𝑛𝑝 − 1. 

Let 𝑠𝑙 =  ∑ 𝛼𝑝𝑖𝑙−1
𝑖=0  , for 0 ≤ 𝑙 ≤ 𝑛𝑝 − 1, and ℎ = ∑ 𝛼𝑝𝑖𝑛−1

𝑖=0 . Since the polynomial  𝑥𝑝 − 𝑥 − 𝛼  is irreducible over 𝔽, it follows 

that ℎ ∈  ℤ𝑝 \ {0}, by Theorem 3.78 and Corollary 3.79 in [3]. Now,  𝑠𝑖𝑛+𝑗 = 𝑠𝑗 + 𝑖ℎ  and  𝛽𝑝𝑖𝑛+𝑗
= 𝛽 + 𝑠𝑖𝑛+𝑗 = 𝛽 + 𝑠𝑗 + 𝑖ℎ, 

for 0 ≤ 𝑗 ≤ 𝑛 − 1 and  0 ≤ 𝑖 ≤ 𝑝 − 1, and  𝛽(𝑝−1)𝑝𝑖𝑛
− 𝛽(𝑝−1) = (𝛽 + 𝑖ℎ)(𝑝−1) − 𝛽(𝑝−1) = ∑

(𝑝−1)!

𝑘!(𝑝−1−𝑘)!
(𝑖ℎ)𝑘𝛽(𝑝−1−𝑘)𝑝−1

𝑘=1 , 

for  1 ≤ 𝑖 ≤ 𝑝 − 1. The  (𝑝 − 1) × 1  column vector with entries  𝛽(𝑝−1)𝑝𝑖𝑛
− 𝛽(𝑝−1) in the 𝑖-th row, for  1 ≤ 𝑖 ≤ 𝑝 − 1, can be 

seen as obtained by applying the linear operator corresponding to the matrix with entries (𝑖ℎ)𝑘 in the  𝑖-th row and  𝑘-th 

column, for  1 ≤ 𝑖, 𝑘 ≤ 𝑝 − 1, on the   (𝑝 − 1) × 1 ccolumn vector with basis element  
(𝑝−1)!

𝑘!(𝑝−1−𝑘)!
𝛽(𝑝−1−𝑘)  as the entry in 

the 𝑘-th row, for  1 ≤ 𝑘 ≤ 𝑝 − 1.  Now, there exists a primitive element 𝜌 ∈ ℤ𝑝  \  {0}, such that  for each  𝑖 ∈  ℤ𝑝  \  {0} , 

satistying 𝑖 =  𝜌𝑘𝑖,  for a distinct index  𝑘𝑖 ∈ ℤ𝑝  \  {0}, and hence the matrix with entries (𝑖ℎ)𝑘 in the  𝑖-th row and  𝑘-th 

column, for  1 ≤ 𝑖, 𝑘 ≤ 𝑝 − 1, can be expressed as the product of a (𝑝 − 1) × (𝑝 − 1) permutation matrix and a (𝑝 − 1) ×

(𝑝 − 1) Vandermonde’s matrix. Since the Vandermonde’s matrix is invertible  and  
(𝑝−1)!

𝑘!(𝑝−1−𝑘)!
≠ 0, for  1 ≤ 𝑘 ≤ 𝑝 − 1 , it 

follows that the linear span of the (𝑝 − 1) elements   𝛽(𝑝−1)𝑝𝑖𝑛
− 𝛽(𝑝−1), for  1 ≤ 𝑖 ≤ 𝑝 − 1, is the same as that of  the (𝑝 − 1) 

elements 𝛽(𝑝−1−𝑘) , for  1 ≤ 𝑘 ≤ 𝑝 − 1, and so, the linear span of  {(𝛽(𝑝−1) + 𝑐)} ∪ { (𝛽(𝑝−1))
𝑝𝑖𝑛

− 𝛽(𝑝−1) ∶ 1 ≤ 𝑖 ≤ 𝑝 − 1} is 

the same as that of {(𝛽(𝑝−1) + 𝑐)} ∪ { 𝛽𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑝 − 2}, which is the same as that of {𝛽𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑝 − 1}. It may also be 

observed that if  ∑ 𝛽(𝑝−1)𝑝𝑖𝑛𝑝−1
𝑖=0 = 𝜎, for some 𝜎 ∈ 𝔽, then  ∑ (  𝛽(𝑝−1)𝑝𝑖𝑛

− 𝛽(𝑝−1))𝑝−1
𝑖=1 =  (𝜎 − 𝛽(𝑝−1) − ∑ 𝛽(𝑝−1)𝑝−1

𝑖=1 ) = 𝜎.  

Thus, the set { (𝛽(𝑝−1) + 𝑐)
𝑝𝑖𝑛

∶ 0 ≤ 𝑖 ≤ 𝑝 − 1} forms a basis for 𝔼 as an extension field of 𝔽. Lemma 1 can also be applied 

with 𝛿 = 𝛽(𝑝−1) , 𝑑 = 𝑐 and 𝑚 = 𝑝.                                     ∎ 

 

B. Optimality of the Normal Basis Produced by Artin-Schreier Extensions 

In the theorem just proved, with 𝑐 =  −1, the element 𝛼𝛽−1 is a normal element in 𝔼 , for the extension of degree 𝑛 over 𝔽. 

Thus, the element 𝛽−1 is a normal element in 𝔼 for the extension over 𝔽 and satisfies the equation 𝑥−𝑝 − 𝑥−1 − 𝛼 = 0, so that 

its minimal polynomial is 𝑥𝑝 + 𝛼−1𝑥(𝑝−1) − 𝛼−1. Let 𝛿−1 = 𝛽−1 − 𝑏 ∈ 𝔼, for some 𝑏 ∈ 𝔽. It is convenient to choose 𝑏 ∈ ℤ𝑝, 

like maybe  𝑏 = 1.  Substituting  𝛽−1 =  𝛿−1 + 𝑏  in the equation (𝛽−1)𝑝 + 𝛼−1(𝛽−1)(𝑝−1) − 𝛼−1 = 0, it may be found that 

(𝛿−1 + 𝑏)𝑝 + 𝛼−1(𝛿−1 + 𝑏)(𝑝−1) − 𝛼−1 = 0, and so (𝛿−1)𝑝 + 𝛼−1  ∑
(𝑝−1)!

𝑘!(𝑝−1−𝑘)!
𝑏𝑘(𝛿−1)(𝑝−1−𝑘)𝑝−1

𝑘=0 +  𝑏𝑝 − 𝛼−1 = 0. Now, 

(− ∑ (𝛿−1)𝑝𝑖𝑛𝑝−1
𝑖=0 ) =  𝛼−1 and  ((−1)𝑝  ∏ 𝛿𝑝𝑖𝑛𝑝−1

𝑖=0 ) =  𝑏𝑝 + 𝛼−1𝑏(𝑝−1) − 𝛼−1 ≠ 0 , for 𝑏 ∈ 𝔽, obviously, since 𝛿𝑝𝑖𝑛
≠ 0, for 

0 ≤ 𝑖 ≤ 𝑝 − 1. 

The element 𝛽 satisfies the equation  𝛽𝑝𝑖𝑛
− 𝛽 =  𝑖ℎ, also, where ℎ = ∑ 𝛼𝑝𝑖𝑛−1

𝑖=0 , and  multiplying both sides of the last 

equation by  (𝑖ℎ)−1(𝛽−1)𝑝𝑖𝑛+1 ,  (𝛽−1)𝑝𝑖𝑛+1 = (𝑖ℎ)−1 ((𝛽−1) − (𝛽−1)𝑝𝑖𝑛
), 1 ≤ 𝑖 ≤ 𝑝 − 1. Substituting  𝛽−1 =  𝛿−1 + 𝑏 , it 
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can be found that  (𝛿−1 + 𝑏)𝑝𝑖𝑛+1 = (𝑖ℎ)−1 ((𝛿−1 + 𝑏) − (𝛿−1 + 𝑏)𝑝𝑖𝑛
) = (𝑖ℎ)−1 (𝛿−1 − 𝛿−𝑝𝑖𝑛

). Simultaneously, it also 

holds that  (𝛿−1 + 𝑏)𝑝𝑖𝑛+1 = (𝛿−1 + 𝑏)(𝛿−1 + 𝑏)𝑝𝑖𝑛
= (𝛿−(𝑝𝑛+1) + 𝑏 (𝛿−1 + 𝛿−𝑝𝑖𝑛

) + 𝑏2), yielding the multiplication 

formula  𝛿−(𝑝𝑖𝑛+1) = ((𝑖ℎ)−1 − 𝑏)𝛿−1 − ((𝑖ℎ)−1 + 𝑏)𝛿−𝑝𝑖𝑛
− 𝑏2, for 1 ≤ 𝑖 ≤ 𝑝 − 1. Thus, when𝑏 = 1, the constant 1 is also 

taken as an extra element, for performing the calculations quickly and efficiently. The expansion for 𝛿−2 in the normal basis 

can be obtained from the equations that ( ∑ 𝛿−𝑝𝑖𝑛𝑝−1
𝑖=0 ) 𝛿−1 = 𝛿−2 + ( ∑ 𝛿−(𝑝𝑖𝑛+1)𝑝−1

𝑖=1 ) =  𝛿−2 + ∑ (((𝑖ℎ)−1 − 𝑏)𝛿−1 −
𝑝−1
𝑖=1

((𝑖ℎ)−1 + 𝑏)𝛿−𝑝𝑖𝑛
− 𝑏2) = 𝛿−2 + ∑ ((𝑖ℎ)−1 − 𝑏)𝛿−1𝑝−1

𝑖=1 − ∑ ((𝑖ℎ)−1 + 𝑏)𝛿−𝑝𝑖𝑛𝑝−1
𝑖=1 + 𝑏2, and observing that ( ∑ 𝛿−𝑝𝑖𝑛𝑝−1

𝑖=0 ) =

−𝛼−1 is the trace of  𝛿−1  in 𝔼 for the extension over 𝔽 and that ( ∑ 𝑑
𝑝−1
𝑖=0 ) = −𝑑, for 𝑑 ∈ 𝔽, 𝛿−2 = −(𝛼−1 + 𝑏 +

∑ (𝑖ℎ)−1𝑝−1
𝑖=1  )𝛿−1 + ∑ ((𝑖ℎ)−1 + 𝑏)𝛿−𝑝𝑖𝑛𝑝−1

𝑖=1 − 𝑏2 = −(𝛼−1 + 𝑏 + ∑ (𝑖ℎ)−1𝑝−1
𝑖=1  )𝛿−1 + ∑ (𝑖ℎ)−1𝛿−𝑝𝑖𝑛𝑝−1

𝑖=1 +  𝑏 (∑ 𝛿𝑝−𝑖𝑛𝑝−1
𝑖=1 ) −

𝑏2 = −(𝛼−1 + 𝑏 + ∑ (𝑖ℎ)−1𝑝−1
𝑖=1  )𝛿−1 + ∑ (𝑖ℎ)−1𝛿−𝑝𝑖𝑛𝑝−1

𝑖=1 +  𝑏 [(∑ 𝛿−𝑝𝑖𝑛𝑝−1
𝑖=1 ) − 𝑏] = −(𝛼−1 + 𝑏 + ∑ (𝑖ℎ)−1𝑝−1

𝑖=1  )𝛿−1 +

∑ (𝑖ℎ)−1𝛿−𝑝𝑖𝑛𝑝−1
𝑖=1 +  𝑏[−𝛼−1 − 𝛿−1 − 𝑏] = −(𝛼−1 + 2𝑏 + ∑ (𝑖ℎ)−1𝑝−1

𝑖=1  )𝛿−1 + ∑ (𝑖ℎ)−1𝛿−𝑝𝑖𝑛𝑝−1
𝑖=1 +  𝑏[−𝛼−1 − 𝑏]. For 𝑝 ≥ 3, 

since  ∑ (𝑖ℎ)−1𝑝−1
𝑖=1 = ℎ−1 ∑ 𝑖−1 = ℎ−1 ∑ 𝑖

𝑝−1
𝑖=1

𝑝−1
𝑖=1 = 0, it follows that 𝛿2 = −(𝛼−1 + 2𝑏)𝛿−1 + ∑ (𝑖ℎ)−1𝛿−𝑝𝑖𝑛𝑝−1

𝑖=1 +

 𝑏[−𝛼−1 − 𝑏]. The remaining coefficients (𝑖ℎ)−1 in the expansion of 𝛿−(𝑝𝑖𝑛+1), for 1 ≤ 𝑖 ≤ 𝑝 − 1, are in  ℤ𝑝. It may be 

observed that, when 𝑝 divides 𝑛, the element 𝛼−1 may have been chosen to be a normal element in a manner similar to that of  

𝛿−1, for the Artin-Schreier extension of  𝔽 over its subfield of 𝑝
(

𝑛

𝑝
)
  elements. For this purpose, it must be checked that the trace 

of 𝛿 is nonzero, for inductively applying Theorem 1, subsequently. Since  (𝛿−1)𝑝 + 𝛼−1  ∑
(𝑝−1)!

𝑘!(𝑝−1−𝑘)!
𝑏𝑘(𝛿−1)(𝑝−1−𝑘)𝑝−1

𝑘=0 +

 𝑏𝑝 − 𝛼−1 = 0 is the minimal degree equation for 𝛿−1, it follows that, whenever 𝑏 ≠ 0, the trace of 𝛿 is indeed nonzero, as 

may be found out by comparing the coefficient of  𝛿−1 in its minimal polynomial. Thus, for the purpose of speeding up the 

multiplication operation, the redundant element 𝑏 = 1 is also included together with the normal basis, for multiple Artin-

Schreier extensions. If the element 1 is already present in the basis of the subfield  𝔽, then the element is not redundant in the 

basis for  𝔼, but the representation for the multiplication table is not necessarily in terms of only the normal elements of the 

current extension. 

  

Corollary 1.  (Inductive Construction of Multiple Normal Bases of the Artin-Schreier-Extensions) 

Let 𝔽 be a finite dimensional extension field of  ℤ𝑝, of vector space dimension n𝑛 = 𝑚𝑝, for some positive integer 𝑚. Let  𝛼 ∈

 𝔽  \  {0}   be such that the polynomial  𝑥𝑝 − 𝑥 − 𝛼  is an irreducible Artin-Schreier polynomial over 𝔽 , and 𝛼−1 is a normal 

element in 𝔽 over the subfiled of 𝑝𝑚  elements, and let  𝔼 =  𝔽[𝛽]/(𝛽𝑝 − 𝛽 − 𝛼).  Then, the element 𝛿−1 = 𝛽−1 − 1  is a 

normal element for  𝔼 as an extension field of  𝔽, and the polynomial 𝑥𝑝 − 𝑥 − 𝛿 is an irreducible Artin-Schreier polynomial. 

Moreover, the multiplication table of  𝛿−1 is nearly optimal, with the inclusion of  1 as an extra (redundant) element, if so 

needed. 

Proof. Follows form the discussion in the preceding paragraph, with 𝑏 = 1.                        ∎ 

 

III.  OPTIMAL NORMAL BASES IN OTHER FINITE FIELD EXTENSIONS 

 

     Let 𝑝 and 𝑞 be distinct prime numbers, 𝑙 be the least positive integer, such that 𝑞 | (𝑝𝑙 − 1), and 𝑟 be the largest positive 

integer such that 𝑞𝑟 | (𝑝𝑙 − 1). Let 𝔽 be a finite field of 𝑝𝑙 elements,  𝜉 ∈ 𝔽  be a primitive 𝑞𝑟-th root of 1, and 𝑠 be a positive 

integer not larger than 𝑟. The polynomial 𝑥𝑞𝑠
− 𝜉 is irreducible over 𝔽 : there is no element 𝜂 ∈ 𝔽, such that  𝜂𝑞𝑠

= 𝜉, and the 

polynomial 𝑥𝑞𝑠  − 𝜉 splits into distinct linear polynomials, over every extension of  𝔽 containing a root 𝜂, such that  𝜂𝑞𝑠
= 𝜉. 

More precisely, the sequence of polynomials  𝑥1
𝑞

= 𝜉 and 𝑥𝑖
𝑞

= 𝑥𝑖−1, for 2 ≤ 𝑖 ≤ 𝑠, when 𝑠 ≥ 2 , is a tower of extensions, and 

so the minimal polynomial of 𝑥𝑠  over 𝔽 with indeterminate 𝑥 is given by 𝑥𝑞𝑠  − 𝜉. Let 𝑚 =
(𝑝𝑙−1)

𝑞𝑟   , so that gcd(𝑚, 𝑞) = 1,  

and let 𝔼 = 𝔽[𝛼]/(𝛼𝑞 𝑠 − 𝜉). Now,  𝛼(𝑝𝑙−1) = 𝛼𝑚𝑞𝑟
= 𝜉𝑚𝑞𝑟−𝑠

= 𝜁, for some 𝜁 ∈ 𝔽, such that 𝜁𝑞𝑠
=  1, and the smallest 

positive integer 𝑘 , for which the equality 𝜁𝑘 = 1 holds, is when 𝑘 = 𝑞𝑠.  If   𝑞𝑠  | (𝑝 − 1) , then 𝜁 ∈  ℤ𝑝 \ {0, 1}. Thus, 𝛼𝑝𝑙
=

𝜁𝛼, and 𝛼𝑝𝑖𝑙
− 𝜁𝑖𝛼 = 0, for 1 ≤ 𝑖 ≤ 𝑞𝑠 − 1. Let 𝛽 = 𝛼 − 𝑏, for some 𝑏 ∈  𝔽 \ {0}, such that 𝑏𝑞𝑠

≠ 𝜉. It is convenient and 

preferable to choose 𝑏 ∈  ℤ𝑝 \ {0}, such that 𝑏𝑞𝑠
≠ 𝜉, whenever possible, by setting, for example, 𝑏 = 1.  The result is stated 

without loosing generality, but specific assumptions regarding its choice are needed to hold. 
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     Now, 𝛽𝑝𝑖𝑙
= 𝛼𝑝𝑖𝑙

− 𝑏 = 𝜁𝑖𝛼 − 𝑏 = 𝜁𝑖(𝛽 + 𝑏) − 𝑏 = 𝜁𝑖𝛽 + (𝜁𝑖 − 1)𝑏, for 0 ≤ 𝑖 ≤ 𝑞𝑠 − 1. Let 𝛾 =  𝛽−1 , so that (𝜁𝑖 −

1)𝑏 𝛾𝑝𝑖𝑙+1 = 𝛾 − 𝜁𝑖𝛾𝑝𝑖𝑙
 and 𝛾𝑝𝑖𝑙+1 =  𝑏−1 (𝜁𝑖 − 1)−1  (𝛾 − 𝜁𝑖𝛾𝑝𝑖𝑙

), with 𝜁𝑖 , 𝑏, (𝜁𝑖 − 1)𝑏 ∈ 𝔽 \ {0}, 𝜁𝑖 ≠ 1, for 1 ≤ 𝑖 ≤ 𝑞𝑠 −

1. Since the minimal polynomial of 𝛼 over 𝔽 is 𝑥𝑞𝑠
− 𝜉 and that of 𝛽 is  (𝑥 + 𝑏)𝑞𝑠

− 𝜉, it follows that the minimal polynomial 

of 𝛾 over 𝔽 is  (1 + 𝑏𝑥)𝑞𝑠
− 𝜉𝑥𝑞𝑠

 , except for the multiplication by (𝑏𝑞𝑠
− 𝜉), and  ∑ 𝛾𝑝𝑗𝑙𝑞𝑠−1

𝑗=0 = −𝑞𝑠𝑏(𝑏𝑞𝑠
− 𝜉)

−1
.  For 𝛾2, 

the formula  ( ∑ 𝛾𝑝𝑗𝑙𝑞𝑠−1
𝑗=0 ) 𝛾 = 𝛾2 + ∑ 𝛾𝑝𝑗𝑙+1𝑞𝑠−1

𝑗=1 = 𝛾2 + 𝑏−1 ∑ (𝜁𝑗 − 1)−1  (𝛾 − 𝜁𝑗𝛾𝑝𝑗𝑙
)𝑞𝑠−1

𝑗=1   yields −𝑞𝑠𝑏(𝑏𝑞𝑠
− 𝜉)

−1
𝛾 =

𝛾2 + 𝑏−1 ∑ (𝜁𝑗 − 1)−1  (𝛾 − 𝜁𝑗𝛾𝑝𝑗𝑙
)𝑞𝑠−1

𝑗=1 , from which 𝛾2 can be expressed as a linear combination of 𝛾𝑝𝑖𝑙
,  for 0 ≤ 𝑖 ≤ 𝑞𝑠 − 1. 

If 𝑏 = 1, since  𝜁 =  𝜉𝑚𝑞(𝑟−𝑠)
, (𝜁𝑗 − 1)−1 = (𝜉𝑗𝑚𝑞(𝑟−𝑠)

− 1)
−1

, and the identity  (1 − 𝜉𝑗𝑚𝑞(𝑟−𝑠)
) (1 − 𝜉)−1 = ∑ 𝜉𝑘𝑗𝑚𝑞(𝑟−𝑠)−1

𝑘=0  

can be utilized, but there are no obvious simplifications. 

    Recalling that 𝛽𝑝𝑖𝑙
= 𝛼𝑝𝑖𝑙

− 𝑏 = 𝜁𝑖𝛼 − 𝑏, by inverting both sides, 𝛽−𝑝𝑖𝑙
=  (𝜁𝑖𝛼 − 𝑏)−1 = 𝑏−1(𝜁𝑖𝛼𝑏−1 − 1)−1, for 0 ≤ 𝑖 ≤

𝑞𝑠 − 1. For 𝜏 in the algebraic closure of 𝔽, such that  𝜏𝑞𝑠
≠ 1,  from the identity (𝜏𝑞𝑠

− 1) = (𝜏 − 1) ∑ 𝜏𝑖𝑞𝑠−1
𝑖=0 , the inversion 

formula (𝜏 − 1)−1 = (𝜏𝑞𝑠
− 1)

−1
∑ 𝜏𝑖𝑞𝑠−1

𝑖=0  holds. Now, with 𝜏 = 𝜁𝑖𝛼𝑏−1 , 𝜏𝑞𝑠
= (𝜁𝑖𝛼𝑏−1)𝑞𝑠

=  (𝑎𝑏−1)𝑞𝑠
= 𝜉𝑏−𝑞𝑠

≠ 1 , 

for 0 ≤ 𝑖 ≤ 𝑞𝑠 − 1, by the choice of the parameters. Thus, (𝜁𝑖𝛼𝑏−1 − 1)−1 = (𝜉𝑏−𝑞𝑠
− 1)

−1
∑ (𝜁𝑖𝛼𝑏−1)𝑗𝑞𝑠−1

𝑗=0 , for 0 ≤ 𝑖 ≤

𝑞𝑠 − 1. By the invertibility of the  (𝑞𝑠 − 1) × (𝑞𝑠 − 1) Vandermonde matrix, with coefficients 𝜁𝑖𝑗  in the (𝑖 + 1)-th row 

and (𝑗 + 1)-th column, for 0 ≤ 𝑖, 𝑗 ≤ 𝑞𝑠 − 1, and the linear independence of (𝛼𝑏−1)𝑗, for 0 ≤  𝑗 ≤ 𝑞𝑠 − 1, the elements 𝛾𝑝𝑖𝑙
, 

for  0 ≤  𝑖 ≤ 𝑞𝑠 − 1, are linearly independent over 𝔽, forming a normal basis for  𝔼. If 𝑏 = 1, then the coefficients are 

guaranteed to remain only in 𝔽, even for subsequent extensions of 𝔼 and thereupon. 

IV. CONCLUSIONS 

In this paper, the minimal polynomial of a normal element of a finite field over a subfield is described. From the generating 

element of an extension, normal basis elements can be easily obtained. It is then shown that the multiplication tables satisfy an 

optimality property.  
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