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1. Introduction 

  In last few years, the study of nonlinear differential equations in Banach algebras is received the attention of 

several authors and at present, there is a considerable literature available in this way. See Dhage and O’Regan[5]. Dhage 

et.at. [1]  and the references therein. In this article, we proved the existence results for first order ordinary functional 

differential equation in Banach algebras with periodic boundary condition under Lipschitz condition and caratheodory 

condition. We apply the fixed point theorem of Dhage[2,3.4] for proving existence results of our problem. The nonlinear 

differential equations as well as the existence results of this are new to the literature on the theory of ordinary differential 

equations. Our method of study is to converts the ordinary functional differential equation into equivalent integral equation 

and apply the fixed point theorem of Dhage[2,3.4]  under suitable conditions on the nonlinearities 𝑓 and 𝑔. 

 

2. Statement of problem 

Let ℝ be the real line and 𝐼0 = [−𝛿, 0] and 𝐼 = [0, 𝑇] be two closed and bounded intervals in ℝ. Let 𝐶 be the 

space of continuous real valued functions on 𝐼0. Given a function 𝜙 ∈ 𝐶. We have studied the following periodic 

boundary value problem (In short PBVP) of first order ordinary functional differential equation  

𝑑

𝑑𝑡
[

𝑥(𝑡)

𝑓(𝑡, 𝑥(𝑡))
] = 𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0

) ,     𝑡 ∈ 𝐼 

                                                                                 𝑥(0) = 𝑥(𝑇),   𝑥0 = 𝜙                                                                                         2.1   

Where 𝑓: 𝐼 × ℝ → ℝ − {0} is continuous and  𝑘: 𝐼 × 𝐶 → ℝ,   𝑔: 𝐼 × 𝐶 × ℝ → ℝ ,    

𝑥𝑡 = 𝐼0: → 𝐶 is continuous function defined by 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃) for all 𝜃 ∈ 𝐼0. 

 When 𝑓(𝑡, 𝑥) = 1 on 𝐼 × ℝ. By a solution of the PBVP (2.1) we means a function  𝑥 ∈ 𝐴𝐶(𝐼, ℝ) that satisfies 

i. The function   𝑡 ⟼ (
𝑋(𝑡)

𝑓(𝑡,𝑥(𝑡))
) is absolutely continuous on 𝐼 and  

ii. 𝑥  Satisfies the equation (2.1). 

  

where 𝐴𝐶(𝐼, ℝ) is the space of continuous functions whose first derivatives exists and is absolutely continuous real valued 

function on 𝐼. The periodic boundary value problem (2.1) is quite general in the sense that it includes several known 

classes of periodic boundary value problem as special cases, for example, if 𝑓(𝑡, 𝑥) = 1 on 𝐼 × ℝ   then PBVP (2.1) reduce 

to the PBVP   

                                  
𝑑

𝑑𝑡
(𝑥(𝑡)) = 𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
) ,   a.e.  𝑡 ∈ 𝐼  

                                        𝑥(0) = 𝑥(𝑇)                                                                                                                               2.2 

 which further, when    𝑔(𝑡, 𝑥𝑡 , 𝑦) = 𝑔(𝑡, 𝑥𝑡) on 𝐼 × 𝐶 → ℝ, includes the following PBVP   

https://www.ijmttjournal.org/archive/ijmtt-v67i6p513
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studied in Nieto[1997,2002]. 

                                         
𝑑

𝑑𝑡
(𝑥(𝑡)) = 𝑔(𝑡, 𝑥(𝑡)), a. e.  𝑡 ∈ 𝐼  

                                                𝑥(0) = 𝑥(𝑇)                                                                                                                         2.3 

There is good deal of literature on the PBVP (2.3) for different aspects if the solutions. In this article, we discuss the PBVP 

(2.1) for existence theory only under suitable conditions on the nonlinearities 𝑓 and 𝑔 involved in it. 

 

3. Auxiliary Results 

Definition (3.1):  Let 𝑋 be a Banach algebra with norm‖∙‖. A mapping 𝐴: 𝑋 → 𝑋 is called  

′𝔇 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧′if there exists a continuous nondecreasing function 𝜓: ℝ+ → ℝ+ satisfying 

                                                    ‖𝐴𝑥 − 𝐴𝑦‖ ≤ 𝜓‖𝑥 − 𝑦‖                                                                                     3.1 

 

for all 𝑥, 𝑦 ∈ with 𝜓(0) = 0.In the special case when 𝜓(𝑟) = 𝛼𝑟 (𝛼 > 0).  𝐴 is called a Lipschitz with a Lipschitz constant 

𝛼. In particular, if 𝛼 < 1, 𝐴 is called a contraction with a contraction constant 𝛼. Further, if 𝜓(𝑟) < 𝑟 for all 𝑟 > 0, then 𝐴 

is called a nonlinear contraction on 𝑋. We call the function 𝜓 and 𝔇 function for our convenience. 

Definition (3.2): An operator 𝑇: 𝑋 → 𝑋 is called compact if 𝑇(𝑆)̅̅ ̅̅ ̅̅  is compact subset of 𝑋 for any 𝑆 ⊂ 𝑋. Also 𝑇: 𝑋 → 𝑋 is 

called totally bounded if 𝑇 maps a bounded subset of 𝑋 into the relatively compact subset of 𝑋. Finally 𝑇: 𝑋 → 𝑋  is called 

completely continuous operator if it is continuous and totally bounded operator on 𝑋. 

 It is clearly that every compact operator is totally bounded, but the converse may not be true. The nonlinear 

alternative of Schaefer type recently proved by Dhage [3] is engroove in the following theorem. 

Theorem (3.1) Dhage[3]: Let 𝑋 be a Banach algebra and 𝐴, 𝐵: 𝑋 → 𝑋 be two operators satisfying  

i. 𝐴 is a 𝔇 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 with a 𝔇 function 𝜓. 

ii. 𝐵 is compact and continuous, and 

iii. 𝑀𝜓(𝑟) < 𝑟 Whenever 𝑟 > 0, where 𝑀 = ‖𝐵(𝑋)‖ = 𝑠𝑢𝑝{‖𝐵𝑥‖: 𝑥 ∈ 𝑋}. 

Then either  

i. The equation  𝜆𝐴𝑥𝐵𝑥 = 𝑥 has a solution for 𝜆 = 1, or 

ii. The set  ℰ = {𝑢 ∈ 𝑋: 𝜆𝐴𝑢𝐵𝑢 = 𝑢, 0 < 𝜆 < 1} is unbounded.  

It is know that theorem (3.1) is useful for proving the existence theorem for the integral equations of mixed type. See[4] 

and the references therein. The method is commonly known as priori bound method for the nonlinear equations. See for 

example, Dugundji and Granas[7, 𝑖] and Zeidler[11,12] and the references therein.  

 An interesting corollary to theorem (3.1) in its applicable form is 

Corollary (3.1): Let 𝑋 be a Banach algebra and 𝐴, 𝐵: 𝑋 → 𝑋 be two operators satisfying  

i. 𝐴 is a 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 with a Lipschitz constant 𝛼. 

ii. 𝐵 is compact and continuous, and 

iii. 𝛼𝑀 < 1, where 𝑀 = ‖𝐵(𝑋)‖ = 𝑠𝑢𝑝{‖𝐵𝑥‖: 𝑥 ∈ 𝑋}. 

     Then either  

i. The equation  𝜆𝐴𝑥𝐵𝑥 = 𝑥 has a solution for 𝜆 = 1, or 

ii. The set  ℰ = {𝑢 ∈ 𝑋: 𝜆𝐴𝑢𝐵𝑢 = 𝑢, 0 < 𝜆 < 1} is unbounded.  

Definition (3.3): A non-empty closed set 𝐾 in a Banach algebra X is called a cone if 

 (i) +𝐾 ⊆ 𝐾, (ii) 𝜆𝐾 ⊆ 𝐾 for 𝜆 ∈ ℝ, 𝜆 ≥ 0 and (iii) −𝐾 ∩ 𝐾 = 0, where ‘0’ is zero element in 𝑋. A cone 𝐾 is called to be 

positive if (iv) 𝐾𝑜𝐾 ⊆ 𝐾, where ‘o’ is multiplication composition in 𝑋. 

       We introduce an order relation ≤ in 𝑋 as follows. 

 Let 𝑥, 𝑦 ∈ 𝑋. Then 𝑥 ≤ 𝑦 if and only if  𝑦 − 𝑥 ∈ 𝐾. 

Definition (3.4): A cone 𝐾 is called to be normal if the norm ‖∙‖ is monotone increasing on 𝐾. If the cone 𝐾 is normal 

in 𝑋, then every order bounded set in 𝑋 is norm-bounded. The details of cones and their properties appear in Guo and 

Lakshmikantam [10]. 

  Let  𝐴𝐶(𝐼, ℝ) be a space of absolutely continuous real-valued functions on 𝑋. We equip the space 𝐴𝐶(𝐼, ℝ) with the order 

relation ≤ with the help of the cone defined by  

                                                   𝐾 = {𝑥 ∈ 𝐶(𝐼, ℝ): 𝑥(𝑡) ≥ 0, ∀𝑡 ∈ 𝐼}                                                                                  3.2 

where 𝐶(𝐼, ℝ) is space of all continuous real-valued functions on 𝐼. It is well known that the cone 𝐾 is positive and normal 

in 𝐴𝐶(𝐼, ℝ). As a result of positivity of the cone 𝐾 in 𝐴𝐶(𝐼, ℝ), we have 
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Lemma(3.1)Dhage[2]: Let  𝑢1,𝑢2,𝑣1,𝑣2 ∈ 𝐾 be such that  𝑢1 ≤ 𝑣1 and 𝑢2 ≤ 𝑣2. Then  𝑢1𝑣1 ≤ 𝑢2𝑣2. For any 𝑎, 𝑏 ∈ 𝑋 =

𝐴𝐶(𝐼, ℝ), 𝑎 ≤ 𝑏 then  

                                              [𝑎, 𝑏] = {𝑥 ∈ 𝑋: 𝑎 ≤ 𝑥 ≤ 𝑏}                                                                                                    3.3 

     We use the following fixed point theorem of Dhage[3, 𝑖] for proving the existence of extremal solutions of the PBVP 

(2.1) under certain monotonicity conditions.  

Theorem (3.2) Dhage[2]: Let 𝐾 be cone in a Banach algebra 𝑋 and let 𝑎, 𝑏 ∈ 𝑋. Suppose that𝐴, 𝐵: [𝑎, 𝑏] → 𝐾 are two 

operators such that  

(a) 𝐴 is Lipschitz with a Lipschitz constant 𝛼 

(b) 𝐵 is completely continuous, 

(c) 𝐴𝑥𝐵𝑥 ∈ [𝑎, 𝑏] for each 𝑥 ∈ [𝑎, 𝑏], and  

(d) 𝐴&𝐵 are nondecreasing. 

      Further if the cone 𝐾 is positive and normal, then the operator 𝐴𝑥𝐵𝑥 = 𝑥 has a least and a greatest positive solution 

in[𝑎, 𝑏], whenever  𝛼𝑀 < 1, where 𝑀 = ‖𝐵([𝑎, 𝑏])‖ = 𝑠𝑢𝑝{‖𝐵𝑥‖: 𝑥 ∈ [𝑎, 𝑏]}. 

Theorem (3.3) Dhage[3]: Let 𝐾 be cone in a Banach algebra 𝑋 and let 𝑎, 𝑏 ∈ 𝑋. Suppose that𝐴, 𝐵: [𝑎, 𝑏] → 𝐾 are two 

operators such that  

(a) 𝐴 is Lipschitz with a Lipschitz constant 𝛼 

(b) 𝐵 is totally bounded, 

(c) 𝐴𝑥𝐵𝑦 ∈ [𝑎, 𝑏] for each 𝑥, 𝑦 ∈ [𝑎, 𝑏], and  

(d) 𝐵is nondecreasing. 

      Further if the cone 𝐾 is positive and normal, then the operator 𝐴𝑥𝐵𝑥 = 𝑥 has a least and a greatest positive solution 

in[𝑎, 𝑏], whenever  𝛼𝑀 < 1, where 𝑀 = ‖𝐵([𝑎, 𝑏])‖ = 𝑠𝑢𝑝{‖𝐵𝑥‖: 𝑥 ∈ [𝑎, 𝑏]}. 

Remark (3.1): Note that hypothesis (c) of theorem (3.2) and (3.3) holds if the operators  𝐴 and 𝐵 are monotone increasing 

and there exist 𝑎, 𝑏 ∈ 𝑋  such that 𝑎 ≤ 𝐴𝑎𝐵𝑎 and  𝐴𝑏𝐵𝑏 ≤ 𝑏. 

 

4. Existence Results 

         Let 𝑀(𝐼, ℝ), 𝐵(𝐼, ℝ) and 𝐶(𝐼, ℝ) denote the spaces of measurable, bounded and continuous real-valued functions on 

𝐼 respectively. Define a norm ‖∙‖ in 𝐶(𝐼, ℝ) by              

‖𝑥‖ = |𝑥(𝑡)|
𝑡∈𝐼

𝑠𝑢𝑝
 

  Clearly 𝐶(𝐼, ℝ) becomes a Banach algebra with this norm and the multiplication ‘∙’. Defined by (𝑥 ∙ y) = 𝑥(𝑡) ∙ y(𝑡) for 

all 𝑡 ∈ 𝐼. By 𝐿′(𝐼, ℝ) we denote the set of Lebesque Integrable functions on 𝐼 and the norm ‖∙‖ in 𝐿′(𝐼, ℝ) is defined by  

‖𝑥‖𝐿′ = ∫ |𝑥(𝑡)|𝑑𝑠
𝑡

0

 

Lemma (4.1): If  ℎ ∈ 𝐿′(𝐼, ℝ), then 𝑥 is a solution of differential equation                                                                        

                                                                           
𝑑

𝑑𝑡
[

𝑥(𝑡)

𝑓(𝑡,𝑥(𝑡))
] = ∫ ℎ(𝑠)𝑑𝑠

𝑡

0
    a.e. 𝑡 ∈ 𝐼                                                         4.1 

𝑥(0) = 𝑥0 

If and only if is solution of the integral equation 

                                                       𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) [𝜙(0) + ∫ (𝑡 − 𝑠)ℎ(𝑠)𝑑𝑠
𝑡

0
] ,         𝑡 ∈ 𝐼                                             4.2 

           We need the following definition in the sequel.  

Definition (4.1): A mapping 𝛽: 𝐼 × ℝ → ℝ is said to be carathèodory if  

i. 𝑡 → 𝛽(𝑡, 𝑥) is measurable for each 𝑥 ∈ ℝ   and 

ii. 𝑥 → 𝛽(𝑡, 𝑥) is continuous almost everywhere for 𝑡 ∈ 𝐼. 

Again a carathèodory function 𝛽(𝑡, 𝑥) is called  𝐿′- carathèodory if  

iii. For each real number 𝑟 > 0 there exists a function ℎ𝑟 ∈ 𝐿′(𝐼, ℝ) such that |𝛽(𝑡, 𝑥)| ≤ ℎ𝑟(𝑡)  a.e. 𝑡 ∈ 𝐼 for 

all 𝑥 ∈ ℝ with |𝑥| ≤ 𝑟. 

Finally a carathèodory function 𝛽(𝑡, 𝑥) is called  𝐿𝑋
′ − carathèodory if 

iv. There exists a function  ℎ ∈ 𝐿′(𝐼, ℝ) such that |𝛽(𝑡, 𝑥)| ≤ ℎ(𝑡)  a.e. 𝑡 ∈ 𝐼 for a,ll 𝑥 ∈ ℝ. 

For convenience, the function ℎ is referred to as a bound function of 𝛽.                                        

      

                    We will need the following hypotheses in the sequel. 

(A1). The function 𝑓: 𝐼 × ℝ → ℝ is continuous and there exists a function ℓ ∈ 𝐵(𝐼, ℝ) such  that ℓ(𝑡) > 0 a.e. 𝑡 ∈ 𝐼 and      
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          |𝑓(𝑡, 𝑥(𝑡)) − 𝑓(𝑡, 𝑦(𝑡))| ≤ ℓ(𝑡)|𝑥 − 𝑦| a.e. 𝑡 ∈ 𝐼 for all  𝑥 ∈ ℝ. 

(A2). The function  𝑔 is 𝐿𝑋
′ − carathèodory with bounded function ℎ. 

(A3). There exists a continuous and nondecreasing function Ω: [0, ∞) → (0, ∞) and a functio   𝛾 ∈ 𝐿′(𝐼, ℝ) such that 

𝛾(𝑡) > 0  

           a.e. 𝑡 ∈ 𝐼 and  |𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)| ≤  𝛾(𝑡)Ω(|𝑥|),   a.e. 𝑡 ∈ 𝐼 for all 𝑥 ∈ ℝ. 

 

Theorem (4.1): Assume that the hypotheses (A1) - (A3) hold. Suppose that  

                                                           ∫
𝑑𝑠

Ω(𝑠)
> 𝑐2‖𝛾‖𝐿′

∞

𝑐1
                                                                                                       4.3 

where  𝑐1 =
𝐹|𝜙(0)|

1−‖𝐾‖[|𝜙(0)|+𝑇‖ℎ‖
𝐿′]

 , 𝑐2 =
𝐹𝑇

1−‖𝐾‖[|𝜙(0)|+𝑇‖ℎ‖
𝐿′]

 , ‖𝐾‖[|𝜙(0)| + 𝑇‖ℎ‖𝐿′] < 1 , 

            

 𝐹 = |𝑓(𝑡, 𝑜)|𝑡∈𝐼
𝑚𝑎𝑥  , and  ‖𝐾‖ = |𝑘(𝑡)|𝑡∈𝐼

𝑚𝑎𝑥 . Then the PBVP (2.1) has a solution on 𝐼. 

 

Proof: The PBVP (2.1) is convert to an equivalent integral equation  

               𝑥(𝑡) = [𝑓(𝑡, 𝑥(𝑡))] (𝜙(0) + ∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠) , a.e. 𝑡 ∈ 𝐼                                                    4.4 

Let set 𝑋 = 𝐶(𝐼, ℝ). Define the operators 𝐴  and 𝐵 on 𝑋 by  

                         𝐴𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) ,   𝑡 ∈ 𝐼                                                                                                                          4.5 

       and             𝐵𝑥(𝑡) = 𝜙(0) + ∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠 ,  𝑡 ∈ 𝐼                                                                    4.6 

Obviously 𝐴  and 𝐵 define the operators  𝐴, 𝐵: 𝑋 → 𝑋. Then the PBVP (2.1) is equivalent to the equation                         

                            𝐴𝑥(𝑡)𝐵𝑥(𝑡) = 𝑥(𝑡) ,      𝑡 ∈ 𝐼                                                                                                                     4.7 

We shall show that the operators 𝐴  and 𝐵 satisfy all the hypotheses of corollary (3.1). 

         We first show that 𝐴 is a Lipschitz on 𝑋. Let  𝑥, 𝑦 ∈ 𝑋, then by condition (i),                                                  

|𝐴𝑥(𝑡) − 𝐴𝑦(𝑡)| ≤ |𝑓(𝑡, 𝑥(𝑡)) − 𝑓(𝑡, 𝑦(𝑡))| 

                                                                                               ≤ ℓ(𝑡)|𝑥(𝑡) − 𝑦(𝑡)| 

                                                                                               ≤ ‖ℓ‖‖𝑥 − 𝑦‖ 

for all 𝑡 ∈ 𝐼. Taking the supremum over  𝑡, we obtain  

                                               ‖𝐴𝑥 − 𝐴𝑦‖ ≤ ‖ℓ‖‖𝑥 − 𝑦‖ , for all  𝑥, 𝑦 ∈ 𝑋.  

So  𝐴 is a Lipschitz on 𝑋 with a Lipschitz constant ‖ℓ‖. Next we show that 𝐵 is completely continuous on 𝑋, using the 

standard arguments as in Granas et.at.[9], it is show that 𝐵 is continuous operator on 𝑋. Let 𝑆 be a bounded set in 𝑋. We 

shall show that 𝐵(𝑋) is a uniformly bounded and equicontinous set in 𝑋. Since  𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
) is 𝐿𝑋

′ - 

carathèodory,  

we have 

                    |𝐵𝑥(𝑡)| ≤ |𝜙(0)| + ∫ |𝑡 − 𝑠| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)| 𝑑𝑠

𝑡

0
  

                                 ≤ |𝜙(0)| + 𝑇 ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
  

                                 ≤ |𝜙(0)| + 𝑇‖ℎ‖𝐿′ . 

Taking the supremum over 𝑡, we obtain ‖𝐵𝑥‖ ≤ 𝑀 for all 𝑥 ∈ 𝑆, where 𝑀 = |𝜙(0)| + ‖ℎ‖𝐿′. This shows that 𝐵(𝑋) is a 

uniformly bounded set in 𝑋. Now we show that 𝐵(𝑋) is equicontinous set.   

               Let  𝑡, 𝜏 ∈ 𝐼. Then for any 𝑥 ∈ 𝑋, we have  

|𝐵𝑥(𝑡) − 𝐵𝑥(𝜏)| ≤ |𝜙(0) + ∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠 −  𝜙(0) − ∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)

𝜏

0
𝑑𝑠|  

                        ≤ |∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠 − ∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)

𝜏

0
𝑑𝑠|  

                     ≤ |∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠 − ∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)

𝑡

0
𝑑𝑠|  

                        + |∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠 − ∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)

𝜏

0
𝑑𝑠|  

                     ≤ |∫ (𝑡 − 𝜏)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠| + |∫ (𝜏 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)

𝑡

𝜏
𝑑𝑠|  

                     ≤ ∫ |𝑡 − 𝜏| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)|

𝑇

0
𝑑𝑠 + 𝑇 |∫ |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
)|

𝑡

𝜏
𝑑𝑠|  

                     ≤ ∫ |𝑡 − 𝜏|ℎ(𝑠)𝑑𝑠 +
𝑇

0
𝑇 |∫ ℎ(𝑠)𝑑𝑠

𝑡

𝜏
|  
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                     ≤ |𝑡 − 𝜏|‖ℎ‖𝐿′ + |𝑝(𝑡) − 𝑝(𝜏)|  

         where 𝑝(𝑡) = 𝑇 ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
. Therefore |𝐵𝑥(𝑡) − 𝐵𝑥(𝜏)| → 0 as 𝑡 → 𝜏 . Hence 𝐵(𝑋) is an equicontinous set and 

consequently 𝐵(𝑋) is relatively compact by Arzela-Ascoli theorem. As a result 𝐵 is compact and continuous operator 

on 𝑋, thus all conditions of theorem (3.1) are satisfied and a direct application of it yields that either the conclusion (i) or 

the conclusion (ii) holds. We show that the conclusion (ii) is not possible. Let 𝑥 ∈ 𝑋 be any solution to PBVP (2.1). Then 

we have for any 𝜆 ∈ (0,1), 

       𝑥(𝑡) = 𝜆[𝑓(𝑡, 𝑥(𝑡))] (𝜙(0) + ∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠) ,   for 𝑡 ∈ 𝐼, 

Therefore, 

|𝑥(𝑡)| ≤ 𝜆|𝑓(𝑡, 𝑥(𝑡))| (|𝜙(0)| + |∫ (𝑡 − 𝑠)𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)

𝑡

0
𝑑𝑠|)  

           ≤ 𝜆(|𝑓(𝑡, 𝑥(𝑡)) − 𝑓(𝑡, 0)| + |𝑓(𝑡, 0)|) (|𝜙(0)| + ∫ |𝑡 − 𝑠| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)|

𝑡

0
𝑑𝑠)  

           ≤ [ℓ(𝑡)|𝑥(𝑡)| + 𝐹] (|𝜙(0)| + ∫ |𝑡 − 𝑠| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)|

𝑡

0
𝑑𝑠)   

           ≤ ℓ(𝑡)|𝑥(𝑡)| (|𝜙(0)| + ∫ |𝑡 − 𝑠| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)|

𝑡

0
𝑑𝑠)       

             + 𝐹 (|𝜙(0)| + ∫ |𝑡 − 𝑠| |𝑔 (𝑠, 𝑥𝑠 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
)|

𝑡

0
𝑑𝑠)  

        ≤ ‖ℓ‖|𝑥(𝑡)|(|𝜙(0)| + ‖ℎ‖𝐿′) + 𝐹|𝜙(0)| + 𝐹𝑇 ∫ 𝛾(𝑠)Ω(|𝑥(𝑡)|)𝑑𝑠
𝑡

0
                                                                          4.8 

Put   𝑢(𝑡) = |𝑥(𝑠)|
𝑡∈[0,𝑡]

𝑠𝑢𝑝
  for  𝑡 ∈ 𝐼. Then we have |𝑥(𝑡) ≤ 𝑢(𝑡)|  for all 𝑡 ∈ 𝐼.and so, there is point   𝑡∗ ∈ [0, 𝑇] such 

that 𝑢(𝑡) = |𝑥(𝑡∗)|, it follows that  

𝑢(𝑡) = |𝑥(𝑡∗)| ≤ ‖𝑘‖|𝑥(𝑡∗)|(|𝜙(0)| + 𝑇‖ℎ‖𝐿′) + 𝐹 (𝜙(0) + 𝑇 ∫ 𝛾(𝑠)Ω(|𝑥(𝑡)|)𝑑𝑠
𝑡∗

0
)  

                  ≤ ‖ℓ‖𝑢(𝑡)(|𝜙(0)| + 𝑇‖ℎ‖𝐿′) + 𝐹 (𝜙(0) + 𝑇 ∫ 𝛾(𝑠)Ω(𝑢(𝑠))𝑑𝑠
𝑡

0
)     

                                                           = 𝑐1 + 𝑐2 ∫ 𝛾(𝑠)Ω(𝑢(𝑠))𝑑𝑠
𝑡

0
                                                                                      4.9 

where  𝑐1 =
𝐹|𝜙(0)|

1−‖𝐾‖[|𝜙(0)|+𝑇‖ℎ‖
𝐿′]

  and  𝑐2 =
𝐹𝑇

1−‖𝐾‖[|𝜙(0)|+𝑇‖ℎ‖
𝐿′]

 . 

   Let   𝜔(𝑡) = 𝑐1 + 𝑐2 ∫ 𝛾(𝑠)Ω(𝑢(𝑠))𝑑𝑠
𝑡

0
 then 𝑢(𝑡) ≤ 𝜔(𝑡) and direct differentiation of yields 

                     𝜔′(𝑡) ≤ 𝑐2 𝛾(𝑡)Ω(𝑢(𝑡))  and  𝜔(0) = 𝑐1                                                                                                       4.10 

 that is  

                                    ∫
𝜔′(𝑠)

Ω(𝜔(𝑠))
𝑑𝑠 ≤ 𝑐2 ∫ 𝛾(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐2‖𝛾‖𝐿′

𝑡

0
  

A change of variables in the above integral gives that 

                                    ∫
𝑑𝑠

Ω(𝑠)
≤ 𝑐2‖𝛾‖𝐿′ <

𝜔(𝑡)

𝑐1
∫

𝑑𝑠

Ω(𝑠)

∞

𝑐1
. 

Now, an application of mean value theorem yields that there is a constant 𝑀 > 0 such that  𝜔(𝑡) ≤ 𝑀 for all  𝑡 ∈ 𝐼. This 

further implies that  

                                      |𝑥(𝑡)| ≤ 𝑢(𝑡) ≤ 𝜔(𝑡) ≤ 𝑀  for all  𝑡 ∈ 𝐼. 

Thus the conclusion (ii) of corollary (3.1) does not hold. Therefore the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 and consequently the 

PBVP (2.1) has a solution on 𝐼. This completes the proof. 

 

 

 

5. An Example 

     Given the closed and bounded interval 𝐼 = [0.1] in ℝ. 

 Conside PBVP 
𝑑

𝑑𝑡
[

𝑥(𝑡)

𝑓(𝑡,𝑥(𝑡))
] =

𝑝(𝑡)𝑥𝑡

1+∫ 𝑘(𝑠,𝑥𝑠)𝑑𝑠
𝑡

0

 a.e. 𝑡 ∈ 𝐼.         5.1 

 where 𝑝 ∈ 𝐿′(𝐼, ℝ) and 𝑓: 𝐼 × ℝ → ℝ is defined by  

                  𝑓(𝑡, 𝑥(𝑡)) =
1

2
[1 + 𝛼 ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠

𝑡

0
],  𝛼 > 0 for all  𝑡 ∈ 𝐼. 

Obviously 𝑓: 𝐼 × ℝ → ℝ+ − {0}.  

Define  𝑔: 𝐼 × 𝐶 × ℝ → ℝ  by  𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
) =

𝑝(𝑡)𝑥𝑡

1+∫ 𝑘(𝑠,𝑥𝑠)𝑑𝑠
𝑡

0

. 
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It is easy to verify that 𝑓 is continuous and Lipschitz on 𝐼 × ℝ with a Lipschitz constant 𝛼. Further 𝑔 (𝑡, 𝑥𝑡 , ∫ 𝑘(𝑠, 𝑥𝑠)𝑑𝑠
𝑡

0
) 

is 𝐿𝑋
′  - carathèodory with the bound function ℎ(𝑡) = 𝑝(𝑡) on 𝐼. Therefore if  𝛼(1 + ‖𝑝‖𝐿′) < 1, then by theorem (4.1) the 

PBVP (5.1) has a solution on 𝐼, because the function Ω(𝑟) = 1 for all 𝑟 ∈ ℝ+. 
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