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Abstract:  

The present work is confined to obtain the numerical solution of an unsteady flow of viscous incompressible fluid along 

vertical porous plat plate with Hall current subjected to a time dependant transpiration velocity. A magnetic field is 

imposed in the direction perpendicular to the flow. Galerkin finite element method is used to solve the non-linear boundary 

value problem. The parametric analysis is made by the aid of Graphical results for velocity, temperature and 

concentration. The results obtained are in fine agreement with realistic physical phenomenon.  
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I. INTRODUCTION 

          Owing to the rotation and drift of the charged particles, the conductivity declines parallel to the electric field 

and current is induced during a line perpendicular to both electric as well as the magnetic field. This phenomenon is 

called as the "Hall Effect". Hall current effect on heat and mass transfer flow has applications in hydro magnetic power 

generators and in meteorological field. Because of these applications, the study of effect of Hall current is given by 

Cowling [1]. Couette heat transfer flow in the presence of magnetic field is discussed by Soundalgekar and Uplekar 

[2]. Flow between two parallel plates in the presence of magnetic field is studied by Hiroshi Sato [3]. Masakazu 

Katagiri [4] has made an investigation, a stable, narrow layer through an infinite magnetic flux, taking under 

consideration the outcomes of the present hole. On the other hand, Hossain [5] discussed the fluid flow that cannot be 

maintained along a vertical porous plate that is characterized by a similar suction / injection rate 2

1

)(


time . Hossain et al [6] 

studied an unsteady free-convection flow of a viscous incompressible fluid with mass transfer along a vertical porous plate 

with hall current subjected to a time dependant transpiration velocity in the presence of transverse magnetic field. Several 

authors [7-14] have dealt the unsteady heat transfer flows on different geometry and considering various flow conditions. 

Ajay Kumar Singh [15] made an effort to review the steady free-convection and mass transfer flow with Hall 

current, viscous dissipation and joule heating, taking under consideration the thermal diffusion and magnetic field 

effects. Sriramulu etal [16] analyzed the effect of Hall current on hydro magnetic heat and mass transfer flow along a 

porous plate. In addition to this, Srihari etal [17] analyzed the effects of Source/Sink on free-convective mass transfer flow 

along an infinite vertical porous plate with hall current. Sharma and Chaudhary [18] studied the effect of Hall current on 

hydro magnetic unsteady mixed convective mass transfer flow past a vertical porous plate. Satyanarayana et al. [19] 

studied the steady mass transfer flow past a semi infinite vertical porous plate in the presence of magnetic field by 

considering the effects of Hall current. Shankar Goud., Raja Shekar [20] has made a Finite element attempt on heat and 

mass transfer flow through a porous medium taking Soret and radiation effects in to account. Shankar Goud et al [21] 

made a Finite element analysis on unsteady flow of Casson fluid past a vertical oscillating plate in the presence of 
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magnetic field. Effects of thermal diffusion on hydro magnetic Jeffrey fluid flow along a vertical permeable moving plate 

is analyzed by Pramod Kumar et al [22]. Recently Shankar Goud [23] studied flow of a micropolar fluid flow through a 

porous medium in the presence of variable suction/injection and magnetic field. 

 

Because of the coupled non-linearity of the problem, the present study is confined to obtain the numerical solution of heat 

and mass transfer flow past an infinite vertical porous plate subjected to choosing a time dependant transpiration velocity 

condition. Magnetic field is imposed normal to the flow. To get an approximate solution and to know the physics of the 

problem, the present non-linear boundary value problem is solved using Galerkin finite element method.  

 
II. Mathematical Formulation 

An unsteady free-convection flow of an electrically conducting viscous incompressible fluid with mass transfer along an 

infinite vertical porous plate isconsidered. The flow is assumed to be in x - direction, which is taken along the plate in 

upward direction.  The y  axis is taken to be perpendicular to the plate.  At time ,0t  the temperature and the species 

concentration at the plate are raised to )()(   CCandTT ww
and are maintained uniform thereafter.  It is also 

supposed that the species concentration level is very low and hence species thermal diffusion in addition to diffusion 

thermal energy effects are neglected.  A magnetic field of uniform strength is supposed normal to the porous plate.  The 

magnetic Reynolds number of the flow is taken to be small adequate so that the induced magnetic field can be ignored. The 

equation of conservation of electric charge givesJ 0. 
yj =constant, where ),,( zyx jjjJ  .It is further 

considered that the plate is non-conducting. This gives 0yj at the plate and hence zero everywhere.  When the strength 

of magnetic field is very large the generalized Ohm’s law, in the absence of electric field takes the following form: 
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Where V is the velocity vector,  is the electric conductivity, e is the magnetic permeability, e is the electron 

frequency, e  is the electron collision time, e is the electron charge, en  is the number density of the electron and eP is the 

electron pressure.  Under the assumption that the electron pressure (for weakly ionized gas), the thermo-electric pressure 

and ion-slip are negligible, equation (1) becomes: 
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  Where u  is the x component of V, w is the z component of V and )( eewm  is the Hall   parameter.                

Within the above framework, the problem is governed by the following non-dimensional   equations under the usual 

Boussinesq approximations;  
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with corresponding boundary conditions  
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 From equation (3), it is seen that v is either constant or a function of time t .  Similarity solutions of equations 

(4)-(7) with the boundary conditions (8) exist only if we choose 2
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Gm-Modified, Gr-Grashof number,
 
g

 
is the acceleration due to gravity,  is the volumetric coefficient of thermal 

expansion, 
* is the coefficient of volume expansion with species concentration, T is the temperature of the fluid within 

the boundary layer, C is the species concentration, 
pck,,,,  are respectively density, viscosity, kinematics 

viscosity, thermal conductivity, specific heat at constant pressure and D is the chemical molecular diffusivity. For 

suction, 0 and for blowing 0 .  

III. METHOD OF SOLUTION 
  Implementation of the finite element method 

This method has the following steps: 

(1) Division of the domain into linear elements, called the finite element mesh. 

(2) Creation of the element equations using variational formulations. 

(3) Assembly of element equations as obtained in step (2). 

(4) Imposition of the boundary conditions to the equation obtained in (3). 

(5) Solution of the assembled algebraic equations. 

In this perspective the unstable, nonlinear, coupled, partial differential equations (4-7) are numerically derived from 

the limit conditions (8), with the aid of Galerkin finite element method (5) over element )(e
. 

)( kj yyy  :  

Element )(e )( kj yyy   is: 
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initial term by taking the linear approach  to the solutions with the aid of the some basis functions. Then after the applying 

the element equations assembled for the previous two successive components  iyyiy 1  and  
1 iyyiy : one 

gets the following  
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Now set row related to the node i  to zero, from equation (10) the various models with hl e )(
is: 

R
h

M

h

M

h

M
iiiiii 



































 







 12

1

2

1
12

1
11

1

6

2

6

41

6
4

6

1


                     

… (11) 

After using the Crank – Nicholson scheme to the equations (11), the following is got  
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The following is got, after using similar method on the equation (4,6&7),: 
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Here, kh, are grid size along the y  direction and the time direction respectively. Index i refers to space and j refers to the 

time. The following are obtained, taking ni ....1  and by means of boundary conditions (11 ) in the equations (12) – (13), 

                            iii BA  ni )1(1
                                                                                             

… (14) 

Where iA 's are nth order a matrix and ii B, 's column matrices. Using Thomas algorithm, the above results are got for the 

velocity, temperature concentration, by operating the MATLAB program with smaller changed values of h and k. The 

numerical simulation is carried out with the aid of Galerkín finite element method, which is stable and convergent. No 

considerable change was found in the results of velocity, temperature and concentration.      
 

IV. Results and Discussion 

 Figure (1) shows that the main flow velocity reduces for the growing values magnetic parameter M by the reason 

of the magnetic pull of Lorentz force. This sort of magnetic full of Lorentz force trims down the flow velocity. But figure 

(4), reveals that an increase in M, the secondary velocity boosts up  because the resulting Lorentz force proceeds as 

supporting body force on the secondary flow. From figures (2) and (5) it is seen that for the rising values of m velocity 

profiles u and w enhance as an increase in hall current causes a deflection.  

 

  Figure (3) reveals that that increase in the value of transpiration parameter leads to enhance in the velocity of the flow 

because the transpiration velocity is inversely proportional to the square-root of time. From figures (6), (7) and (8) it is 

noted that the growing values of Du enhances the main, secondary flow velocities and temperature of the fluid because the 

thermal acceleration causes the enrichment of fluid temperature and velocity. 

V. Conclusions 
       Finite element (FEM) analysis is made on unsteady free-convection flow of viscous         incompressible fluid along 

vertical porous plat plate. From this study following        conclusions are drawn. 

1.     Velocities of the fluid raise for growing values of Du and m.  

2.  Magnetic parameter suppresses the main flow velocity while reverse effect is observed in the case of secondary flow 

velocity. The results obtained are in good agreement with realistic physical phenomenon  

3.    Obtained results showed that Galerkin finite element method is more efficient 

.      

 

 

 

 

 

 

 

 

 

 

 

 

 
                                     Fig1: Effect of Magnetic parameter on velocity field u 

 

     

 



Kotagiri Srihari & G Srinivas / IJMTT, 67(6), 167-175, 2021 

 

172 

        
                       
                                             Fig2: Halleffect on velocity field u. 

 

                            
 

                                            Fig3: Effect of transpiration parameter on velocity field u. 
 

            
                

                Fig4: Effect of Magnetic parameter on velocity field w 
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                                Fig5: Hall effect on velocity field w. 

 

 
 

Fig6: Effect of Dufour number Du on velocity field u. 

 

     
 

           Fig7: Effect of Dufour number on velocity field w. 
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                                                                           Fig8: Effect of Dufour on temperature field 
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