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Abstract - In this paper, formulas for the purpose of counting both natural number and integer solutions to linear equations 

and inequalities will be gradually derived using combinations with repetitions. General formulas will be derived and each 

solution will be additionally generalized. 
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I. INTRODUCTION  
When it comes to both secondary and higher mathematical education combinatorics is widely disregarded. One of the 

reasons might be the fact that the need for applying combinatorial rules and principles arises only within the field of 

(mathematical) probability. Furthermore, the teaching aspect includes solely the aspects of elementary combinatorics. This 

implies that these problems can be reduced to three combinatorial rules/principles: the rule of product, the rule of sum and 

inclusion-exclusion principle. Based on the product rule, three types of arrangements can be defined: permutations, variations 

and combinations, with or without repetition allowed. To gain complete understanding regarding the application of the derived 

combinatorial models, it is sufficient to provide answers to the following questions regarding the objects and their 

arrangements:  

1) Are the objects within a certain arrangement distinct, i.e., does the order matter? If the answer is yes, such 

arrangements are considered to be variations; otherwise, they are observed as combinations.  

2) Does the same arrangement allow repetition? If yes, the arrangement is recognized as with repetition allowed; 

otherwise, there is no repetition allowed. Permutations differ from variations in terms of simultaneous inclusion of all possible 

elements within an arrangement. see more details in [1]-[3]. 

Higher-level (advanced) combinatorics is based on partitions, production functions, graphs, recurrence relations, etc. The 

“higher-level” part implies that it takes more time as well as previously acquired knowledge to understand and master this level 

of combinatorics. Furthermore, since, in terms of the number of possible arrangements of certain elements, a considerable 

number of problems is left without an adequate or any solution at all, there is still room for applying new content within the 

field of combinatorics.  

Combinations with repetition play an important role in higher combinatorics in determining the number of partition 

classes. See for more details in [4]-[7]. 

This work will demonstrate how the application of procedural steps is more important than general formulas. More 

complex problems frequently generate formulas which are, in terms of application and memorizing, far more complicated than 

the application of procedural steps themselves. Hence simple general formulas will be applied where possible; otherwise, only 

the solution procedures will be demonstrated. 

This work will deal with one of the applications of combinations with repetitions allowed. The reason for this lies in the 

fact that combinations with repetitions are by far the most disregarded counting technique. Further discussion on this subject 

might easily identify uncritical legacy as the probable reason for disregarding combinations with repetitions. The number of 

examples involving combinations with repetitions is at least the same as the number of any of the previously mentioned 

combinatorial models, if not greater. Another reason is of a more practical nature: problems become easier to solve when they 

are reduced to a certain universal model. One of the models is applied for the purpose of obtaining the solution to the following 

problem: How many non-negative integer solutions are there to the equation: 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 = 𝑘, 𝑛, 𝑘 ∈ 𝑁. (see [8]). If 

solely the number of positive integer solutions is required, then we must assume that 𝑘 ≤ 𝑛. Given that this fact is irrelevant, 

counting the non-negative integer solutions will be assumed. 

II. Counting Integer Solutions to Equations 

Suppose we have the following problem: In how many ways can k balls be distributed to n boxes. There is an obvious 

possibility here that some of the boxes are empty. The solution to this problem, as well as to others alike, is reduced to the 

following question: How many integer solutions are there to the equation:  
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𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 = 𝑛, 𝑛, 𝑘 ∈ 𝑁                                                               (1) 

satisfying the conditions 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥𝑘 ≥ 0. 

Solution. In general, the simplest way to obtain the solution is to first consider the following cases for 𝑘 = 1, 2, 3, …  and 

determine the number of integer solutions to the equation (1). 

The case for k = 1 is trivial, with the only possible solution being obvious. 

For k = 2, the equation (1) is given in the form of: 𝑥1 + 𝑥2 = 𝑛, 𝑛 ∈ 𝑁. 

Solutions to the last equation are the following pairs: (0, n), (1, n - 1), ..., (n, 0). There are n + 1 pairs in total.  

For k = 3 the equation takes the form of: 𝑥1 + 𝑥2 + 𝑥3 = 𝑛, 𝑛 ∈ 𝑁. 

As 0 ≤ 𝑥3 ≤ 𝑛, the total number of integer solutions are decomposed by assigning values to 𝑥3. The number of solutions to the 

following equations need to be summed as can be seen from the following table. 

Table I 

Value of 𝑥3 equation number of 

solution 

𝑥3 = 0 𝑥1 + 𝑥2 = 𝑛 n+1 

𝑥3 = 1 𝑥1 + 𝑥2 = 𝑛 − 1 n 

𝑥3 = 2 𝑥1 + 𝑥2 = 𝑛 − 2 n-1 

. . . . . . . . . 

𝑥3 = 𝑛 𝑥1 + 𝑥2 = 0 1 

In relation to the previously mentioned, the total number of solutions is given by: 

 1 + 2 + …+ (𝑛 + 1) =
(𝑛+1)(𝑛+2)

2
. 

Now it is possible to formulate and prove the theorem which determines the total number of solutions to the equation (1). 

Theorem 1.  If the number of required solutions to the equation (1) is designated by 𝐵𝑘
𝑛 then: 

a) 𝐵𝑘
𝑛 = ∑ 𝐵𝑘−1

𝑛−𝑖+1𝑛+1
𝑖=1  

b) 𝐵𝑘
𝑛 = (𝑛+𝑘−1

𝑘−1
) 

c) 𝐵𝑘
𝑛 = ∑ 𝐵𝑖−1

𝑛+𝑖−1𝑘
𝑖=1 . 

Proof. a) It is possible to prove the given recurrence formula by applying the same steps as for the case k = 3.  

Let us assume the following equation: 𝑥1 + 𝑥2 + …+ 𝑥𝑘 = 𝑛. The last variable 𝑥𝑘  can only take values satisfying 0 ≤ 𝑘 ≤
𝑛. By distinguishing all the cases for 𝑥𝑘 , 𝑘 = 0, 1, … , 𝑛, we find that the total number of the solutions is the sum 𝐵𝑘−1

𝑛 +
𝐵𝑘−1
𝑛−1 + … + 𝐵𝑘−1

0  which in summation notation is: 𝐵𝑘
𝑛 = ∑ 𝐵𝑘−1

𝑛−𝑖𝑛
𝑖=1 , as asserted in the theorem. It is possible to calculate the 

number by summation and get the sum explicitly, which is asserted in part b). 

b) The proof will be constructed by applying transfinite induction. It has already been demonstrated that for j = 1, 𝐵1
𝑛 =

(𝑛+1−1
1−1

) = 1. For j = 2, 𝐵2
𝑛 = (𝑛+2−1

2−1
) = 𝑛 + 1. Assume that this assertion is true for any 𝑗 ≤ 𝑖 ≤ 𝑚, i.e., that 𝐵𝑗

𝑛 = (𝑛+𝑗−1
𝑗−1

), 

for all 𝑗 ≤ 𝑚.   

Let us prove that the assertion is true for j = i + 1. For that purpose, start from the equality we proved: 

𝐵𝑚+1
𝑛 =∑𝐵𝑚

𝑛−𝑖 = 𝐵𝑚
0 +⋯+𝐵𝑚

𝑛−1 + 𝐵𝑚
𝑛

𝑛

𝑖=1

 

By using induction hypotheses, the equality is transformed into: 

(𝑚−1
𝑚−1

) + ( 𝑚
𝑚−1

) + (𝑚+1
𝑚−1

) +⋯+ (𝑛+𝑚−1
𝑚−1

).                                               (2) 

By successive addition we obtain 

(
𝑚 − 1

𝑚 − 1
) + (

𝑚

𝑚 − 1
) =  (

𝑚 + 1

𝑚
) 

(
𝑚 − 1

𝑚 − 1
) + (

𝑚

𝑚 − 1
)

⏟            
+ (

𝑚 + 1

𝑚 − 1
) = (

𝑚 + 1

𝑚
) + (

𝑚 + 1

𝑚 − 1
) = (

𝑚 + 2

𝑚
). 
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(
𝑚 − 1

𝑚 − 1
) + (

𝑚

𝑚 − 1
) + (

𝑚 + 1

𝑚 − 1
)

⏟                    
+ (
𝑚 + 2

𝑚 − 1
) = (

𝑚 + 2

𝑚
) + (

𝑚 + 2

𝑚 − 1
) = (

𝑚 + 3

𝑚
). 

(
𝑚 − 1

𝑚 − 1
) + (

𝑚

𝑚− 1
) + ⋯+ (

𝑚+ 𝑛 − 2

𝑚− 1
)

⏟                          
+ (
𝑚+ 𝑛 − 1

𝑚 − 1
) = (

𝑚 + 𝑛 − 1

𝑚
) + (

𝑚 + 𝑛 − 1

𝑚 − 1
) = (

𝑚+ 𝑛

𝑚
). 

The last formula proves another recurrence formula expressing the recursive relation among values denoted by 𝐵𝑘
𝑛. 

c) The recurrence relation represents the immediate consequence of the relation (2) when given in relation to the result 

obtained in part b). 

Example 1. How many solutions are there to the equation 𝑥1 + 𝑥2 +⋯+ 𝑥100 = 2021, where  𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥100 ≥ 0. 

Solution. Following the derived formula, the answer is  (2021+100−1
100−1

) = (2120
99
). The solution is not easily verified. To verify the 

formula b) for calculating the number of solutions to the equation (1), the reader can consider the example that allows finding 

the number of solutions by hand. For instance, how many positive integer solutions are there to the equation 𝑥1 + 𝑥2 + 𝑥3 = 2. 

The answer is (2+3−1
3−1

) = 6, which is easily verifiable, since these are the triples: (1,1,0), (1,0,1), (0,1,1), (2,0,0), (0,2,0), 

(0,0,2). 

A. Equations with a distinct lower bound 

If there are certain bounds established for the purpose of obtaining a solution satisfying 𝑥1 ≥ 𝑎1, 𝑥2 ≥ 𝑎2, … , 𝑥𝑘 ≥ 𝑎𝑘 , instead 

of zero, then by applying substitution 𝑦1 = 𝑥1 − 𝑎1, 𝑦2 = 𝑥2 − 𝑎2, … , 𝑦𝑘 = 𝑥𝑘 − 𝑎𝑘, for the equation (1) we are reducing it to 

the prior case. In that case 𝐵𝑘
𝑛 of the equation (1) satisfying the conditions 𝑥1 ≥ 𝑎1, 𝑥2 ≥ 𝑎2, … , 𝑥𝑘 ≥ 𝑎𝑘  is equal to 𝐵𝑘

𝑛 of the 

equation 𝑦1 + 𝑦2 + …+ 𝑦𝑘 = 𝑛 − (𝑎1 + 𝑎2 +⋯+ 𝑎𝑘) and equals (𝑛−
∑ 𝑎𝑖+𝑘−1
𝑘
𝑖=1
𝑘−1

). If the upper number on the binomial 

coefficient is less than or equal to zero, then the value is zero. 

B. Equation with upper bounds 

Let us consider how many solutions to the equation (1) there are in the case of double-bounded components. For instance, how 

many integer solutions are there to the equation (1) satisfying the condition 0 ≤ 𝑥1 ≤ 𝑎1, 0 ≤ 𝑥2 ≤ 𝑎2, … , 0 ≤ 𝑥𝑘 ≤ 𝑎𝑘 . First, 

consider the following example: How many integer solutions are there to the equation 𝑥1 + 𝑥2 + 𝑥3 = 10, satisfying the 

condition 0 ≤ 𝑥1 ≤ 3, 0 ≤ 𝑥2 ≤ 4, 0 ≤ 𝑥3 ≤ 5. The solution might be obtained by the inclusion-exclusion principle. Total 

number of solutions to the equation satisfying the condition 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0 is denoted by 𝐵(𝑆). The total number of 

solutions to the equation satisfying the condition 0 ≤ 𝑥1 ≤ 3, 𝑥2 ≥ 0, 𝑥3 ≥ 0 is denoted by 𝐵(𝐴) and 𝐵(𝐴′) denotes the total 

number of solutions to the equation satisfying the condition 𝑥1 > 3, ( 𝑥1 ≥ 4), 𝑥2 ≥ 0, 𝑥3 ≥ 0. Similarly, 𝐵(𝐵) denotes the 

number of solutions to the equation satisfying the condition 𝑥1 ≥ 0, 0 ≤ 𝑥2 ≤ 4, 𝑥3 ≥ 0, and 𝐵(𝐵′) denotes the number of 

solutions to the equation satisfying the condition 𝑥1 ≥ 0, 𝑥2 > 4, (𝑥2 ≥ 5), 𝑥3 ≥ 0. Further, 𝐵(𝐶) denotes number of solutions 

to the equation satisfying the condition 𝑥1 ≥ 0, 𝑥2 ≥ 0, 0 ≤ 𝑥3 ≤ 5 and 𝐵(𝐶′)  the number of solutions to the equation 

satisfying the condition 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 > 5 (𝑥3 ≥ 6). 

Thus, by applying the inclusion-exclusion formula, we obtain: 

𝐵(𝐴𝐵𝐶) = 𝐵(𝑆) − 𝐵(𝐴′) − 𝐵(𝐵′) − 𝐵(𝐶′) + 𝐵(𝐴′𝐵′) + 𝐵(𝐴′𝐶′) + 𝐵(𝐵′𝐶′) − 𝐵(𝐴′𝐵′𝐶′). 

Now we find that 

𝐵(𝑆) = (
10 + 3 − 1

3 − 1
) = 66, 𝐵(𝐴′) = (

6 + 3 − 1

3 − 1
) = 28, 𝐵(𝐵′) = (

5 + 3 − 1

3 − 1
) = 21,𝐵(𝐶′) = (

4 + 3 − 1

3 − 1
) ,𝐵(𝐴′𝐵′)

= (
1 + 3 − 1

3 − 1
) = 3,𝐵(𝐴′𝐶′) = (

0 + 3 − 1

3 − 1
) = 1, 𝐵(𝐵′𝐶1) = 0,𝐵(𝐴′𝐵′𝐶′) = 0. 

In this way we get: 66 - (28 + 21 + 15) + 3 + 1 + 0 – 0 = 6. 

Generally, the given procedure gets more complex only in terms of notation. If the equation (1) satisfies the condition 0 ≤
𝑥1 ≤ 𝑎1, 0 ≤ 𝑥2 ≤ 𝑎2, … , 0 ≤ 𝑥𝑘 ≤ 𝑎𝑘 , then  B(S) denotes total number of solutions without an upper bound, and 𝐴1 denotes 

the number of solutions with the bound given by 0 ≤ 𝑥1 ≤ 𝑎1, 𝑥2 ≥ 0,… , 𝑥𝑘 ≥ 0 and 𝐵(𝐴1) denotes the number of solutions 

to the same equation with the bounds given by 𝑥1 ≥ 𝑎1, 𝑥2 ≥ 0,… , 𝑥𝑘 ≥ 0, and similar applied to the remaining variables, then 

the total number is obtained by the formula: 
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𝐵(𝐴1𝐴2…𝐴𝑘) = 𝐵(𝑆) − ∑𝐵(𝐴𝑖
′) + ∑ 𝐵(𝐴𝑖

′𝐴𝑗
′) + ⋯ + (−1)𝑘𝐵(𝐴1

′ 𝐴2
′ …𝐴𝑘

′ )

𝑘

𝑖≠𝑗=1

𝑘

𝑖=1

. 

Note that 𝐵(𝑆) = (𝑛+𝑘−1
𝑘−1

) in all cases. 

C. Counting the solutions to equations with two-sided bounds 

It is possible to go one step further in terms of obtaining the total number of bounded solutions with lower bounds other than 

zero. For instance: 𝑎1 ≤ 𝑥1 ≤ 𝑏1, 𝑎2 ≤ 𝑥2 ≤ 𝑏2, … , 𝑎𝑘 ≤ 𝑥𝑘 ≤ 𝑏𝑘. There are at least two approaches to obtain the solution. 
The first one assumes breaking down the problem into two parts, each observed in relation to the prior case, and obtaining the 

total number of solutions as the remainder in the number of solutions to the two inequalities. The second approach includes 

substitutions: 𝑦1 = 𝑥1 − 𝑎1, 𝑦2 = 𝑥2 − 𝑎2, … , 𝑦𝑘 = 𝑥𝑘 − 𝑎𝑘  which reduces the problem directly to section 2. 

D. Counting solutions to the equations with coefficients other than one 

If the coefficients of the initial equation have value other than one, for instance, the integer solutions to the following equation: 

𝛼1𝑥1 + 𝛼2𝑥2 + …+ 𝛼𝑘𝑥𝑘 = 𝑛, 𝑛, 𝑘 ∈ 𝑁. 

are to be counted. This is the case with the distribution of n candies among 𝛼1, 𝛼2, … , 𝛼𝑘  children successively living in k 
houses and n candies are to be distributed in a way such that each child inside a certain house gets an equal number of candies 

(which does not have to apply to distinct houses). By substitution: 𝑦1 = 𝛼1𝑥1, 𝑦2 = 𝛼2𝑥2,… , 𝑦𝑘 = 𝛼𝑘𝑥𝑘, the problem is 

reduced to its initial form. In order for any k-tuple to be the solution to the equation, it needs to have the form of 
(𝛼1𝑡1, 𝛼2𝑡2,… , 𝑎𝑘𝑡𝑘) and 𝛼1𝑡1 + 𝛼2𝑡2 + …+ 𝛼𝑘𝑡𝑘 = 𝑛. As this equation is reduced to the equation (1), we need to finalize 

obtaining the total number of solutions by applying the inclusion-exclusion principle. The process is similar to that of section 

2. All we need to do is properly form each component. 𝐵(𝐴1) denotes the number of solutions to the equation 𝛼1𝑥1 + 𝑥2 +
 …+ 𝑥𝑘 = 𝑛,  𝛼1 ∈ 𝑁, 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥𝑘 ≥ 0. Although at first glance it is similar to prior cases, we are facing great 

complexity when it comes to determining the number denoted by 𝐵(𝐴1) in the general sense. Determining the total number 

and reducing it to a single formula is not an easy task to do. Let us assume the most basic case of the equation: 2𝑥1 + 𝑥2 +
 …+ 𝑥3 = 𝑛. At first, we consider the first variable coefficient to be irrelevant. Let us determine the total number of the 

solutions with coefficient 1, and then the number of those with the even number as the first component. In order to obtain the 

total number of k- tuples, two cases have to be distinguished: n is either even or odd. If n is even, then the number equals the 

sum: 0 + 2 + 4 +⋯+ 𝑛 =
(𝑛+2)2

4
. If n is odd, then the number is obtained from the sum 1 + 3 + …+ 𝑛 =

(𝑛+1)(𝑛+3)

4
. 

Similarly, when the coefficient equals 3, three cases need to be distinguished and three formulas derived. In the case of n = 3m 

- 1, the solution is obtained by summing: 0 + 3 + …+ 3𝑚 =
3𝑚(𝑚+1)

2
=

(𝑛+1)(𝑛+4)

6
. In the case of n = 3m, the solution is 

obtained by summing: 1 + 4 + …+ (3𝑚 + 1) =
(𝑛+2)(𝑛+3)

6
. In the case of n = 3m + 1, the solution is obtained by summing: 

2 + 5 + …+ (3𝑚 + 2) =
(𝑛+2)(𝑛+3)

6
. We can now calculate the general case and verify the formula using the prior derivation. 

Let us assume that n = pm + q.  Then the following needs to be summed: 

(𝑞 + 1) + 𝑝 + (𝑞 + 1)⏟      + 2𝑝 + (𝑞 + 1)⏟        +⋯+𝑚𝑝 + (𝑞 + 1)⏟        =
(𝑛+𝑝−𝑞)(𝑛+𝑞+2)

2
. 

Example 2. How many solutions are there to the equation 6𝑥1 + 𝑥2 + 𝑥3 = 28 satisfying the conditions 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥

0. By applying the derived formula, we obtain that there are 
(28+2)(28+6)

12
= 70 solutions. 

Alternative approach. It is possible to take a recursive approach as well. Let us consider one example. How many negative 

integer solutions are there to the inequality 3𝑥1 + 2𝑥2 + 4𝑥3 = 10? If we combine the first two variables into one and 

introduce the substitution 𝑦2 = 4𝑥3 for the third, we get the equation: 𝑦1 + 𝑦2 = 10. The equation has 11 solutions, but only 

the three with 𝑦2 is divisible by 4. Now we are solving the following equations: 3𝑥1 + 2𝑥2 = 0, 3𝑥1 + 2𝑥2 = 4 and 3𝑥1 +
2𝑥2 = 8. There is a single solution to the first, and when it comes to the second and the third, we repeat the prior procedure. 

Then we substitute the second equation with 𝑦1 + 𝑦2 = 4 with 5 possible solutions, of which only three of them include 𝑦2 
divisible by 2. Furthermore, the equation is decomposed to three equations, with only the first one having a single solution, 

and for the other two the number of solutions is determined trivially. The last step assumes the summation of the obtained 

numbers. 
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III. Counting the Integer Number of Solutions to Inequalities 

We might have presumed that some of the boxes were empty due to the fact that the number of boxes could be greater 

than the number of balls. However, there is the possibility that all the balls do not need to be distributed in boxes. In that case, 

the problem would be modeled by determining the number of all integer solutions to the inequalities: 

𝑥1 + 𝑥2 + …+ 𝑥𝑘 ≤ 𝑛,   𝑛, 𝑘 ∈ 𝑁,                                                (3) 

satisfying the condition 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑥𝑘 ≥ 0. 

Theorem 2. If 𝑁𝑘
𝑛 denotes the required number of the solutions for (3), then  𝑁𝑘

𝑛 = (𝑛+𝑘+1
𝑘+1

). 

Proof. The total number of solutions to the equation is obtained by summation of all solutions to the equations: 

𝑥1 + 𝑥2 + …+ 𝑥𝑘 = 0, 

𝑥1 + 𝑥2 + …+ 𝑥𝑘 = 1, 

𝑥1 + 𝑥2 + …+ 𝑥𝑘 = 2, 

. . . 

𝑥1 + 𝑥2 + …+ 𝑥𝑘 = 𝑛, 

Following the result obtained through Theorem 1, the sum  (𝑘
0
) + (𝑘+1

1
) + …+ (𝑛+𝑘−1

𝑘−1
) is to be obtained. Following the 

procedure applied when proving Theorem 1, we find that the sum equals to (𝑛+𝑘
𝑘
). 

Example 3. How many integer solutions are there to the following inequality: 𝑥1 + 𝑥2 + 𝑥3 ≤ 2, 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0. 

Solution. The number of solutions is the sum of solutions to the equations: 𝑥1 + 𝑥2 + 𝑥3 = 0, 𝑥1 + 𝑥2 + 𝑥3 = 1, 𝑥1 + 𝑥2 +
𝑥3 = 2. These are successively 1, 3 and 6, with the sum of 10, which is the required answer. Following the formula we get 

(5
3
) = 10. 

A. Counting integer solutions to inequalities 

It is possible to apply all prior procedures to inequalities as well. The remainder will arise only in the case of formulas used for 

obtaining the total number of solutions. If we compare the results for the case of the basic equation (1) and inequality (3) we 

can observe that the number of solutions to the equation (1) is given by (𝑛+𝑘−1
𝑘−1

), while the number of solutions to the 

inequality (3) is given by (𝑛+𝑘
𝑘
). 

B. Counting the solutions to equations with negative coefficients 

Although the essay title includes the word equation, the problem can substantially be reduced to inequalities. Assuming that a 

coefficient in the equation (1) has negative value, then, under the assumption that we count solely integer solutions, the answer 

is always that there is an infinite number of solutions. To make the number of solutions finite, for a negative coefficient 

variable, a two-sided bound is to be established. Assume we need to count integer solutions to the equation: 𝑥1 + 𝑥2 + …+
𝑥𝑗−1 − 𝑥𝑗 + 𝑥𝑗+1 + …+ 𝑥𝑘 = 𝑛, 𝑛, 𝑘 ∈ 𝑁 satisfying the condition: 𝑥1 ≥ 0, 𝑥2 ≥ 0,… , 𝑎1 ≤ 𝑥𝑗 ≤ 𝑏1, … , 𝑥𝑘 ≥ 0. As the 

coefficient for 𝑥𝑗  is negative, then the total number of integer solutions is at the same time the number of solutions to the 

inequality: 𝑛 − 𝑎1 ≤ 𝑥1 + 𝑥2 + …+ 𝑥𝑗−1 + 𝑥𝑗+1 + …+ 𝑥𝑘 ≤ 𝑛 + 𝑏1. 

Example 3. How many integer  solutions are there to the following inequality: 𝑥1 − 𝑥2 + 𝑥3 = 2, satisfying the condition 

𝑥1 ≥ 0,−2 ≤ 𝑥2 ≤ 2, 𝑥3 ≥ 0? As previously mentioned, the number is equal to the number of solutions to the inequality: 0 ≤
𝑥1 + 𝑥3 ≤ 4. The number of solutions is 5, and with each quintuple, one value from -2 to 2 is assigned to 𝑥2. In that way we 

get 25 solution triples to the initial equation. 
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