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Abstract - In this paper, we characterize the fair restrained dominating set in the Cartesian product of two graphs and give 

some important properties of the lexicographic product of two graphs.   
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I. INTRODUCTION  

Domination in graphs has been a huge area of research in graph theory. Let 𝐺 be a simple connected graph. A subset 𝑆 of 

a vertex set 𝑉(𝐺) is a dominating set of  𝐺 if, for every vertex 𝑣 ∈ 𝑉(𝐺)\𝑆, there exists a vertex 𝑥 ∈ 𝑆 such that 𝑥𝑣 is an edge 

of 𝐺. The domination number 𝛾(𝐺) of 𝐺 is the smallest cardinality of a dominating set 𝑆 of 𝐺. Domination in graphs was 

introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1]. Some related studies on domination in graphs are found in 

[2,3,4,5,6,7,8,9,10,11,12,13,14].  

One variant of domination in graphs is a fair domination in graph [15]. A dominating subset 𝑆 of 𝑉(𝐺) is a fair 

dominating set of 𝐺 if all the vertices not in 𝑆 are dominated by the same number of vertices from 𝑆, that is, |𝑁(𝑢) ∩ 𝑆| =
|𝑁(𝑣) ∩ 𝑆| for every two distinct vertices 𝑢 and 𝑣 from 𝑉(𝐺) ∖ 𝑆 and a subset 𝑆 of 𝑉(𝐺) is a 𝑘-fair dominating set in 𝐺 if for 

every vertex 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆, |𝑁(𝑣) ∩ 𝑆| = 𝑘. The minimum cardinality of a fair dominating set of 𝐺, denoted by 𝛾𝑓𝑑(𝐺), is 

called the fair domination number of 𝐺. A fair dominating set of cardinality 𝛾𝑓𝑑(𝐺) is called 𝛾𝑓𝑑-set. A related paper on fair 

domination in graphs is found in [16,17,18,19,20]. Another variant of domination in a graph is the restrained domination 

number in a graph. This was introduced by Telle and Proskurowski [21,22] indirectly as a vertex partitioning problem. 

Moreover, a restrained dominating set can be found in [23,24,25,26,27,28,29,30,31]. One practical application of restrained 

domination is that of prisoners and guards. Here, each vertex not in the restrained dominating set corresponds to a position of a 

prisoner, and every vertex in the restrained dominating set corresponds to a position of a guard. To effect security, each 

prisoner's position is observed by a guard's position. To protect the rights of prisoners, each prisoner's position is seen by at 

least one other prisoner's position. To be cost effective, it is desirable to place as few guards as possible.  

A fair dominating set 𝑆 ⊆ 𝑉(𝐺) is a fair restrained dominating [16,25] set if every vertex not in 𝑆 is adjacent to a vertex 

in 𝑆 and a vertex in 𝑉(𝐺)\𝑆. The fair restrained domination number, 𝛾𝑓𝑟𝑑(𝐺) of 𝐺 is the minimum cardinality of a fair 

restrained dominating set of 𝐺. A fair restrained dominating set of cardinality 𝛾𝑓𝑟𝑑(𝐺) is called a 𝛾𝑓𝑟𝑑-set. In this paper, we 

characterize the fair restrained dominating sets of the Cartesian product of two graphs. For general concepts, the reader may to 

[32].  

II. RESULTS 

Note that the set 𝑆 = 𝑉(𝐺) is a fair dominating [15] since every vertex in 𝑉(𝐺) ∖ 𝑆 = Ø vacuously satisfies the desired 

property. Similarly, every graph 𝐺 has a restrained dominating set [22], since 𝑆 = 𝑉(𝐺) is such a set.  

Consider the graph 𝐺 ≅ 𝐾1 + �̅�𝑛 where 𝑛 is a positive integer (Figure 1).  
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Then 𝑉(𝐾1) = {𝑥} is the 𝛾𝑓𝑑-set of 𝐺. However, 𝐺 does not contain a nontrivial restrained dominating set. Hence, 𝑉(𝐺) 

must be the 𝛾𝑟-set of 𝐺. Since 𝑉(𝐺) is also a fair dominating set, it follows that 𝑆 = 𝑉(𝐺) is the 𝛾𝑓𝑟𝑑-set of 𝐺. 

Remark 2.1 Let 𝑆 be a subset of 𝑉(𝐺). A fair restrained dominating set 𝑆 is a fair dominating set and a restrained dominating 

set of a connected graph 𝐺.  

The Cartesian product 𝐺 ⊡𝐻 of two graphs 𝐺 and 𝐻 is the graph with 𝑉(𝐺 ⊡𝐻) = 𝑉(𝐺) × 𝑉 (𝐻) and (𝑢, 𝑢′)(𝑣, 𝑣′) ∈
 𝐸(𝐺 ⊡𝐻) if and only if either 𝑢𝑣 ∈ 𝐸(𝐺) and 𝑢′ = 𝑣′ or 𝑢 = 𝑣 and 𝑢′𝑣′ ∈ 𝐸(𝐻).  

The following results are needed for the characterization of the Cartesian product of two connected graphs.  

Lemma 2.2 Let 𝐺 and 𝐻 be connected graphs of orders 𝑚 ≥ 3 and 𝑛 ≥ 3 respectively. If 𝑆 = 𝑉(𝐺) × 𝑆𝐻, where 𝑆𝐻  is a fair 

dominating set of 𝐻, then 𝑆 is a fair restrained dominating set of 𝐺 ⊡𝐻.  

Proof: Consider 𝑆 = 𝑉(𝐺) × 𝑆𝐻  where 𝑆𝐻  is a fair dominating set of 𝐻. Let 𝑥 ∈ 𝑉(𝐺) and 𝑢, 𝑣 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 . Then |𝑁𝐻(𝑢) ∩
 𝑆𝐻| = |𝑁𝐻(𝑣) ∩ 𝑆𝐻| since 𝑆𝐻  is a fair dominating set of 𝐻. Further,  

(𝑥, 𝑢), (𝑥, 𝑣) ∈ 𝑉(𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) = (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑉(𝐺) × 𝑆𝐻) = 𝑉(𝐺 ⊡𝐻) ∖ 𝑆, 

and 

                                                                          |𝑁𝐻(𝑢) ∩ 𝑆𝐻| = |𝑁𝐻(𝑣) ∩ 𝑆𝐻| 

⇒ |{𝑥} × (𝑁𝐻(𝑢) ∩ 𝑆𝐻)| = |{𝑥} × (𝑁𝐻(𝑣) ∩ 𝑆𝐻)| 

⇒ |({𝑥} × 𝑁𝐻(𝑢)) ∩ ({𝑥} × 𝑆𝐻)| = |({𝑥} × 𝑁𝐻(𝑣)) ∩ ({𝑥} × 𝑆𝐻)| 

⇒ |(𝑁𝐺⊡𝐻(𝑥, 𝑢)) ∩ (𝑉(𝐺) × 𝑆𝐻)| = | (𝑁𝐺⊡𝐻(𝑥, 𝑣)) ∩ (𝑉(𝐺) × 𝑆𝐻)| 

⇒ |𝑁𝐺⊡𝐻(𝑥, 𝑢) ∩ 𝑆| = |𝑁𝐺⊡𝐻(𝑥, 𝑣) ∩ 𝑆| 

This implies that 𝑆 is a fair dominating set of 𝐺 ⊡𝐻. 

Case 1. If (𝑥, 𝑢)(𝑥, 𝑣) ∈ 𝐸(𝐺 ⊡𝐻) then there exists (𝑥, 𝑤) ∈ 𝑆 such that (𝑥, 𝑢)(𝑥, 𝑤) ∈ 𝐸(𝐺 ⊡𝐻) since 𝑆 is a fair 

dominating set of 𝐺 ⊡𝐻.     

Case 2. If (𝑥, 𝑢)(𝑥, 𝑣) ∉ 𝐸(𝐺 ⊡𝐻) then there exists (𝑥, 𝑧) ∈ 𝑆 such that (𝑥, 𝑢)(𝑥, 𝑧), (𝑥, 𝑣)(𝑥, 𝑧) ∈ 𝐸(𝐺 ⊡𝐻) since 𝑆 is 

a fair dominating set of  𝐺 ⊡𝐻. Further, since 𝐺 is nontrivial connected graph, there exists 𝑦 ∈ 𝑉(𝐺) distinct from 𝑥 ∈ 𝑉(𝐺) 
such that 𝑥𝑦 ∈ 𝐸(𝐺). Thus, (𝑥, 𝑢)(𝑦, 𝑢), (𝑥, 𝑣)(𝑦, 𝑣) ∈ 𝐸(𝐺 ⊡𝐻). 

In either case, 𝑆 is a restrained dominating set of 𝐺 ⊡𝐻. Hence, by Remark 2.1, 𝑆 is a fair restrained dominating set of 

𝐺 ⊡𝐻.  ∎      

Lemma 2.3  Let 𝐺 and 𝐻 be connected graphs of orders 𝑚 ≥ 3 and 𝑛 ≥ 3 respectively. If 𝑆 = 𝑆𝐺 × 𝑉(𝐻), where 𝑆𝐺 is a fair 

dominating set of 𝐺, then 𝑆 is a fair restrained dominating set of 𝐺 ⊡𝐻.  

Proof: Similar to Lemma 2.2. ∎ 

Lemma 2.4 Let 𝐺 and 𝐻 be connected graphs of orders 𝑚 ≥ 4 and 𝑛 ≥ 4 respectively. Then 𝑆 is a fair restrained dominating 

set of 𝐺 ⊡𝐻 if 𝑆 = (𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) where 𝑆𝐺 and 𝑆𝐻  are fair dominating sets of 𝐺 and 𝐻 respectively 

and the subgraph 〈 𝑉(𝐻) ∖ 𝑆𝐻〉 does not contain an isolated vertex. 

Proof:  Consider 𝑆 = (𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) where 𝑆𝐺 and 𝑆𝐻  are fair dominating sets of 𝐺 and 𝐻 respectively. 

Clearly, 𝑉(𝐺) ∖ 𝑆𝐺 ≠ ∅ and 𝑉(𝐻) ∖ 𝑆𝐻 ≠ ∅. Let (𝑥, 𝑢), (𝑥, 𝑣) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆. Then 

(𝑥, 𝑢), (𝑥, 𝑣) ∈  𝑉(𝐺 ⊡𝐻) = (𝑉(𝐺) × 𝑉(𝐻)) ∖ [(𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻))] 

                                                                       = (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑉(𝐺) × 𝑆𝐻) ∖ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) 

                                                                       = 𝑉(𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) ∖ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) 

 = (𝑉(𝐺) ∖ 𝑆𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) 

Thus, (𝑥, 𝑢), (𝑥, 𝑣) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻), implies that 𝑥 ∈ 𝑉(𝐺)\𝑆𝐺 and 𝑢, 𝑣 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 . Since 𝑆𝐻  is a fair 

dominating set of 𝐻,  

 |𝑁𝐻(𝑢) ∩ 𝑆𝐻| = |𝑁𝐻(𝑣) ∩ 𝑆𝐻| 

 ⇒ |{𝑥} × (𝑁𝐻(𝑢) ∩ 𝑆𝐻)| = |{𝑥} × (𝑁𝐻(𝑣) ∩ 𝑆𝐻)| 

 ⇒ |({𝑥} × 𝑁𝐻(𝑢)) ∩ ({𝑥} × 𝑆𝐻)| = |({𝑥} × 𝑁𝐻(𝑣)) ∩ ({𝑥} × 𝑆𝐻)| 

 ⇒ |(𝑁𝐺⊡𝐻(𝑥, 𝑢)) ∩ (𝑉(𝐺) × 𝑆𝐻)| = | (𝑁𝐺⊡𝐻(𝑥, 𝑣)) ∩ (𝑉(𝐺) × 𝑆𝐻)|  

 ⇒ |𝑁𝐺⊡𝐻(𝑥, 𝑢) ∩ 𝑆| = |𝑁𝐺⊡𝐻(𝑥, 𝑣) ∩ 𝑆|, since (𝑉(𝐺) × 𝑆𝐻) ⊂ 𝑆 
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This implies that 𝑆 is a fair dominating set of 𝐺 ⊡𝐻.  

Since 𝑉(𝐻) ∖ 𝑆𝐻 ≠ ∅, let 𝑢 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 . Since 〈 𝑉(𝐻) ∖ 𝑆𝐻〉 does not contain an isolated vertex, there exists 𝑤 ∈ 𝑉(𝐻) ∖
𝑆𝐻  such that 𝑢𝑤 ∈ 𝐸(𝐻). Thus, (𝑥, 𝑢)(𝑥,𝑤) ∈ 𝐸(𝐺 ⊡𝐻) where 𝑥 ∈ 𝑉(𝐺) ∖ 𝑆𝐺. Since 𝑆𝐻  is a fair dominating set of 𝐻, there 

exists 𝑧 ∈ 𝑆𝐻  such that 𝑢𝑧 ∈ 𝐸(𝐻), that is, (𝑥, 𝑢)(𝑥, 𝑧) ∈ 𝐸(𝐺 ⊡𝐻). Thus, for every (𝑥, 𝑢) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆, there exist 
(𝑥, 𝑧) ∈ 𝑆 and (𝑥, 𝑣) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆 such that  (𝑥, 𝑢)(𝑥, 𝑧), (𝑥, 𝑢)(𝑥,𝑤) ∈ 𝐸(𝐺 ⊡𝐻). Hence, 𝑆 is a restrained dominating 

set of 𝐺 ⊡𝐻.  

Accordingly, 𝑆 is a fair restrained dominating set of 𝐺 ⊡𝐻. ∎ 

Lemma 2.5 Let 𝐺 and 𝐻 be connected graphs of orders 𝑚 ≥ 4 and 𝑛 ≥ 4 respectively. Then 𝑆 is a fair restrained dominating 

set of 𝐺 ⊡𝐻 if 𝑆 = (𝑆𝐺 × 𝑉(𝐻)) ∪ ((𝑉(𝐺) ∖ 𝑆𝐺) × 𝑆𝐻) where 𝑆𝐺 and 𝑆𝐻  are fair dominating sets of 𝐺 and 𝐻 respectively 

and the subgraph 〈 𝑉(𝐺) ∖ 𝑆𝐺〉 does not contain an isolated vertex.    

Proof: Similar to Lemma 2.4. ∎  

The next result is the characterization of a fair restrained dominating set in the Cartesian product of two graphs. 

Theorem 2.6 Let 𝐺 and 𝐻 be connected graphs of orders 𝑚 ≥ 4 and 𝑛 ≥ 4 respectively. Then a proper subset 𝑆 of 𝑉(𝐺 ⊡
𝐻) is a fair restrained dominating set of 𝐺 ⊡𝐻 if and only if one of the following statements is satisfied. 

(𝑖)     𝑆 = 𝑉(𝐺) × 𝑆𝐻  where 𝑆𝐻  is a fair dominating set of 𝐻. 

(𝑖𝑖)   𝑆 = 𝑆𝐺 × 𝑉(𝐻) where 𝑆𝐺 is a fair dominating set of 𝐺. 

(𝑖𝑖𝑖) 𝑆 = (𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) where 𝑆𝐺 and 𝑆𝐻  are fair dominating sets of 𝐺 and 𝐻 respectively and the    

        subgraph 〈 𝑉(𝐻) ∖ 𝑆𝐻〉 does not contain an isolated vertex. 

(𝑖𝑣) 𝑆 = (𝑆𝐺 × 𝑉(𝐻)) ∪ ((𝑉(𝐺) ∖ 𝑆𝐺) × 𝑆𝐻) where 𝑆𝐺 and 𝑆𝐻  are fair dominating sets of 𝐺 and 𝐻 respectively and the  

        subgraph 〈 𝑉(𝐺) ∖ 𝑆𝐺〉 does not contain an isolated vertex.   

Proof:  Suppose that a proper subset 𝑆 = 𝑉(𝐺) × 𝑆𝐻 is a fair restrained dominating set of 𝐺 ⊡𝐻. Let 𝑆𝐻 ⊂ 𝑉(𝐻). Then 

𝑉(𝐻) ∖ 𝑆𝐻 ≠ ∅. Let 𝑥 ∈ 𝑉(𝐺) and 𝑢, 𝑣 ∈ 𝑉(𝐻) ∖ 𝑆𝐻. Then 

(𝑥, 𝑢), (𝑥, 𝑣) ∈ 𝑉(𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) = (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑉(𝐺) × 𝑆𝐻) = 𝑉(𝐺 ⊡𝐻) ∖ 𝑆. 

Since 𝑆 is a fair dominating set, for every distinct elements (𝑥, 𝑢) and (𝑥, 𝑣) of 𝑉(𝐺 ⊡𝐻) ∖ 𝑆, |𝑁𝐺⊡𝐻((𝑥, 𝑢)) ∩ 𝑆| =

|𝑁𝐺⊡𝐻((𝑥, 𝑣)) ∩ 𝑆|. Thus, for every distinct elements 𝑢 and 𝑣 of 𝑉(𝐻) ∖ 𝑆𝐻 , |𝑁𝐻(𝑢) ∩ 𝑆𝐻| = |𝑁𝐻(𝑣) ∩ 𝑆𝐻|. By definition, 

𝑆𝐻  is a fair dominating set of 𝐻. This proves the statement (𝑖). 

Next, suppose that a proper subset 𝑆 = 𝑆𝐺 ×  𝑉(𝐻) is a fair restrained dominating set of 𝐺 ⊡𝐻.  Let 𝑆𝐺 ⊂ 𝑉(𝐺). Then 

𝑉(𝐺) ∖ 𝑆𝐺 ≠ ∅. Let 𝑥, 𝑦 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 and 𝑢 ∈ 𝑉(𝐻). Then 

 (𝑥, 𝑢), (𝑦, 𝑢) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × 𝑉(𝐻) = (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑆𝐺 × 𝑉(𝐻)) = 𝑉(𝐺 ⊡𝐻) ∖ 𝑆.  

Since 𝑆 is a fair dominating set, for every distinct elements (𝑥, 𝑢) and (𝑦, 𝑢) of 𝑉(𝐺 ⊡𝐻) ∖ 𝑆, |𝑁𝐺⊡𝐻((𝑥, 𝑢)) ∩ 𝑆| =

|𝑁𝐺⊡𝐻((𝑦, 𝑢)) ∩ 𝑆|. Thus, for every distinct elements 𝑥 and 𝑦 of 𝑉(𝐺) ∖ 𝑆𝐺, |𝑁𝐺(𝑥) ∩ 𝑆𝐺 | = |𝑁𝐺(𝑦) ∩ 𝑆𝐺|. By definition, 𝑆𝐺 

is a fair dominating set of 𝐺. This proves the statement (𝑖𝑖).  

Now, suppose that 𝑆 = (𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆_𝐻)) is a fair restrained dominating set of 𝐺 ⊡𝐻. Then 𝑉(𝐺) ×
𝑆𝐻  must be a fair dominating set of 𝐺 ⊡𝐻 (otherwise, 𝑆 is not a fair dominating set of 𝐺 ⊡𝐻). Since 𝑉(𝐺) × 𝑆𝐻  is a fair 

dominating set of 𝐺 ⊡𝐻, 𝑆𝐻  is a fair dominating set of 𝑉(𝐻) by statement (𝑖). Let 𝑥, 𝑦 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 and 𝑢 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 . 

Then 

  

(𝑥, 𝑢), (𝑦, 𝑢) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) 

= 𝑉(𝐺) × (𝑉(𝐻) ∖ 𝑆𝐻) ∖ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) 

= (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑉(𝐺) × 𝑆𝐻) ∖ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻)) 

= (𝑉(𝐺) × 𝑉(𝐻)) ∖ [(𝑉(𝐺) × 𝑆𝐻) ∪ (𝑆𝐺 × (𝑉(𝐻) ∖ 𝑆𝐻))] 

=  𝑉(𝐺 ⊡𝐻) ∖ 𝑆 

Thus, (𝑥, 𝑢), (𝑦, 𝑢) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆.  Since 𝑆 is a fair dominating set, for every distinct elements (𝑥, 𝑢) and (𝑦, 𝑢) of 

𝑉(𝐺 ⊡𝐻) ∖ 𝑆, |𝑁𝐺⊡𝐻((𝑥, 𝑢)) ∩ 𝑆| = |𝑁𝐺⊡𝐻((𝑦, 𝑢)) ∩ 𝑆|. Thus, for every distinct elements 𝑥 and 𝑦 of 𝑉(𝐺) ∖ 𝑆𝐺 , 

|𝑁𝐺(𝑥) ∩ 𝑆𝐺| = |𝑁𝐺(𝑦) ∩ 𝑆𝐺|. By definition, 𝑆𝐺 is a fair dominating set of 𝐺.   

Since 𝑆 is a restrained dominating set of 𝐺 ⊡𝐻, for every (𝑥, 𝑢) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆, there exists, say (𝑥, 𝑣) ∈  𝑉(𝐺 ⊡𝐻) ∖
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𝑆 such that (𝑥, 𝑢)(𝑥, 𝑣) ∈ 𝐸(𝐺 ⊡𝐻.This means that 𝑢𝑣 ∈ 𝐸(𝐻) where 𝑢, 𝑣 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 . Since, 𝑢 is an arbitrary element of 

𝑉(𝐻) ∖ 𝑆𝐻  it follows that the subgraph 〈𝑉(𝐻) ∖ 𝑆𝐻〉 does not contain an isolated vertex. This proves the statement (𝑖𝑖𝑖). 

The proof of statement (𝑖𝑣) is similar to the proof of statement (𝑖𝑖𝑖). 

For the converse, suppose that statement (𝑖) is satisfied. Using the Lemma 2.2,  𝑆 is a fair restrained dominating set of 

𝐺 ⊡𝐻. Similarly, if statement (𝑖𝑖), (𝑖𝑖𝑖), or (𝑖𝑣) is satisfied, then using the Lemma 2.3, Lemma 2.4, or Lemma 2.5,  𝑆 is a 

fair restrained dominating set of 𝐺 ⊡𝐻. ∎ 

The following result is an immediate consequence of Theorem 2.6.  

Corollary 2.7 Let 𝐺 and 𝐻 be nontrivial connected graphs of orders 𝑚 ≥ 4 and 𝑛 ≥ 4 respectively. Then 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) =

𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅  𝑛}.  

Proof: Suppose that 𝑆 = 𝑉(𝐺) × 𝑆𝐻 where 𝑆𝐻  is a fair dominating set of 𝐻. Then 𝑆 is a fair restrained dominating set of 𝐺 ⊡
𝐻 by Theorem 2.6(𝑖). This implies that 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) ≤ |𝑆| = |𝑉(𝐺) × 𝑆𝐻| = |𝑉(𝐺)| ⋅ |𝑆𝐻| = 𝑚 ⋅ |𝑆𝐻| for all fair 

dominating set 𝑆𝐻 . Hence, 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) ≤ 𝑚 ⋅ 𝛾𝑠𝑓𝑑(𝐻). 

Suppose that 𝑆 = 𝑆𝐺 × 𝑉(𝐻) where 𝑆𝐺  is a fair dominating set of 𝐺. Then 𝑆 is a fair restrained dominating set of 𝐺 ⊡𝐻 

by Theorem 2.6(𝑖𝑖). This implies that 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) ≤ |𝑆| = |𝑆𝐺 × 𝑉(𝐻)| = |𝑆𝐺| ⋅ |𝑉(𝐻)| = |𝑆𝐺| ⋅  𝑛 for all fair dominating 

set 𝑆𝐺. Hence, 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) ≤ 𝛾𝑓𝑑(𝐺) ⋅ 𝑛. Thus, 𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) ≤ 𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅  𝑛}.  

Now, Let 𝑆𝑜 be a 𝛾𝑓𝑟𝑑-set of 𝐺 ⊡𝐻. Then |𝑆𝑜| = 𝑚𝑖𝑛{|𝑆|: 𝑆 is a fair restrained dominating set of 𝐺 ⊡ 𝐻}. Consider the 

following cases.  

Case 1. Consider that |𝑆𝑜| ≤ 𝑚 ⋅ 𝛾𝑓𝑑(𝐻). If |𝑆𝑜| = 𝑚 ⋅ 𝛾𝑓𝑑(𝐻), then |𝑆𝑜| = 𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅  𝑛}. 𝐼𝑓 |𝑆
𝑜| < 𝑚 ⋅

𝛾𝑓𝑑(𝐻), then consider the next case.  

Case 2. Consider that |𝑆𝑜| ≤ 𝛾𝑓𝑑(𝐺) ⋅ 𝑛. If |𝑆𝑜| = 𝛾𝑓𝑑(𝐺) ⋅ 𝑛, then |𝑆𝑜| = 𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}. If |𝑆𝑜| <

𝛾𝑓𝑑(𝐺) ⋅ 𝑛, then consider the next case. 

Case 3. Consider that |𝑆𝑜| < 𝑚 ⋅ 𝛾𝑓𝑑(𝐻) and |𝑆𝑜| < 𝛾𝑓𝑑(𝐺) ⋅ 𝑛. Then |𝑆^𝑜| < 𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}. 

Suppose that |𝑆𝑜| = (𝑚 − 1)𝛾𝑓𝑑(𝐻). Let 𝑥 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 where 𝑆𝐺 ⊂ 𝑉(𝐺) and let 𝑎 ∈ 𝑉(𝐻) ∖ 𝑆𝐻 where 𝑆𝐻  is a fair 

dominating set of 𝐻. Then (𝑥, 𝑎) ∈ 𝑉(𝐺 ⊡𝐻) ∖ 𝑆𝑜 and (𝑥, 𝑎)(𝑢, 𝑣) ∉ 𝐸(𝐺 ⊡𝐻) for all (𝑢, 𝑣) ∈ 𝑆𝑜. Thus, 𝑆𝑜 is not a 

dominating set of 𝐺 ⊡𝐻 contradict to the fact that 𝑆𝑜 is a dominating set of 𝐺 ⊡𝐻. Hence, |𝑆𝑜| ≠ (𝑚 − 1)𝛾𝑓𝑑(𝐻). 

Similarly, if 𝑆𝐻  is not a dominating set of 𝐻, then 𝑆𝑜 is not a dominating set of 𝐺 ⊡𝐻, a contradiction. Moreover, using the 

same arguments, if |𝑆𝑜| = 𝛾𝑓𝑑(𝐺)(𝑛 − 1), then 𝑆𝑜 is not a dominating set of 𝐺 ⊡𝐻, a contradiction. Hence, |𝑆𝑜| ≠

𝛾𝑓𝑑(𝐺)(𝑛 − 1). If 𝑆𝐺 is not a dominating set of 𝐺, then 𝑆𝑜 is not a dominating set of 𝐺 ⊡𝐻, a contradiction. Thus, |𝑆𝑜| is 

not lesser than {𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}, that is, |𝑆𝑜| ≥ {𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}. Consequently, 

𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) = |𝑆𝑜| ≥ 𝑚𝑖𝑛{𝑚 ⋅ 𝛾𝑓𝑑(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}. Hence,  𝛾𝑓𝑟𝑑(𝐺 ⊡𝐻) = 𝑚𝑖𝑛{𝑚 ⋅ 𝛾{𝑓𝑑}(𝐻), 𝛾𝑓𝑑(𝐺) ⋅ 𝑛}. ∎ 

The lexicographic product of two graphs 𝐺 and 𝐻 is the graph 𝐺[𝐻] with vertex-set 𝑉(𝐺[𝐻]) = 𝑉(𝐺) × 𝑉(𝐻) and edge-

set 𝐸(𝐺[𝐻]) satisfying the following conditions: (𝑥, 𝑢)(𝑦, 𝑣) ∈ 𝐸(𝐺[𝐻]) if and only if either 𝑥𝑦\𝑖𝑛 𝐸(𝐺) or 𝑥 = 𝑦 and 𝑢𝑣 ∈
𝐸(𝐻).   

The following result shows some properties of a fair restrained dominating set in the lexicographic product of two graphs.  

Theorem 2.8 Let 𝐺 = 𝑃𝑛 = [𝑣1, 𝑣2, . . . , 𝑣𝑛], 𝑛 ≥ 3 and 𝐻 = 𝐾3 = [𝑢1, 𝑢2, 𝑢3] where 𝑛 ≥ 4. A proper subset 𝑆 of 𝑉(𝐺[𝐻]) is 
a fair restrained dominating set if one of the following statement is satisfied.   

(𝑖) 𝑆 = 𝑆𝐺 × 𝑉(𝐻) where 𝑆𝐺 is a fair dominating set of 𝐺. 

(𝑖𝑖) 𝑆 = 𝑆𝐺 × 𝑆𝐻  where 𝑆𝐺 is a fair dominating set of 𝐺, 〈 𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an isolated vertex, and  

   

𝑎) 𝑆𝐻 = {𝑢2}, or    

𝑏) 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑢2}.   

Proof:   Let 𝐺 = 𝑃𝑛 = [𝑣1, 𝑣2, . . . , 𝑣𝑛], 𝑛 ≥ 3 and 𝐻 = 𝐾3 = [𝑢1, 𝑢2, 𝑢3] where 𝑛 ≥ 4. Suppose that statement (𝑖) is satisfied. 

Then 𝑆 = 𝑆𝐺 × 𝑉(𝐻) where 𝑆𝐺 is a fair dominating set of 𝐺. Let 𝑣,𝑤 ∈ 𝑉(𝐺) ∖ 𝑆𝐺. Then |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 |. Let 

𝑢 ∈ 𝑉(𝐻). Then   (𝑣, 𝑢), (𝑤, 𝑢) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × 𝑉(𝐻) = (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑆𝐺 × 𝑉(𝐻)) = 𝑉(𝐺[𝐻]) ∖ 𝑆.  

Thus, (𝑣, 𝑢), (𝑤, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆. Since 𝑆𝐺 is a fair dominating set of 𝐺,  

 |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 | 

 ⇒ |(𝑁𝐺(𝑣) ∩ 𝑆𝐺) × 𝑉(𝐻)| = |(𝑁𝐺(𝑤) ∩ 𝑆𝐺) × 𝑉(𝐻)|  
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 ⇒ |(𝑁𝐺(𝑣) × 𝑉(𝐻)) ∩ (𝑆𝐺 × 𝑉(𝐻))| = |(𝑁𝐺(𝑤) × 𝑉(𝐻)) ∩ (𝑆𝐺 × 𝑉(𝐻))|  

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢) ∩ 𝑆| = |𝑁𝐺[𝐻](𝑤, 𝑢) ∩ 𝑆|    

This implies that 𝑆 is a fair dominating set of 𝐺[𝐻].  

Now, let 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆𝐺  and 𝑢, 𝑧 ∈ 𝑉(𝐻) such that 𝑢𝑧 ∈ 𝐸(𝐻). Then (𝑣, 𝑢), (𝑣, 𝑧) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢)(𝑣, 𝑧) ∈
𝐸(𝐺[𝐻]). Since 𝑆𝐺 is a fair dominating set of 𝐺. there exists 𝑥 ∈ 𝑆𝐺  such that 𝑣𝑥 ∈ 𝐸(𝐺). Thus, (𝑣, 𝑢)(𝑥, 𝑢) ∈ 𝐸(𝐺[𝐻]). 
Hence, for every (𝑣, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆, there exist (𝑥, 𝑢) ∈ 𝑆 and (𝑣, 𝑧) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢)(𝑥, 𝑢), (𝑣, 𝑢)(𝑣, 𝑧) ∈
𝐸(𝐺[𝐻]) ∖ 𝑆. By definition, 𝑆 is a restrained dominating set of 𝐺[𝐻]. This implies that 𝑆 is a fair restrained dominating set of 

𝐺[𝐻].  

Suppose that statement (𝑖𝑖) is satisfied. Then 𝑆 = 𝑆𝐺 × 𝑆𝐻 where 𝑆𝐺 is a fair dominating set of 𝐺 and 〈 𝑉(𝐺) ∖
(𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an isolated vertex.    

Case 1. If 𝑆𝐻 = {𝑢2}, then let 𝑣,𝑤 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 and  

 (𝑣, 𝑢2), (𝑤, 𝑢2) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × 𝑆𝐻 = 𝑉(𝐺) × 𝑆𝐻) ∖ (𝑆𝐺 × 𝑆𝐻) ⊆ (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑆𝐺 × 𝑆𝐻) = 𝑉(𝐺[𝐻]) ∖ 𝑆.   

Thus, (𝑣, 𝑢2), (𝑤, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆. Since 𝑆𝐺 is a fair dominating set of 𝐺,  Then |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 |. This 

implies that  

 |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 | 

 ⇒ |(𝑁𝐺(𝑣) ∩ 𝑆𝐺) × {𝑢2}| = |(𝑁𝐺(𝑤) ∩ 𝑆𝐺) × {𝑢2}|  

 ⇒ |(𝑁𝐺(𝑣) × {𝑢2}) ∩ (𝑆𝐺 × {𝑢2})| = |(𝑁𝐺(𝑤) × {𝑢2}) ∩ (𝑆𝐺 × {𝑢2})|  

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢2) ∩ (𝑆𝐺 × 𝑆𝐻)| = |𝑁𝐺[𝐻](𝑤, 𝑢2) ∩ (𝑆𝐺 × 𝑆𝐻)|   

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢2) ∩ 𝑆| = |𝑁𝐺[𝐻](𝑤, 𝑢2) ∩ 𝑆|   

If 𝑣 ∈ 𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛}), then there exists 𝑣′ ∈ 𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛}) such that 𝑣𝑣′ ∈ 𝐸(𝐺) since 〈 𝑉(𝐺) ∖
(𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an isolated vertex. Thus, there exists (𝑣′ , 𝑢′) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢′)(𝑣′ , 𝑢′) ∈
𝐸(𝐺[𝐻]) where 𝑢′ ∈ 𝑉(𝐻) ∖ 𝑆𝐻. Similarly 

 |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑣
′) ∩ 𝑆𝐺 | 

 ⇒ |(𝑁𝐺(𝑣) ∩ 𝑆𝐺) × {𝑢′}| = |(𝑁𝐺(𝑣
′) ∩ 𝑆𝐺) × {𝑢′}|  

 ⇒ |(𝑁𝐺(𝑣) × {𝑢
′}) ∩ (𝑆𝐺 × {𝑢′})| = |(𝑁𝐺(𝑣

′) × {𝑢′}) ∩ (𝑆𝐺 × {𝑢′})|  

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢
′) ∩ (𝑆𝐺 × {𝑢′})| = |𝑁𝐺[𝐻](𝑣

′ , 𝑢′) ∩ (𝑆𝐺 × {𝑢′})|     

Since, |𝑁𝐺[𝐻](𝑣, 𝑢
′) ∩ (𝑆𝐺 × {𝑢′})| = |𝑁𝐺[𝐻](𝑣, 𝑢

′) ∩ (𝑆𝐺 × {𝑢2})| = |𝑁𝐺[𝐻](𝑣, 𝑢
′) ∩ (𝑆𝐺 × 𝑆𝐻| 

and |𝑁𝐺[𝐻](𝑣
′, 𝑢′) ∩ (𝑆𝐺 × {𝑢′})| = |𝑁𝐺[𝐻](𝑣

′ , 𝑢′) ∩ (𝑆𝐺 × {𝑢2})| = |𝑁𝐺[𝐻](𝑣
′, 𝑢′) ∩ (𝑆𝐺 × 𝑆𝐻|, 

it follows that |𝑁𝐺[𝐻](𝑣, 𝑢
′) ∩ 𝑆| = |𝑁𝐺[𝐻](𝑣

′, 𝑢′) ∩ 𝑆| for all 𝑢′ ∈ 𝑉(𝐻) ∖ 𝑆𝐻  

This implies that 𝑆 is a fair dominating set of 𝐺[𝐻].  

Now, let 𝑣 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 . Since 〈 𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an isolated vertex, there exists 𝑣′ ∈ 𝑉(𝐺) ∖
(𝑆𝐺 ∖ {𝑣1, 𝑣𝑛}) such that 𝑣𝑣′ ∈ 𝐸(𝐺). Thus, there exists (𝑣′ , 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢2)(𝑣

′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) where 

𝑢 ∈ 𝑉(𝐻). Since 𝑆𝐺 is a fair dominating set of 𝐺. there exists 𝑥 ∈ 𝑆𝐺 such that 𝑣𝑥 ∈ 𝐸(𝐺). Thus, (𝑣, 𝑢2)(𝑥, 𝑢2) ∈ 𝐸(𝐺[𝐻]). 
Hence, for every (𝑣, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆, there exist (𝑥, 𝑢2) ∈ 𝑆 and (𝑣′, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that 
(𝑣, 𝑢2)(𝑥, 𝑢2), (𝑣, 𝑢2)(𝑣

′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) ∖ 𝑆. By definition, 𝑆 is a restrained dominating set of 𝐺[𝐻]. This implies that 𝑆 is a 

fair restrained dominating set of 𝐺[𝐻]. 

Case 2. If 𝑆𝐻 ≠ {𝑢2}, then 𝑆𝐻 = 𝑉(𝐻) ∖ {𝑢2}, a fair dominating set of 𝐻. Let 𝑣,𝑤 ∈ 𝑉(𝐺) ∖ 𝑆𝐺 and 𝑢 ∈ 𝑆𝐻 . This implies 

that (𝑣, 𝑢), (𝑤, 𝑢) ∈ (𝑉(𝐺) ∖ 𝑆𝐺) × 𝑆𝐻 = (𝑉(𝐺) × 𝑆𝐻) ∖ (𝑆𝐺 × 𝑆𝐻) ⊆ (𝑉(𝐺) × 𝑉(𝐻)) ∖ (𝑆𝐺 × 𝑆𝐻) = 𝑉(𝐺[𝐻]) ∖ 𝑆.   

Thus, (𝑣, 𝑢), (𝑤, 𝑢) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆. Since 𝑆𝐺 is a fair dominating set of 𝐺,  Then |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 |. This 

implies that  

 |𝑁𝐺(𝑣) ∩ 𝑆𝐺| = |𝑁𝐺(𝑤) ∩ 𝑆𝐺 | 

 ⇒ |(𝑁𝐺(𝑣) ∩ 𝑆𝐺) × 𝑆𝐻| = |(𝑁𝐺(𝑤) ∩ 𝑆𝐺) × 𝑆𝐻|  

 ⇒ |(𝑁𝐺(𝑣) × 𝑆𝐻) ∩ (𝑆𝐺 × 𝑆𝐻)| = |(𝑁𝐺(𝑤) × 𝑆𝐻) ∩ (𝑆𝐺 × 𝑆𝐻)|  

 ⇒ |(𝑁𝐺(𝑣) × 𝑉(𝐻)) ∩ (𝑆𝐺 × 𝑆𝐻)| = |(𝑁𝐺(𝑤) × 𝑉(𝐻)) ∩ (𝑆𝐺 × 𝑆𝐻)|  

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢) ∩ (𝑆𝐺 × 𝑆𝐻)| = |𝑁𝐺[𝐻](𝑤, 𝑢) ∩ (𝑆𝐺 × 𝑆𝐻)|   

 ⇒ |𝑁𝐺[𝐻](𝑣, 𝑢2) ∩ 𝑆| = |𝑁𝐺[𝐻](𝑤, 𝑢2) ∩ 𝑆|    
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Let 𝑣 ∈ 𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛}). Since  〈𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an isolated vertex, there exists 𝑣′ ∈
𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛}) such that 𝑣𝑣′ ∈ 𝐸(𝐺)  Thus, there exists (𝑣′, 𝑢2) ∈ 𝑉(𝐺[𝐻]) ∖ 𝑆 such that (𝑣, 𝑢2)(𝑣

′, 𝑢2) ∈ 𝐸(𝐺[𝐻]) 

where 𝑢2 ∈ 𝑉(𝐻) ∖ 𝑆𝐻. By similar arguments as shown earlier, |𝑁𝐺[𝐻](𝑣, 𝑢2) ∩ 𝑆| = |𝑁𝐺[𝐻](𝑣
′, 𝑢2) ∩ 𝑆| where 𝑢2 ∈ 𝑉(𝐻) ∖

𝑆𝐻 . Hence, 𝑆 is a fair dominating set of 𝐺[𝐻]. Similarly, 𝑆 is a restrained dominating set of 𝐺[𝐻]. Accordingly, 𝑆 is a fair 

restrained dominating set of 𝐺[𝐻].  

The next result is an immediate consequence of Theorem 2.8.   

Corollary 2.9  Let 𝐺 = 𝑃𝑛 = [𝑣1, 𝑣2, . . . , 𝑣𝑛], 𝑛 ≥ 3 and 𝐻 = 𝑃3 = [𝑢1, 𝑢2, 𝑢3] where 𝑛 ≥ 4. Then  

γ𝑓𝑟𝑑(G[H]) =

{
 
 

 
          

𝑛

3
     𝑖𝑓 𝑛 = 0(𝑚𝑜𝑑 3),   

𝑛 + 2

3
 𝑖𝑓 𝑛 = 1(𝑚𝑜𝑑 3)

𝑛 + 1

3
 𝑖𝑓 𝑛 = 2(𝑚𝑜𝑑 3)

 

Proof: Suppose that 𝑆 = 𝑆𝐺 × 𝑆𝐻  where 𝑆𝐺 is a fair dominating set of 𝐺, 〈𝑉(𝐺) ∖ (𝑆𝐺 ∖ {𝑣1, 𝑣𝑛})〉 does not contain an 

isolated vertex, and 𝑆𝐻 = {𝑢2}. Then 𝑆 is a fair restrained dominating set of 𝐺[𝐻] by Theorem 2.8. Thus, $𝛾𝑓𝑟𝑑(𝐺[𝐻]) ≤ |𝑆|.  

Case 1. If 𝑛 = 0(𝑚𝑜𝑑 3), then 𝑆𝐺 = {𝑣3𝑘−1: 𝑘 = 1,2, . . . ,
𝑛

3
} is a fair dominating set of 𝐺. Now, |𝑆| = |𝑆𝐺 × 𝑆𝐻| = |𝑆𝐺| ⋅

|𝑆𝐻| = (
𝑛

3
) ⋅ 1 =

𝑛

3
. Thus, 𝛾𝑓𝑟𝑑(𝐺[𝐻]) ≤

𝑛

3
. Since for any fair dominating set 𝑆𝐺,  𝑆𝐺 ∖ {𝑣} is not a dominating set of 𝐺 when 

𝑛 = 0(𝑚𝑜𝑑 3). It follows that 𝑆𝐺 is a minimum fair dominating set of 𝐺. Hence, 𝑆 = 𝑆𝐺 × {𝑢2} is a minimum fair 

dominating set of 𝐺[𝐻], that is, 
𝑛

3
= |𝑆| = 𝛾𝑓𝑟𝑑(𝐺[𝐻]) ≤

𝑛

3
. Therefore, 𝛾𝑓𝑟𝑑(𝐺[𝐻]) =

𝑛

3
, if 𝑛 = 0(𝑚𝑜𝑑 3). 

Case 2. If 𝑛 = 1(𝑚𝑜𝑑 3), then 𝑆𝐺 = {𝑣1, 𝑣3𝑘−2: 𝑘 = 2,3, . . . ,
𝑛+2

3
} is a fair dominating set of 𝐺.  𝑁𝑜𝑤, |𝑆| = |𝑆𝐺 × 𝑆𝐻| =

|𝑆𝐺| ⋅ |𝑆𝐻| = (
𝑛+2

3
) ⋅ 1 =

𝑛+2

3
. Thus, 𝛾𝑓𝑟𝑑(𝐺[𝐻]) ≤

𝑛+2

3
. By similar arguments in Case 1, 𝛾𝑓𝑟𝑑(𝐺[𝐻]) =

𝑛+2

3
, if 𝑛 =

1(𝑚𝑜𝑑 3).  

Case 3. If 𝑛 = 2(𝑚𝑜𝑑 3), then 𝑆𝐺 = {𝑣3𝑘−1: 𝑘 = 2,3, . . . ,
𝑛+1

3
} is a fair dominating set of 𝐺. Further, 𝑆𝐻  is is a fair 

dominating set of 𝐻. Now, |𝑆| = |𝑆𝐺 × 𝑆𝐻| = |𝑆𝐺| ⋅ |𝑆𝐻| = (
𝑛+1

3
) ⋅ 1 =

𝑛+1

3
. Thus, 𝛾𝑓𝑟𝑑(𝐺[𝐻]) ≤

𝑛+1

3
. Similarly, 

𝛾𝑓𝑟𝑑(𝐺[𝐻]) =
𝑛+1

3
, if 𝑛 = 2(𝑚𝑜𝑑 3).  

By Case 1, Case 2, and Case 3, the desired results is prove. 

III. CONCLUSION 

In this paper, we extend the concept of the fair restrained domination in graphs. The fair restrained domination in the 

Cartesian product and lexicographic product of two connected graphs were characterized. Moreover,  the fair restrained 

domination number of the Cartesian product and lexicographic product of two connected graphs were computed. This study 

may motivate researchers to work on fair restrained dominating set of other binary operations of two graphs.  Other parameters 

involving fair restrained domination in graphs may also be explored. Finally, the characterization of a fair restrained 

domination in graphs and its bounds is also an extension of this study.     
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