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Abstract – In this paper the concept of Nano Generalized pre c-Irresolute and Contra Generalized pre c-Irresolute functions 

are introduced. The Characterization and properties of these functions relating Ngpc-int,Ngpc-cl,Ngpc-ker,Ngpc-surf with 

Nint, Ncl and Nker are investigated. Also Nano Generalized pre c-closed and Nano Generalized  pre c-open maps are 

introduced. 
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I. INTRODUCTION  
The importance of irresolute functions are significant in various areas of  Mathematics and related Sciences. The idea 

of irresoluteness was introduced in 1972 by Crossley and Hildebrand[1]. Various forms of  nano irresolute functions have been 

investigated over the years.This paper gives the development of the theory of nano generalized pre c-irresolute and nano contra 

generalized pre c-irresolute functions.  

II. PRELIMINARIES 
We recall the following definitions. 

Definition 2.1. Let U be a non empty finite set of objects called the universe and R be an equivalence relation on U named as 

indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belonging to the same equivalence class 

are said to be indiscernible with one another. The pair (U,R) is said to be approximation space. Let X ⊆ U. Then 

(i) The lower approximation of  X with respect to R is the set of all objects, which can be for certain classified as X with 

respect to R and is denoted by  𝐿𝑅(𝑋). 𝐿𝑅(𝑋) = ⋃  {𝑅(𝑥): 𝑅(𝑥) ⊆ 𝑋 }  𝑥∈𝑈 where R(x) denotes the equivalence class 

determined by 𝐿𝑅(𝑋). 

(ii) The upper approximation of X with respect to R is the set of all objects  which can be possibly classified as X  with 

respect to R and is denoted by  𝑈𝑅(𝑋).  𝑈𝑅(𝑋) =  ⋃   {𝑅(𝑥): 𝑅(𝑥) ∩ 𝑋 ≠ ∅ }  𝑥∈𝑈 .  

(iii) The boundary region of  X with respect to R is the set of all objects which can be classified   neither as X nor as not-X 

with respect to R and it is denoted by 𝐵𝑅(𝑋).   𝐵𝑅(𝑋) = 𝑈𝑅(𝑋) - 𝐿𝑅(𝑋). 

Proposition 2.2.  If (U, R) is an approximation space and 𝑋, 𝑌 ⊆ 𝑈, then 

1. 𝐿𝑅(𝑋)  ⊆ 𝑋 ⊆ 𝑈𝑅(𝑋) 

2. 𝐿𝑅(∅) = 𝑈𝑅(∅) = ∅ 

3. 𝐿𝑅(𝑈) = 𝑈𝑅(𝑈) = U 

4. 𝑈𝑅(𝑋⋃𝑌) = 𝑈𝑅(𝑋)⋃𝑈𝑅(𝑌)  

5. 𝑈𝑅(𝑋⋂𝑌) ⊆ 𝑈𝑅(𝑋)⋂𝑈𝑅(𝑌)  

6. 𝐿𝑅(𝑋⋃𝑌) ⊇ 𝐿𝑅(𝑋)⋃𝐿𝑅(𝑌)  

7. 𝐿𝑅(𝑋⋂𝑌) = 𝐿𝑅(𝑋)⋂𝐿𝑅(𝑌)  

8. 𝐿𝑅(𝑋)  ⊆ 𝐿𝑅(𝑌) and 𝑈𝑅(𝑋)  ⊆ 𝑈𝑅(𝑌) whenever X  ⊆ Y. 

9. 𝑈𝑅(𝑋𝑐) = [𝐿𝑅(𝑋)]𝑐 and 𝐿𝑅(𝑋𝑐) = [𝑈𝑅(𝑋)]𝑐 

10. 𝑈𝑅[𝑈𝑅 (𝑋)] =  𝐿𝑅[𝑈𝑅 (𝑋)] = 𝑈𝑅(𝑋) 

11. 𝐿𝑅[𝐿𝑅 (𝑋)] =  𝑈𝑅[𝐿𝑅 (𝑋)] = 𝐿𝑅(𝑋) 

     Definition 2.3. Let U be the universe, R be an equivalence relation on U and  𝜏𝑅(𝑋) = {𝑈, ∅,𝐿𝑅(𝑋), 𝑈𝑅(𝑋), 𝐵𝑅 (𝑋)} where 

X ⊆ U. Then  𝜏𝑅(𝑋) satisfies the following axioms. 

(i) U and ∅ ∈  𝜏𝑅(𝑋). 

(ii) The union of all the elements of any sub-collection  of  𝜏𝑅(𝑋) is in 𝜏𝑅(𝑋). 

(iii) The intersection of the elements of any finite sub collection of 𝜏𝑅(𝑋) is in 𝜏𝑅(𝑋). 
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Then 𝜏𝑅(𝑋) is a topology on U called the nano topology on U with respect to X. We call (U, 𝜏𝑅(𝑋)) as a  nano topological 

space. The elements of 𝜏𝑅(𝑋)are called as nano open sets. The complement of the nano open sets are called nano closed sets. 

Definition 2.4. [2] If (U, 𝜏𝑅(𝑋)) is a nano topological space with respect to X where X ⊆ U and if A  ⊆ U then 

(i) The nano interior of  𝐴 is defined as the union of all nano open subsets contained in  𝐴 and is denoted by 𝑁𝑖𝑛𝑡(𝐴). That is 

𝑁𝑖𝑛𝑡(𝐴)) is the largest nano open subset of  𝐴. 

(ii) The nano closure of 𝐴 is defined as the intersection of all nano closed sets containing 𝐴 and is denoted by 𝑁𝑐𝑙(𝐴). That is 

𝑁𝑐𝑙(𝐴)is the smallest nano closed set containing  𝐴. 

Definition 2.5..[5] A subset 𝐴 of a nano topological space (𝑈, 𝜏𝑅(𝑋))  is called a nano generalized pre c-closed set (briefly 

Ngpc-closed set) if  𝑁𝑝𝑐𝑙(𝐴) ⊆ 𝐺 whenever A ⊆ 𝐺 and 𝐺 is nano c-set. 

Definition 2.6. [5] The Nano generalized pre c-interior of  𝐴 is defined as the union of all Ngpc-open sets of  𝑈 contained in 𝐴 

and it is denoted by Ngpc-int(𝐴). 

Definition 2.7. [5] The Nano generalized pre c-closure of  𝐴 is defined as the intersection  of all Ngpc-closed sets of  𝑈 

containing 𝐴 and it is denoted by Ngpc-cl(𝐴). 

Definition 2.8. [5] The Nano generalized pre c-kernel of  𝐴 is defined as the intersection of all Ngpc-open sets of  𝑈 containing 

𝐴 and it is denoted by Ngpc-ker(𝐴). 

Definition 2.9. [6] The Nano generalized pre c-surface of  𝐴 is defined as the union of all Ngpc-closed sets of  𝑈 contained in  

𝐴 and it is denoted by Ngpc-surf (𝐴). 

Definition 2.10.  Let  (𝑈, 𝜏𝑅(𝑋)) and  (𝑉, 𝜏𝑅
′ (𝑌))  be two nano topological spaces. The function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))   
is called 

(i) [3]nano continuous on 𝑈 if  the inverse image of every nano open set in  𝑉 is a nano open set in 𝑈. 
(ii) [4]nano contra continuous on 𝑈 if  the inverse image of every nano open set in  𝑉 is a nano closed set in 𝑈. 
(iii) [6]Ngpc-continuous on 𝑈 if  the inverse image of every nano open set in  𝑉 is a Ngpc-open set in 𝑈. 
(iv) [6]Ncgpc-continuous on 𝑈 if  the inverse image of every nano open set in  𝑉 is a Ngpc-closed set in 𝑈. 
 

III.  NANO GENERALIZED PRE C-IRRESOLUTE FUNCTIONS 

In this section Nano generalized pre-c Irresolute function is defined and its characterizations and properties with respect to 

Ngpc-int, Ngpc-cl, Ngpc-ker and Ngpc-surf of sets are derived.  

Definition 3.1.  Let  (𝑈, 𝜏𝑅(𝑋)) and  (𝑉, 𝜏𝑅
′ (𝑌)) be two nano topological spaces. The function 

 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is said to be Nano generalized pre c-irresolute (briefly Ngpc- irresolute) on 𝑈 if  the inverse 

image of every Ngpc-open set in  𝑉 is a Ngpc-open set in 𝑈. 

     Example 3.2.  Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈 𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and   𝑋 = {𝑏, 𝑑} .  Then 𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}  

is a nano topology with respect to 𝑋. Ngpc-closed sets are  ∅, 𝑈, {𝑎}, {𝑐}, {𝑑}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}. Let 

𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 = {𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =  {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology 

with respect to 𝑌. Ngpc-closed sets are  ∅, 𝑉, {𝑦}, {𝑧}, {𝑤}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑧, 𝑤}, {𝑥, 𝑦, 𝑧}, {𝑥, 𝑧, 𝑤}, {𝑦, 𝑧, 𝑤}. Define 

𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  as 𝑓(𝑎) = 𝑧, 𝑓(𝑏) = 𝑥, 𝑓(𝑐) = 𝑦, 𝑓(𝑑) = 𝑤. Then  𝑓 is Ngpc-irresolute since the inverse image 

of every Ngpc-open set in  𝑉 is a Ngpc-open set in 𝑈. 
Theorem 3.3. A function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))  is Ngpc-irresolute if and only if the inverse image of every Ngpc-closed 

set in  𝑉  is Ngpc-closed in  𝑈. 
Proof.  Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌)) be Ngpc-irresolute. Let  𝐴 be Ngpc-closed in 𝑉. Then 𝐴𝐶  is Ngpc-open in 𝑉. Since 𝑓 is 

Ngpc-irresolute 𝑓−1(𝐴𝐶) is Ngpc-open in 𝑈. Therefore 𝑓−1(𝐴) is Ngpc-closed in 𝑈. Thus the inverse image of every Ngpc-

closed set in 𝑉 is Ngpc-closed in 𝑈.  Conversely let the inverse image of every Ngpc-closed set in 𝑉 is Ngpc-closed  in 𝑈. Let  

𝐵 be a Ngpc-open set in 𝑉. Then 𝐵𝐶 is Ngpc-closed in 𝑉. By our assumption 𝑓−1(𝐵𝐶) = (𝑓−1(𝐵))𝑐  is Ngpc-closed in 

𝑈.Therefore 𝑓−1(𝐵)  is Ngpc-open in 𝑈. Thus the inverse image of every Ngpc-open set in  𝑉  is Ngpc-open in  𝑈. Hence 𝑓  is 

Ngpc-irresolute. 

Theorem 3.4. Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be a function. Then the following statements are equivalent.  

(i)     𝑓 is Ngpc-irresolute. 

(ii)   For every subset 𝐴 of  𝑈, Ngpc-cl (𝑓−1( Ngpc-cl(𝑓(𝐴)))) = 𝑓−1( Ngpc-cl(𝑓(𝐴))).                        

(iii)  For every subset 𝐵 of  𝑉, Ngpc-cl (𝑓−1(Ngpc-cl (𝐵)))= 𝑓−1(Ngpc-cl (𝐵)).            

Proof. (i) ⟺ (ii). Let 𝑓 be Ngpc-irresolute and 𝐴 ⊆ 𝑈. Then 𝑓(𝐴) ⊆ 𝑉. Ngpc-cl(𝑓(𝐴)) is Ngpc- closed in 𝑉.  Since 𝑓 is Ngpc-

irresolute, 𝑓−1(Ngpc-cl(𝑓(𝐴))) is Ngpc-closed in 𝑈. Therefore Ngpc-cl(𝑓−1(Ngpc-cl(𝑓(𝐴))) = 𝑓−1(Ngpc-cl(𝑓(𝐴))).  

Conversely let Ngpc-cl (𝑓−1( Ngpc-cl(𝑓(𝐴)))) = 𝑓−1( Ngpc-cl(𝑓(𝐴))) for every subset 𝐴 of 𝑈. Let 𝐻 be a Ngpc-closed set 

in  𝑉.  Since  𝑓−1(𝐻) ⊆ 𝑈,  Ngpc-cl (𝑓−1( Ngpc-cl(𝑓(𝑓−1(𝐻))))) = 𝑓−1( Ngpc-cl(𝑓(𝑓−1(𝐻))). That is Ngpc-cl 

(𝑓−1(𝐻)) = 𝑓−1(𝐻) implies that 𝑓−1(𝐻) is Ngpc-closed in 𝑈. Hence 𝑓 is Ngpc-irresolute. 
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(ii) ⟺ (iii). Assume (ii) holds. Let 𝐵 be any subset of  𝑉. Then  replacing  𝐴 by  𝑓−1(𝐵) in (ii) we have Ngpc-cl (𝑓−1( Ngpc-

cl(𝑓(𝑓−1(𝐵))))) = 𝑓−1( Ngpc-cl(𝑓(𝑓−1(𝐵)))) . That is Ngpc-cl (𝑓−1(Ngpc-cl (𝐵)))= 𝑓−1(Ngpc-cl (𝐵)).            

 Conversely suppose (iii) holds. Let 𝐴 be any subset of  𝑈. Then  𝑓(𝐴) ⊆ 𝑉. Let  𝐵 = 𝑓(𝐴). Then we have  Ngpc-cl 

(𝑓−1(Ngpc-cl (𝑓(𝐴))))= 𝑓−1(Ngpc-cl (𝑓(𝐴))) for every subset 𝐴  of 𝑈. 

Theorem 3.5.  Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be a function. Then the following statements are equivalent.  

(i)     𝑓 is Ngpc-irresolute.  

(ii)   For every subset 𝐴 of  𝑈,  Ngpc-int (𝑓−1( Ngpc-int(𝑓(𝐴)))) = 𝑓−1( Ngpc-int(𝑓(𝐴))).                        

(iii)  For every subset 𝐵 of  𝑉,  Ngpc-int (𝑓−1(Ngpc-int(𝐵)))= 𝑓−1(Ngpc-int(𝐵)).            

Proof. (i) ⟺ (ii). Let 𝑓 be Ngpc-irresolute and 𝐴 ⊆ 𝑈. Then 𝑓(𝐴) ⊆ 𝑉. Ngpc-int(𝑓(𝐴)) is Ngpc-open in 𝑉.  Since 𝑓 is Ngpc-

irresolute, 𝑓−1(Ngpc-int(𝑓(𝐴))) is Ngpc-open in 𝑈.  Therefore Ngpc-int(𝑓−1(Ngpc-int(𝑓(𝐴)))) = 𝑓−1(Ngpc-int(𝑓(𝐴))).  

Conversely let Ngpc-int (𝑓−1( Ngpc-int(𝑓(𝐴)))) = 𝑓−1( Ngpc-int(𝑓(𝐴))) for every subset 𝐴 of 𝑈. Let 𝐺 be a Ngpc-open set 

in 𝑉. Since 𝑓−1(𝐺) ⊆ 𝑈, Ngpc-int(𝑓−1(Ngpc-int (𝑓(𝑓−1(𝐺))))) = 𝑓−1( Ngpc-int(𝑓(𝑓−1(𝐺))). That is Ngpc-int (𝑓−1(𝐺)) = 

𝑓−1(𝐺) implies that 𝑓−1(𝐺) is Ngpc-open in 𝑈. Hence 𝑓 is Ngpc-irresolute. 

(ii) ⟺ (iii). Assume (ii) holds. Let 𝐵 be any subset of  𝑉. Then  replacing  𝐴 by  𝑓−1(𝐵) in (ii) we have Ngpc-int (𝑓−1( Ngpc-

int(𝑓(𝑓−1(𝐵))))) = 𝑓−1( Ngpc-int(𝑓(𝑓−1(𝐵)))) . That is Ngpc-int (𝑓−1(Ngpc-int (𝐵)))= 𝑓−1(Ngpc-int (𝐵)).            

 Conversely suppose (iii) holds. Let 𝐴 be any subset of  𝑈. Then  𝑓(𝐴) ⊆ 𝑉. Let  𝐵 = 𝑓(𝐴). Then we have  Ngpc-int 

(𝑓−1(Ngpc-int (𝑓(𝐴)))) = 𝑓−1(Ngpc-int (𝑓(𝐴))) for every subset 𝐴  of 𝑈. 

Equality does not hold in theorems (3.4) and (3.5).   

     Example 3.6.  In example (3.2) 

Let  𝐴 = {𝑎, 𝑏, 𝑐} ⊆ 𝑈 and 𝐵 = {𝑥, 𝑦, 𝑤} ⊆ 𝑉.  Then 𝑓−1(𝐵) = {𝑏, 𝑐, 𝑑}. 

(i) Now 𝑓−1(Ngpc-cl(𝑓(𝐴))) = 𝑓−1(Ngpc-cl(𝑓({𝑎, 𝑏, 𝑐}))) =  𝑓−1(Ngpc-cl({𝑥, 𝑦, 𝑧}) = 𝑓−1({𝑥. 𝑦. 𝑧}) = {𝑎, 𝑏, 𝑐}and  Ngpc-

cl(𝑓−1(Ngpc-cl(𝑓(𝐴)))) = Ngpc-cl ({𝑎, 𝑏, 𝑐}) = {𝑎, 𝑏, 𝑐} and thus Ngpc-cl (𝑓−1( Ngpc-cl(𝑓(𝐴)))) = 𝑓−1( Ngpc-cl(𝑓(𝐴))).                         

Also 𝑓−1(Ngpc-cl(𝐵)) = 𝑓−1(Ngpc-cl({𝑥, 𝑦, 𝑤})) = 𝑓−1(𝑉) = 𝑈and Ngpc-cl(𝑓−1(Ngpc-cl(𝐵))) = Ngpc-cl (𝑈) = 𝑈.  Thus 

Ngpc-cl (𝑓−1(Ngpc-cl (𝐵)))= 𝑓−1(Ngpc-cl (𝐵)).  

     (ii) Now 𝑓−1(Ngpc-int(𝑓(𝐴))) = 𝑓−1(Ngpc-int(𝑓({𝑎, 𝑏, 𝑐}))) = 𝑓−1({𝑥, 𝑦, 𝑧}) = {𝑎, 𝑏, 𝑐} and Ngpc-int(𝑓−1(Ngpc-

int(𝑓(𝐴)))) = Ngpc-int({𝑎, 𝑏, 𝑐}) = {𝑎, 𝑏, 𝑐} and thus Ngpc-int (𝑓−1( Ngpc-int(𝑓(𝐴)))) = 𝑓−1( Ngpc-int(𝑓(𝐴))). 

Also 𝑓−1(Ngpc-int(𝐵)) = 𝑓−1(Ngpc-int({𝑥, 𝑦, 𝑤})) = 𝑓−1({𝑥, 𝑦, 𝑤}) = {𝑏, 𝑐, 𝑑} and Ngpc-int(𝑓−1(Ngpc-int(𝐵))) = Ngpc-

int ({𝑏, 𝑐, 𝑑}) = {𝑏, 𝑐, 𝑑}. Thus Ngpc-int (𝑓−1(Ngpc-int(𝐵)))= 𝑓−1(Ngpc-int(𝐵)). 

Theorem 3.7. Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a Ngpc-irresolute function. Then we have 

(i) Ngpc-int (𝑓(𝐴)) ⊆   𝑓 (Ngpc-ker(𝐴)) for every subset 𝐴 of  𝑈.  

(ii) 𝑓 (Ngpc-surf(𝐴)) ⊆  Ngpc-cl (𝑓(𝐴)) for every subset 𝐴 of  𝑈.  

(iii) 𝑓−1(Ngpc-int (𝐵)) ⊆  Ngpc-ker (𝑓−1(𝐵)) for every subset 𝐵 of  𝑉. 

(iv) Ngpc-surf (𝑓−1(𝐵)) ⊆   𝑓−1(Ngpc-cl (𝐵)) for every subset 𝐵 of  𝑉. 

Proof.  Let 𝑓 be Ngpc-irresolute and 𝐴 be a subset of  𝑈. 

  (i) Then 𝑓(𝐴) ⊆ 𝑉 and Ngpc-int (𝑓(𝐴)) is Ngpc-open in 𝑉. Since 𝑓 is Ngpc-irresolute  𝑓−1(Ngpc-int (𝑓(𝐴))) is Ngpc-open 

in 𝑈. Therefore Ngpc-ker (𝑓−1(Ngpc-int (𝑓(𝐴)))) = 𝑓−1(Ngpc-int (𝑓(𝐴))) . But Ngpc-int(𝑓(𝐴)) ⊆  𝑓(𝐴) implies 

𝑓−1(Ngpc-int(𝑓(𝐴))) ⊆ 𝐴. This implies Ngpc-ker(𝑓−1(Ngpc-int(𝑓(𝐴)))) ⊆ Ngpc-ker (𝐴). Hence 𝑓−1(Ngpc-int (𝑓(𝐴)))  ⊆

 Ngpc-ker (𝐴) shows that Ngpc-int (𝑓(𝐴)) ⊆   𝑓 (Ngpc-ker(𝐴)). 

(ii) Then 𝑓(𝐴) ⊆ 𝑉 and Ngpc-cl (𝑓(𝐴)) is Ngpc-closed in 𝑉. Since 𝑓 is Ngpc-irresolute  𝑓−1(Ngpc-cl(𝑓(𝐴))) is Ngpc-closed 

in 𝑈. Therefore Ngpc-surf (𝑓−1(Ngpc-cl (𝑓(𝐴)))) = 𝑓−1(Ngpc-cl (𝑓(𝐴))) . Since  𝑓(𝐴) ⊆  Ngpc-cl(𝑓(𝐴)) , 𝐴 ⊆  𝑓−1(Ngpc-

cl(𝑓(𝐴))) . This implies Ngpc-surf (𝐴) ⊆  Ngpc-surf  𝑓−1(Ngpc-cl(𝑓(𝐴))). Hence Ngpc-surf (𝐴) ⊆  𝑓−1(Ngpc-cl (𝑓(𝐴))) 

shows that 𝑓 (Ngpc-surf(𝐴)) ⊆ Ngpc-cl (𝑓(𝐴)) for every subset 𝐴 of  𝑈. 

Let 𝑓 be Ncgpc-irresolute and 𝐵 be a subset of  𝑉. 

(iii) Then Ngpc-int (𝐵) is Ngpc-open in 𝑉 and 𝑓−1(Ngpc-int(𝐵) is Ngpc-open in 𝑈. Therefore Ngpc-ker (𝑓−1(Ngpc-

int (𝐵)) = 𝑓−1(Ngpc-int (𝐵). But Ngpc-int(𝐵) ⊆  𝐵 implies 𝑓−1(Ngpc-int(𝐵)) ⊆ 𝑓−1(𝐵). This implies Ngpc-ker(𝑓−1(Ngpc-

int(𝐵))) ⊆ Ngpc-ker(𝑓−1(𝐵)). Hence 𝑓−1(Ngpc-int (𝐵)) ⊆ Ngpc-ker (𝑓−1(𝐵)). 

(iv) Then Ngpc-cl (𝐵) is Ngpc-closed in 𝑉 and 𝑓−1(Ngpc-cl(𝐵) is Ngpc-closed in 𝑈. Therefore Ngpc-surf (𝑓−1(Ngpc-

cl (𝐵)) = 𝑓−1(Ngpc-cl (𝐵). Since  𝐵 ⊆  Ngpc-cl(𝐵) , 𝑓−1(𝐵) ⊆  𝑓−1(Ngpc-cl(𝐵)) . This implies Ngpc-surf (𝑓−1(𝐵)) ⊆  
Ngpc-surf  𝑓−1(Ngpc-cl(𝐵)). Hence Ngpc-surf (𝑓−1(𝐵)) ⊆  𝑓−1(Ngpc-cl (𝐵)  for every subset 𝐵 of  𝑉. 

Example 3.8. In Example (3.2)  



P.Padmavathi & R.Nithyakala / IJMTT, 67(7), 104-112, 2021 

 

107 

     (i) Let  𝐴 = {𝑎, 𝑐} ⊆ 𝑈. 

Then Ngpc-int 𝑓(𝐴)) = Ngpc-int (𝑓{𝑎, 𝑐}) = Ngpc-int ({𝑦, 𝑧}) = {𝑦} and 𝑓(Ngpc-ker (𝐴)) = 𝑓(Ngpc-ker ({𝑎, 𝑐})) =
𝑓({𝑎, 𝑏, 𝑐}) = {𝑥, 𝑦, 𝑧}. Thus Ngpc-int (𝑓(𝐴)) ⊆ 𝑓(Ngpc-ker (𝐴)). 

     (ii) Let  𝐴 = {𝑏, 𝑐} ⊆ 𝑈. 

Then  𝑓(Ngpc-surf (𝐴)) = 𝑓(Ngpc-surf ({𝑏, 𝑐})) = 𝑓({𝑐}) = {𝑦} and Ngpc-cl 𝑓(𝐴)) = Ngpc-cl (𝑓{𝑏, 𝑐}) = Ngpc-cl ({𝑥, 𝑦}) =
{𝑥, 𝑦, 𝑧}. Thus 𝑓(Ngpc-surf (𝐴)) ⊆ Ngpc-cl 𝑓(𝐴)). 

(iii) Let 𝐵 = {𝑧, 𝑤} ⊆ 𝑉. 
Then 𝑓−1(Ngpc-int({𝑧, 𝑤})) = 𝑓−1({𝑤}) = {𝑑} and Ngpc-ker(𝑓−1({𝑧, 𝑤})) = Ngpc-ker ({𝑎, 𝑑}) = {𝑎, 𝑏, 𝑑}.  Thus 𝑓−1(Ngpc-

int (𝐵)) ⊆  Ngpc-ker (𝑓−1(𝐵)). 

(iv) Let 𝐵 = {𝑥, 𝑤} ⊆ 𝑉. 
Then  Ngpc-surf (𝑓−1({𝑥, 𝑤})) = Ngpc-surf ({𝑏, 𝑑}) = {𝑑}  and  𝑓−1(Ngpc-cl({𝑥, 𝑤})) = 𝑓−1({𝑥, 𝑧, 𝑤}) = {𝑎, 𝑏, 𝑑}. Thus 

Ngpc-surf (𝑓−1(𝐵)) ⊆   𝑓−1(Ngpc-cl (𝐵)). 

Theorem 3.9.  Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a Ngpc-irresolute function. Then we have 

(i) Ngpc-ker (𝑓−1(𝐺)) =  𝑓−1(Ngpc-ker(𝐺)) for every Ngpc-open subset 𝐺 of  𝑉.  

(ii) Ngpc-surf (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for every Ngpc-closed subset 𝐻 of  𝑉. 

Proof. (i)  Let 𝑓 be Ngpc-irresolute and 𝐺 be a Ngpc-open subset of  𝑉. Then Ngpc-ker (𝐺) = 𝐺 and  𝑓−1(𝐺) is Ngpc-open in 𝑈. 

Hence Ngpc-ker (𝑓−1(𝐺)) =  𝑓−1(𝐺) = 𝑓−1(Ngpc-ker (𝐺)). This implies Ngpc-ker (𝑓−1(𝐺)) =  𝑓−1(Ngpc-ker(𝐺)) for every 

Ngpc-open subset G of  𝑉. 

(ii) Let 𝑓 be Ngpc-irresolute and 𝐻 be a Ngpc-closed subset of  𝑉. Then Ngpc-surf (𝐻) = 𝐻 and   𝑓−1(𝐻) is Ngpc-closed in 𝑈. 

Hence Ngpc-surf (𝑓−1(𝐻)) =  𝑓−1(𝐻) = 𝑓−1(Ngpc-surf (𝐻)). This implies Ngpc-surf (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for 

every Ngpc-closed subset 𝐻 of  𝑉.   

Example 3.10.  In Example (3.2)  

     (i) Let  𝐺 be Ngpc-open and  𝐺 = {𝑥, 𝑦} ⊆ 𝑉.  

     Then Ngpc-ker (𝑓−1(𝐺)) = Ngpc-ker(𝑓−1({𝑥, 𝑦})) =Ngpc-ker ({𝑏, 𝑐}) = {𝑏, 𝑐} and 𝑓−1(Ngpc-ker(𝐺)) = 𝑓−1(Ngpc-

ker({𝑥, 𝑦})) = 𝑓−1({𝑥, 𝑦}) = {𝑏, 𝑐}. Thus Ngpc-ker (𝑓−1(𝐺)) =  𝑓−1(Ngpc-ker(𝐺)) for every Ngpc-open subset  𝐺 of  𝑉.  

     (ii) Let  𝐻 be Ngpc-closed and  𝐻 = {𝑦, 𝑧} ⊆ 𝑉. 

     Then Ngpc-surf (𝑓−1(𝐻)) = Ngpc-surf(𝑓−1({𝑦, 𝑧})) =Ngpc-surf ({𝑎, 𝑐}) = {𝑎, 𝑐} and 𝑓−1(Ngpc-surf(𝐻)) = 𝑓−1(Ngpc-

surf({𝑦, 𝑧})) = 𝑓−1({𝑦, 𝑧}) = {𝑎, 𝑐}. Thus Ngpc-surf (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for every Ngpc-closed subset 𝐻 of  𝑉. 

Theorem 3.11. If  a function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is Ngpc-irresolute then 𝑓 is Ngpc- continuous. 

Proof.  Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be Ngpc-irresolute. Let  𝐴 be any nano open set in 𝑉. Then 𝐴 is Ngpc-open in 𝑉. Since 

𝑓 is Ngpc irresolute, 𝑓−1(𝐴) is Ngpc-open in 𝑈. Thus the inverse image of every nano open set in  𝑉 is  Ngpc-open in 𝑈. 
Therefore any Ngpc-irresolute function is Ngpc-continuous. 

The converse of  the above theorem need not be true as shown in the following example. 

    Example 3.12.  Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈 𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and   𝑋 = {𝑏, 𝑑} .  Then   

𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}} is a nano topology with respect to 𝑋. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} 

and  𝑌 = {𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =  {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology with respect to 𝑌. Define  𝑓: (𝑈, 𝜏𝑅(𝑋)) →

(𝑉, 𝜏𝑅
′ (𝑌)) as 𝑓(𝑎) = 𝑧, 𝑓(𝑏) = 𝑦, 𝑓(𝑐) = 𝑥, 𝑓(𝑑) = 𝑤. Then  𝑓 is Ngpc-continuous but not Ngpc-irresolute since 𝑓−1({𝑦}) =

{𝑏}  is not Ngpc-open in  𝑈 for the Ngpc-open set {𝑦} in  𝑉. 

Theorem 3.13.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ngpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ngpc-continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-continuous. 

Proof. Let 𝐴 be nano open in 𝑊. Since 𝑔 is Ngpc-continuous 𝑔−1(𝐴) is Ngpc-open in 𝑉. Since  𝑓 is Ngpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-open in 𝑈. Thus the inverse image of every nano open set in 𝑊 is Ngpc-open in 

𝑈.Therefore 𝑔°𝑓 is Ngpc-continuous. 

Theorem 3.14.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ngpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ncgpc-continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ncgpc-continuous. 

Proof. Let 𝐴 be nano open in 𝑊. Since 𝑔 is Ncgpc-continuous 𝑔−1(𝐴) is Ngpc-closed in 𝑉. Since  𝑓 is Ngpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-closed in 𝑈. Thus the inverse image of every nano open set in 𝑊 is Ngpc-closed in 

𝑈.Therefore 𝑔°𝑓 is Ncgpc-continuous. 

Theorem 3.15.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ngpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is nano continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ngpc-continuous. 

Proof.  Proof is similar to theorem (3.13) since nano open set is a Ngpc-open set.  

Theorem 3.16.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ngpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is nano contra continuous 
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then 𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ncgpc-continuous. 

Proof.  Proof is similar to theorem (3.14) since nano closed set is a Ngpc-closed set. 

Theorem 3.17.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  are Ngpc- irresolutes then 𝑔°𝑓: 

(𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-irresolute. 

Proof. Let 𝐴 be Ngpc-open in 𝑊. Since 𝑔 is Ngpc-irresolute 𝑔−1(𝐴) is Ngpc-open in 𝑉. Since  𝑓 is Ngpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-open in  𝑈. Thus the inverse image of every Ngpc-open set in 𝑊 is Ngpc-open in 

𝑈.Therefore 𝑔°𝑓 is Ngpc- irresolute. 

    Example 3.18. Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈 𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and 𝑋 = {𝑏, 𝑑} .  Then   

𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}} is a nano topology on 𝑈. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 =

{𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =  {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology on 𝑉. Let  𝑊 = {𝑝, 𝑞, 𝑟, 𝑠} with 𝑊/𝑅′′  =

{{𝑝}, {𝑞, 𝑟}, {𝑠}} and  𝑍 = {𝑝, 𝑟}. Then  𝜏𝑅
′′(𝑍) =  {∅, 𝑊, {𝑝}, {𝑝, 𝑞}, {𝑝, 𝑞, 𝑟}}  is a nano topology on 𝑊. Then 𝜏𝑅

𝐶(𝑋) =

 {∅, 𝑈, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}},    𝜏𝑅′
𝐶 (𝑌) =  {∅, 𝑉, {𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧, 𝑤}} and 𝜏𝑅′′

𝐶 (𝑍) = {∅, 𝑊, {𝑠}, {𝑟, 𝑠}, {𝑞, 𝑟, 𝑠}} are the 

complements of  𝜏𝑅(𝑋), 𝜏𝑅
′ (𝑌) and 𝜏𝑅

′′(𝑍) respectively. Define 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  as  

𝑓(𝑎) = 𝑧, 𝑓(𝑏) = 𝑥, 𝑓(𝑐) = 𝑦, 𝑓(𝑑) = 𝑤 and 𝑔 ∶ (𝑉, 𝜏𝑅
′ (𝑌)) → (𝑊, 𝜏𝑅

′′(𝑍)) as 𝑔(𝑥) = 𝑝, 𝑔(𝑦) = 𝑞, 𝑔(𝑧) = 𝑠, 𝑔(𝑤) = 𝑟. 

The functions 𝑓 and 𝑔 are Ngpc-irresolutes. Then 𝑔°𝑓 given by  (𝑔°𝑓)({𝑎}) = {𝑠}, (𝑔°𝑓)({𝑐}) = {𝑞}, (𝑔°𝑓)({𝑑}) =
{𝑟}, (𝑔°𝑓)({𝑎, 𝑏}) = {𝑝, 𝑠}, (𝑔°𝑓)({𝑎, 𝑐}) = {𝑞, 𝑠}, (𝑔°𝑓)({𝑎, 𝑑}) = {𝑟, 𝑠}, (𝑔°𝑓)({𝑎, 𝑏, 𝑐}) = {𝑝, 𝑞, 𝑠}, (𝑔°𝑓)({𝑎, 𝑏, 𝑑}) =
{𝑝, 𝑟, 𝑠}, (𝑔°𝑓)({𝑎, 𝑐, 𝑑}) = {𝑞, 𝑟, 𝑠} is Ngpc-irresolute since the inverse image of every Ngpc-closed set in 𝑊 is Ngpc-closed 

in 𝑈. 

IV.  NANO CONTRA GENERALIZED PRE C-IRRESOLUTE FUNCTIONS 

In this section Nano contra generalized pre-c Irresolute function is defined and its characterizations and  properties with respect 

to Ngpc-int, Ngpc-cl, Ngpc-ker and Ngpc-surf of sets are studied. 

Definition 4.1.  Let  (𝑈, 𝜏𝑅(𝑋)) and  (𝑉, 𝜏𝑅
′ (𝑌)) be two nano topological spaces. The function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌)) is 

said to be Nano contra generalized pre c-irresolute (briefly  Ncgpc irresolute) on 𝑈 if  the inverse image of every Ngpc-open 

set in  𝑉 is Ngpc-closed in 𝑈. 

     Example 4.2.  Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈
𝑅⁄ = {{𝑎}, {𝑐}, {𝑏, 𝑑}} and   𝑋 = {𝑏, 𝑑} .  Then 𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏, 𝑑}} is a nano 

topology with respect to 𝑋. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 = {𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =

 {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}}  is a nano topology with respect to 𝑌. Define 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) as 𝑓(𝑎) = 𝑦, 𝑓(𝑏) = 𝑥,

𝑓(𝑐) = 𝑤, 𝑓(𝑑) = 𝑧. Then 𝑓 is Ncgpc-irresolute since the inverse image of every Ngpc-open set in 𝑉 is Ngpc-closed in 𝑈. 
Theorem 4.3. A function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))  is Ncgpc-irresolute if and only if the inverse image of every Ngpc-

closed set in  𝑉  is Ngpc-open in  𝑈. 
Proof. Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))  be Ncgpc-irresolute. Let  𝐴 be Ngpc-closed in 𝑉. Then 𝐴𝐶  is Ngpc-open in 𝑉. Since 𝑓 

is Ncgpc irresolute 𝑓−1(𝐴𝐶) is Ngpc-closed in 𝑈. Therefore 𝑓−1(𝐴) is Ngpc-open in 𝑈. Thus the inverse image of every Ngpc-

closed set in 𝑉 is Ngpc-open in 𝑈.  Conversely let the inverse image of every Ngpc-closed set in 𝑉 is Ngpc-open in 𝑈. Let  𝐵 

be a Ngpc-open set in 𝑉. Then 𝐵𝐶 is Ngpc-closed in 𝑉. By our assumption 𝑓−1(𝐵𝐶) = (𝑓−1(𝐵))𝑐  is Ngpc-open in 𝑈.Therefore 

𝑓−1(𝐵)  is Ngpc-closed in 𝑈. Thus the inverse image of every Ngpc-open set in  𝑉  is Ngpc-closed in  𝑈. Hence 𝑓 Ncgpc-

irresolute. 

Theorem 4.4.  Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be a function. Then the following statements are equivalent. 

(i)     𝑓 is Ncgpc-irresolute.   

(ii)   𝐴 ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝐴)))) for every subset 𝐴 of 𝑈. 

(iii) 𝑓−1(𝐵) ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝐵))) for every subset 𝐵 of 𝑉.                                        

Proof. (i) ⟺ (ii). Let 𝑓 be Ncgpc-irresolute and 𝐴 ⊆ 𝑈. Then 𝑓(𝐴) ⊆ 𝑉. Ngpc-cl(𝑓(𝐴)) is Ngpc- closed in 𝑉.  Since 𝑓 is 

Ncgpc-irresolute, 𝑓−1(Ngpc-cl(𝑓(𝐴))) is Ngpc-open in 𝑈.  Therefore Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝐴)))) = 𝑓−1(Ngpc-

cl(𝑓(𝐴))).  But we know that 𝑓(𝐴) ⊆ Ngpc-cl(𝑓(𝐴))  implies 𝐴 ⊆ 𝑓−1(Ngpc-cl(𝑓(𝐴))). Hence 𝐴 ⊆ Ngpc-int (𝑓−1(Ngpc-

cl(𝑓(𝐴)))) for every subset 𝐴 of 𝑈.  

Conversely let  𝐺 be a Ngpc-closed set in  𝑉.  Since  𝑓−1(𝐺) ⊆ 𝑈, we have  𝑓−1(𝐺) ⊆ Ngpc-int (𝑓−1(Ngpc-

cl(𝑓(𝑓−1(𝐺))))) = Ngpc-int (𝑓−1(Ngpc-cl(𝐺))). That is 𝑓−1(𝐺) ⊆ Ngpc-int (𝑓−1(𝐺))  since 𝐺 is Ngpc-closed.  But we 

know that Ngpc-int(𝑓−1(𝐺)) ⊆ 𝑓−1(𝐺).  Hence Ngpc-int(𝑓−1(𝐺)) = 𝑓−1(𝐺). This implies 𝑓−1(𝐺) is Ngpc-open in 𝑈and 

hence 𝑓 is Ncgpc irresolute. 

(ii) ⟺ (iii). Let 𝐴 ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝐴)))) for every 𝐴 in 𝑈. Let 𝐵 be any subset of  𝑉.  Then  replacing  𝐴 by  

𝑓−1(𝐵) we get 𝑓−1(𝐵)  ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝑓−1(𝐵) )))). Hence 𝑓−1(𝐵) ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝐵))) for every 

subset 𝐵 of  𝑉. 

Conversely let  𝑓−1(𝐵) ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝐵))) for every subset 𝐵 of  𝑉. Let 𝐴 be a subset of  𝑈.  Then  𝑓(𝐴) ⊆ 𝑉 and  

we have 𝑓−1(𝑓(𝐴)) ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝐴)))). 
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Hence 𝐴 ⊆ Ngpc-int (𝑓−1(Ngpc-cl(𝑓(𝐴)))) for every 𝐴 in 𝑈. 

Theorem 4.5.  Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be a function. Then the following statements are equivalent. 

(i)     𝑓 is Ncgpc-irresolute.  

(ii)   Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝐴)))) ⊆ 𝐴  for every subset 𝐴 of 𝑈. 

(iii)  Ngpc-cl (𝑓−1(Ngpc-int(𝐵))) ⊆ 𝑓−1(𝐵)for every subset 𝐵 of 𝑉.                                         

Proof. (i) ⟺ (ii). Let 𝑓 be Ncgpc-irresolute and 𝐴 ⊆ 𝑈. Then 𝑓(𝐴) ⊆ 𝑉. Ngpc-int(𝑓(𝐴)) is Ngpc-open in 𝑉.  Since 𝑓 is 

Ncgpc-irresolute, 𝑓−1(Ngpc-int(𝑓(𝐴))) is Ngpc-closed in 𝑈.  Therefore Ngpc-cl(𝑓−1(Ngpc-int(𝑓(𝐴)))) = 𝑓−1(Ngpc-

int(𝑓(𝐴))). But we know that Ngpc-int(𝑓(𝐴)) ⊆ 𝑓(𝐴) implies 𝑓−1(Ngpc-int(𝑓(𝐴))) ⊆ 𝐴. Hence Ngpc-cl(𝑓−1(Ngpc-

int(𝑓(𝐴)))) ⊆ 𝐴  for every subset 𝐴 of 𝑈.  

Conversely let  𝐺 be a Ngpc-open set in  𝑉.  Since  𝑓−1(𝐺) ⊆ 𝑈, we have  Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝑓−1(𝐺))))) ⊆ 𝑓−1(𝐺). 

That is Ngpc-cl (𝑓−1(Ngpc-int(𝐺))) ⊆ 𝑓−1(𝐺) implies Ngpc-cl (𝑓−1(𝐺)) ⊆    𝑓−1(𝐺) since 𝐺 is Ngpc-open. But we know 

that 𝑓−1(𝐺) ⊆ Ngpc-cl(𝑓−1(𝐺)).  Hence Ngpc-cl(𝑓−1(𝐺)) = 𝑓−1(𝐺). This implies 𝑓−1(𝐺) is Ngpc-closed in 𝑈 and hence 𝑓 

is Ncgpc irresolute. 

(ii) ⟺ (iii). Let Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝐴)))) ⊆ 𝐴  for every 𝐴 in 𝑈. Let 𝐵 be any subset of  𝑉.  Then  replacing  𝐴 by  

𝑓−1(𝐵) we get Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝑓−1(𝐵))))) ⊆ 𝑓−1(𝐵)  . Hence Ngpc-cl (𝑓−1(Ngpc-int(𝐵))) ⊆ 𝑓−1(𝐵) for every 

subset 𝐵 of  𝑉. 

Conversely let  Ngpc-cl (𝑓−1(Ngpc-int(𝐵))) ⊆ 𝑓−1(𝐵)for every subset 𝐵 of  𝑉. Let 𝐴 be a subset of  𝑈.  Then  𝑓(𝐴) ⊆ 𝑉 and  

we have Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝐴)))) ⊆ 𝑓−1(𝑓(𝐴)). 

Hence Ngpc-cl (𝑓−1(Ngpc-int(𝑓(𝐴)))) ⊆ 𝐴  for every 𝐴 in 𝑈. 

    Example 4.6.  In example (4.2) 

     (i) Let  𝐴 = {𝑎, 𝑏, 𝑐} ⊆ 𝑈.  

Then Ngpc-int(𝑓−1(Ngpc-cl(𝑓(𝐴)))) = Ngpc-int(𝑓−1(Ngpc-cl({𝑥, 𝑦, 𝑤}))) = Ngpc-int (𝑈) = 𝑈 and thus 𝐴 ⊆ Ngpc-

int(𝑓−1(Ngpc-cl(𝑓(𝐴)))). 

Let 𝐵 = {𝑥, 𝑦} ⊆ 𝑉. 
    Then Ngpc-int(𝑓−1(Ngpc-cl(𝐵))) = Ngpc-int(𝑓−1(Ngpc-cl({𝑥, 𝑦}))) =  Ngpc-int ({𝑎, 𝑏, 𝑑}) = {𝑎, 𝑏, 𝑑}. Thus 𝑓−1(𝐵) ⊆ 

Ngpc-int(𝑓−1(Ncl(𝐵)))  

    (ii) Let  𝐴 = {𝑏, 𝑑} ⊆ 𝑈.  

Then Ngpc-cl(𝑓−1(Ngpc-int(𝑓(𝐴)))) = Ngpc-cl(𝑓−1(Ngpc-int({𝑥, 𝑧}))) = Ngpc-cl (𝑓−1({𝑥})) = Ngpc-cl({𝑏}) = {𝑏} and 

thus Ngpc-int(𝑓−1(Ngpc-cl(𝑓(𝐴)))) ⊆ 𝐴 . 

Let 𝐵 = {𝑦, 𝑧} ⊆ 𝑉 and 𝑓−1(𝐵) = {𝑎, 𝑑}. 

    Then  Ngpc-cl(𝑓−1(Ngpc-int(𝐵))) = Ngpc-cl(𝑓−1(Ngpc-int({𝑦, 𝑧}))) =  Ngpc-cl (𝑓−1({𝑦})) = Ngpc-cl({𝑎}) = {𝑎}.Thus 

Ngpc-cl(𝑓−1(Ngpc-int(𝐵))) ⊆ 𝑓−1(𝐵) 

Theorem 4.7.  Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a Ncgpc-irresolute function. Then we have 

(i) Ngpc-int (𝑓(𝐴)) ⊆   𝑓 (Ngpc-surf(𝐴)) for every subset 𝐴 of  𝑈.  

(ii) 𝑓 (Ngpc-ker(𝐴)) ⊆  Ngpc-cl (𝑓(𝐴)) for every subset 𝐴 of  𝑈.  

(iii) 𝑓−1(Ngpc-int (𝐵)) ⊆  Ngpc-surf (𝑓−1(𝐵)) for every subset 𝐵 of  𝑉. 

(iv) Ngpc-ker (𝑓−1(𝐵)) ⊆   𝑓−1(Ngpc-cl (𝐵)) for every subset 𝐵 of  𝑉. 

Proof. (i) Let 𝑓 be Ncgpc-irresolute and 𝐴 be a subset of  𝑈. Then 𝑓(𝐴) ⊆ 𝑉 and Ngpc-int (𝑓(𝐴)) is Ngpc-open in 𝑉. Since 𝑓 

is Ngpc-irresolute  𝑓−1(Ngpc-int (𝑓(𝐴))) is Ngpc-closed in 𝑈. Therefore Ngpc-surf (𝑓−1(Ngpc-int (𝑓(𝐴)))) = 𝑓−1(Ngpc-

int (𝑓(𝐴))) . But Ngpc-int(𝑓(𝐴)) ⊆  𝑓(𝐴) implies 𝑓−1(Ngpc-int(𝑓(𝐴))) ⊆ 𝐴. This implies Ngpc-surf(𝑓−1(Ngpc-

int(𝑓(𝐴)))) ⊆ Ngpc-surf (𝐴). Hence 𝑓−1(Ngpc-int (𝑓(𝐴)))  ⊆ Ngpc-surf (𝐴) shows that Ngpc-int (𝑓(𝐴)) ⊆ 𝑓 (Ngpc-surf 

(𝐴)) for every subset 𝐴 of  𝑈. 

(ii) Let 𝑓 be Ncgpc-irresolute and 𝐴 be a subset of  𝑈. Then 𝑓(𝐴) ⊆ 𝑉 and Ngpc-cl (𝑓(𝐴)) is Ngpc-closed in 𝑉. Since 𝑓 is 

Ncgpc-irresolute  𝑓−1(Ngpc-cl(𝑓(𝐴))) is Ngpc-open in 𝑈. Therefore Ngpc-ker (𝑓−1(Ngpc-cl (𝑓(𝐴)))) = 𝑓−1(Ngpc-cl 

(𝑓(𝐴))) . Since  𝑓(𝐴) ⊆  Ngpc-cl(𝑓(𝐴)) , 𝐴 ⊆  𝑓−1(Ngpc-cl(𝑓(𝐴))) . This implies Ngpc-ker (𝐴) ⊆  Ngpc-ker  𝑓−1(Ngpc-

cl(𝑓(𝐴))). Hence Ngpc-ker (𝐴) ⊆  𝑓−1(Ngpc-cl (𝑓(𝐴))) shows that 𝑓 (Ngpc-ker(𝐴)) ⊆ Ngpc-cl (𝑓(𝐴)) for every subset 𝐴 of  

𝑈. 

(iii) Let 𝑓 be Ncgpc-irresolute and 𝐵 be a subset of  𝑉. Then Ngpc-int (𝐵) is Ngpc-open in 𝑉 and 𝑓−1(Ngpc-int(𝐵) is Ngpc-

closed in 𝑈. Therefore Ngpc-surf (𝑓−1(Ngpc-int (𝐵)) = 𝑓−1(Ngpc-int (𝐵). But Ngpc-int(𝐵) ⊆  𝐵 implies 𝑓−1(Ngpc-int(𝐵)) 

⊆ 𝑓−1(𝐵). This implies Ngpc-surf(𝑓−1(Ngpc-int(𝐵))) ⊆ Ngpc-surf (𝑓−1(𝐵)). Hence 𝑓−1(Ngpc-int (𝐵)) ⊆ Ngpc-surf 

(𝑓−1(𝐵)) for every subset 𝐵 of  𝑉. 

(iv) Let 𝑓 be Ncgpc-irresolute and 𝐵 be a subset of  𝑉. Then Ngpc-cl (𝐵) is Ngpc-closed in 𝑉 and 𝑓−1(Ngpc-cl(𝐵) is Ngpc-



P.Padmavathi & R.Nithyakala / IJMTT, 67(7), 104-112, 2021 

 

110 

open in 𝑈. Therefore Ngpc-ker (𝑓−1(Ngpc-cl (𝐵)) = 𝑓−1(Ngpc-cl (𝐵). Since  𝐵 ⊆  Ngpc-cl(𝐵) , 𝑓−1(𝐵) ⊆  𝑓−1(Ngpc-

cl(𝐵)) . This implies Ngpc-ker (𝑓−1(𝐵)) ⊆  Ngpc-ker  𝑓−1(Ngpc-cl(𝐵)). Hence Ngpc-ker (𝑓−1(𝐵)) ⊆  𝑓−1(Ngpc-cl (𝐵)  for 

every subset 𝐵 of  𝑉. 

Example 4.8.  In Example (4.2)  

    (i) Let  𝐴 = {𝑎, 𝑑} ⊆ 𝑈. 

Then Ngpc-int 𝑓(𝐴)) = Ngpc-int (𝑓{𝑎, 𝑑}) = Ngpc-int ({𝑦, 𝑧}) = {𝑦} and 𝑓(Ngpc-surf (𝐴)) = 𝑓(Ngpc-surf ({𝑎, 𝑑})) =
𝑓({𝑎, 𝑑}) = {𝑦, 𝑧}. Thus Ngpc-int (𝑓(𝐴)) ⊆ 𝑓(Ngpc-surf (𝐴)). 

     (ii) Let  𝐴 = {𝑎, 𝑏, 𝑐} ⊆ 𝑈. 

Then  𝑓(Ngpc-ker (𝐴)) = 𝑓(Ngpc-ker ({𝑎, 𝑏, 𝑐})) = 𝑓({𝑎, 𝑏, 𝑐}) = {𝑥, 𝑦, 𝑤} and Ngpc-cl 𝑓(𝐴)) = Ngpc-cl (𝑓{𝑎, 𝑏, 𝑐}) = 

Ngpc-cl ({𝑥, 𝑦, 𝑤}) = 𝑉. Thus 𝑓(Ngpc-ker (𝐴)) ⊆ Ngpc-cl 𝑓(𝐴)). 

(iii) Let 𝐵 = {𝑦, 𝑧, 𝑤} ⊆ 𝑉. 
Then 𝑓−1(Ngpc-int({𝑦, 𝑧, 𝑤})) = 𝑓−1({𝑦, 𝑤}) = {𝑎, 𝑐} and Ngpc-surf(𝑓−1({𝑦, 𝑧, 𝑤})) = Ngpc-surf ({𝑎, 𝑐, 𝑑}) = {𝑎, 𝑐, 𝑑}.  
Thus 𝑓−1(Ngpc-int (𝐵)) ⊆  Ngpc-surf (𝑓−1(𝐵)). 

(iv) Let 𝐵 = {𝑥, 𝑦} ⊆ 𝑉. 
Then  Ngpc-ker (𝑓−1({𝑥, 𝑦})) = Ngpc-ker ({𝑎, 𝑏}) = {𝑎, 𝑏}  and  𝑓−1(Ngpc-cl({𝑥, 𝑦})) = 𝑓−1({𝑥, 𝑦, 𝑧}) = {𝑎, 𝑏, 𝑑}. Thus 

Ngpc-ker (𝑓−1(𝐵)) ⊆   𝑓−1(Ngpc-cl (𝐵)). 

Theorem 4.9.  Let  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a Ncgpc-irresolute function. Then we have 

(i) Ngpc-surf (𝑓−1(𝐺)) =  𝑓−1(Ngpc-ker(𝐺)) for every Ngpc-open subset 𝐺 of  𝑉.  

(ii) Ngpc-ker (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for every Ngpc-closed subset 𝐻 of  𝑉. 

Proof. (i) Let 𝑓 be Ncgpc-irresolute and 𝐺 be a Ngpc-open subset of  𝑉. Then  𝑓−1(𝐺) is Ngpc-closed in 𝑈. Therefore Ngpc-

surf (𝑓−1(𝐺)) = 𝑓−1(𝐺). Since 𝐺 is Ngpc-open, Ngpc-ker (𝐺) = 𝐺 implies  𝑓−1(Ngpc-ker(𝐺)) = 𝑓−1(𝐺). Hence Ngpc-

surf (𝑓−1(𝐺)) = 𝑓−1(Ngpc-ker(𝐺)) for every Ngpc-open subset 𝐺 of  𝑉. 

(ii) Let 𝑓 be Ncgpc-irresolute and 𝐻 be a Ngpc-closed subset of  𝑉. Then 𝑓−1(𝐻) is Ngpc-open in 𝑈. Therefore Ngpc-

ker (𝑓−1(𝐻)) =  𝑓−1(𝐻). Since 𝐻 is Ngpc-closed Ngpc-surf (𝐻) = 𝐻 implies 𝑓−1(Ngpc-surf (𝐻)) = 𝑓−1(𝐻). Hence Ngpc-

ker (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for every Ngpc-closed subset 𝐻 of  𝑉. 

Example 4.10.  In Example (4.2)  

    (i) Let  𝐺 be Ngpc-open and  𝐺 = {𝑥, 𝑦} ⊆ 𝑉.  

   Then Ngpc-surf (𝑓−1(𝐺)) = Ngpc-surf(𝑓−1({𝑥, 𝑦})) =Ngpc-surf ({𝑎, 𝑏}) = {𝑎, 𝑏} and 𝑓−1(Ngpc-ker(𝐺)) = 𝑓−1(Ngpc-

ker({𝑥, 𝑦})) = 𝑓−1({𝑥, 𝑦}) = {𝑎, 𝑏}. Thus Ngpc-surf    (𝑓−1(𝐺)) =  𝑓−1(Ngpc-ker(𝐺)) for every Ngpc-open subset 𝐺 of  𝑉.  

     (ii) Let  𝐻 be Ngpc-closed and  𝐻 = {𝑦, 𝑧} ⊆ 𝑉. 

     Then Ngpc-ker (𝑓−1(𝐻)) = Ngpc-ker(𝑓−1({𝑦, 𝑧})) =Ngpc-ker ({𝑎, 𝑑}) = {𝑎, 𝑑} and 𝑓−1(Ngpc-surf(𝐻)) = 𝑓−1(Ngpc-

surf({𝑦, 𝑧})) = 𝑓−1({𝑦, 𝑧}) = {𝑎, 𝑑}.Thus Ngpc-ker (𝑓−1(𝐻)) =  𝑓−1(Ngpc-surf (𝐻)) for every Ngpc-closed subset  𝐻 of  𝑉. 

Theorem 4.11. If a function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is Ncgpc-irresolute then 𝑓 is Ncgpc- continuous. 

Proof. Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) be Ncgpc-irresolute. Let  𝐴 be any nano open set in 𝑉. Then 𝐴 is Ngpc-open in 𝑉. Since 

𝑓 is Ncgpc-irresolute, 𝑓−1(𝐴) is Ngpc-closed in 𝑈. Thus the inverse image of every nano open set in  𝑉 is  Ngpc-closed in 𝑈. 
Therefore any Ncgpc-irresolute function is Ncgpc-continuous. 

The converse of  the above theorem need not be true as shown in the following example. 

    Example 4.12.   Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈
𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and   𝑋 = {𝑏, 𝑑} .  Then  𝜏𝑅(𝑋) =

 {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}  is a nano topology with respect to 𝑋. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 =

{𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =  {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology with respect to 𝑌. Define  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌)) 

as 𝑓(𝑎) = 𝑦, 𝑓(𝑏) = 𝑧, 𝑓(𝑐) = 𝑥, 𝑓(𝑑) = 𝑤. Then 𝑓 is Ncgpc-continuous but not Ncgpc-irresolute since 𝑓−1({𝑦}) = {𝑎} and 

 𝑓−1({𝑦, 𝑧}) = {𝑎, 𝑏}  are not Ngpc-open in  𝑈 for the Ngpc-closed sets {𝑦}  and {𝑦, 𝑧}   in 𝑉. 

Theorem 4.13. If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ncgpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ncgpc-continuous. 

Proof. Let 𝐴 be nano open in 𝑊. Since 𝑔 is Ngpc-continuous 𝑔−1(𝐴) is Ngpc-open in 𝑉. Since  𝑓 is Ncgpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-closed in 𝑈. Thus the inverse image of every nano open set in 𝑊 is Ngpc-closed in 𝑈. 

Therefore 𝑔°𝑓 is Ncgpc-continuous. 

Theorem 4.14. If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ncgpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ncgpc-continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-continuous. 

Proof. Let 𝐴 be nano open in 𝑊. Since 𝑔 is Ncgpc-continuous,  𝑔−1(𝐴) is Ngpc-closed in 𝑉. Since  𝑓 is Ncgpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-open in 𝑈. Thus the inverse image of every nano open set in 𝑊 is Ngpc-open in 𝑈. 

Therefore 𝑔°𝑓 is Ngpc-continuous. 
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Theorem 4.15.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ncgpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is nano  continuous then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ncgpc-continuous. 

Proof.  The proof is similar to theorem (4.13) since every nano open set is Ngpc-open. 

Theorem 4.16.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ncgpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is nano contra 

continuous then 𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ngpc-continuous. 

Proof.  The proof is similar to theorem (4.14) since every nano closed set is Ngpc-closed. 

Theorem 4.17.     If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍)) are Ncgpc-irresolutes then 𝑔°𝑓: 

(𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-irresolute. 

Proof. Let 𝐴 be Ngpc-open in 𝑊. Since 𝑔 is Ncgpc-irresolute, 𝑔−1(𝐴) is Ngpc closed in 𝑉. Since  𝑓 is Ncgpc-irresolute,  

𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-open in  𝑈. Thus the inverse image of every Ngpc-open set in 𝑊 is Ngpc-open in 𝑈. 

Therefore 𝑔°𝑓 is Ngpc-irresolute. 

Theorem 4.18.  If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ncgpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ngpc-irresolute then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ncgpc-irresolute. 

Proof. Let 𝐴 be a Ngpc-closed set in 𝑊. Since 𝑔: 𝑉 → 𝑊 is Ngpc-irresolute, 𝑔−1(𝐴) is Ngpc- closed  in 𝑉. Since  𝑓: 𝑈 → 𝑉 is 

Ncgpc-irresolute,  𝑓−1(𝑔−1(𝐴)) = (𝑔°𝑓)−1(𝐴) is Ngpc-open in 𝑈. Thus the inverse image of every Ngpc-closed  set in 𝑊 is 

Ngpc-open in 𝑈. Therefore 𝑔°𝑓 is Ncgpc-irresolute. 

Theorem 4.19.   If  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌)) is Ngpc-irresolute and 𝑔: (𝑉, 𝜏𝑅

′ (𝑌)) → (𝑊, 𝜏𝑅
′′(𝑍))  is Ncgpc-irresolute then 

𝑔°𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑊, 𝜏𝑅
′′(𝑍)) is Ncgpc-irresolute. 

Proof.  Proof is similar as theorem (4.18). 

 

V.  NANO GENERALIZED PRE C-CLOSED AND NANO GENERALIZED PRE C-OPEN MAPS 

 In this section Nano  generalized pre c-closed and  Nano Generalized pre c-open maps and are defined and some of their 
characterizations are presented.  

Definition 5.1. The function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is said to be a Nano generalized pre c-closed map (briefly Ngpc- 

closed map) on 𝑈 if  the image of every nano closed set in  (𝑈, 𝜏𝑅(𝑋)) is a Ngpc-closed set in (𝑉, 𝜏𝑅
′ (𝑌)). 

Definition 5.2. The function  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is said to be a Nano generalized pre c-open map (briefly Ngpc- open 

map) on 𝑈 if  the image of every nano open set in  (𝑈, 𝜏𝑅(𝑋)) is a Ngpc-open set in (𝑉, 𝜏𝑅
′ (𝑌)). 

Example 5.3.  Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with  𝑈 𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and 𝑋 = {𝑏, 𝑑} .  Then 𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}  is 

a nano topology on 𝑈. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 = {𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =

 {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology on 𝑉. Then 𝜏𝑅
𝐶(𝑋) =  {∅, 𝑈, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}}  and  𝜏𝑅′

𝐶 (𝑌) =

 {∅, 𝑉, {𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧, 𝑤}} are the complements of  𝜏𝑅(𝑋) and 𝜏𝑅
′ (𝑌) respectively. Define 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))  as 

𝑓(𝑎) = 𝑧, 𝑓(𝑏) = 𝑦, 𝑓(𝑐) = 𝑥, 𝑓(𝑑) = 𝑤. Then the image of every nano closed (nano open) set in 𝑈 is Ngpc-closed (Ngpc-

open) in 𝑉. Hence 𝑓  is both Ngpc-closed and Ngpc-open map. 

Definition 5.4.  A map  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is said to be a Strongly Nano generalized pre c-closed  map (briefly 

Sngpc-closed map) on 𝑈 if  the image of every Ngpc-closed set in  (𝑈, 𝜏𝑅(𝑋)) is a Ngpc-closed set in (𝑉, 𝜏𝑅
′ (𝑌)). 

Definition 5.5.  A map  𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is said to be a Strongly Nano generalized pre c-open  map (briefly Sngpc-

open map) on 𝑈 if  the image of every Ngpc-open set in  (𝑈, 𝜏𝑅(𝑋)) is a Ngpc-open set in (𝑉, 𝜏𝑅
′ (𝑌)). 

     Example 5.6.  Let  𝑈 = {𝑎, 𝑏, 𝑐, 𝑑} with 𝑈 𝑅⁄ = {{𝑎}, {𝑏}, {𝑐, 𝑑}} and 𝑋 = {𝑏, 𝑑} .  Then 𝜏𝑅(𝑋) =  {∅, 𝑈, {𝑏}, {𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}} is 

a nano topology on 𝑈. Let 𝑉 = {𝑥, 𝑦, 𝑧, 𝑤} with  𝑉/𝑅′ = {{𝑥}, {𝑧}, {𝑦, 𝑤}} and  𝑌 = {𝑥, 𝑦} . Then  𝜏𝑅
′ (𝑌) =

 {∅, 𝑉, {𝑥}, {𝑦, 𝑤}, {𝑥, 𝑦, 𝑤}} is a nano topology on 𝑉. Then 𝜏𝑅
𝐶(𝑋) =  {∅, 𝑈, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}}  and  𝜏𝑅′

𝐶 (𝑌) =

 {∅, 𝑉, {𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧, 𝑤}} are the complements of  𝜏𝑅(𝑋) and 𝜏𝑅
′ (𝑌) respectively. Define 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅

′ (𝑌))  as 

𝑓(𝑎) = 𝑧, 𝑓(𝑏) = 𝑥, 𝑓(𝑐) = 𝑦, 𝑓(𝑑) = 𝑤. Then 𝑓 is  Sngpc-closed  (Sngpc-open) since  the image of every Ngpc-closed 

(Ngpc-open) set in 𝑈 is Ngpc-closed (Ngpc-open) in 𝑉. 

    Theorem 5.7. A function 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is Ngpc-closed if and only if for each subset 𝐴 of  𝑉  and for each nano 

open set 𝐺 of  (𝑈, 𝜏𝑅(𝑋)) containing  𝑓−1(𝐴), there is a Ngpc-open set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝐴 ⊆ 𝐵 and  𝑓−1(𝐵) ⊆ 𝐺. 

    Proof.  Let 𝐴 be a subset of  (𝑉, 𝜏𝑅
′ (𝑌)) and 𝐺 be a nano open set of  (𝑈, 𝜏𝑅(𝑋)) such that 𝑓−1(𝐴) ⊆ 𝐺. Then 𝑈 − 𝐺  is a nano 

closed set of 𝑈. Since 𝑓 is Ngpc-closed, 𝑓(𝑈 − 𝐺) is Ngpc-closed in (𝑉, 𝜏𝑅
′ (𝑌)). Now 𝐵 = 𝑉 − 𝑓(𝑈 − 𝐺) is a Ngpc-open set 

containing 𝐴 in 𝑉 such that  𝑓−1(𝐵) ⊆ 𝐺.  

       Conversely let  𝐻 be a nano closed set of  (𝑈, 𝜏𝑅(𝑋)), then 𝑓−1(𝑉 − 𝑓(𝐻)) ⊆ 𝑈 − 𝐻 and 𝑈 − 𝐻 is nano open. By our 

assumption there is a Ngpc-open set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝑉 − 𝑓(𝐻) ⊆ 𝐵 and 𝑓−1(𝐵) ⊆ 𝑈 − 𝐻. Hence 𝑉 − 𝐵 ⊆ 𝑓(𝐻)and 

𝐻 ⊆ 𝑈 − 𝑓−1(𝐵).Thus 𝑉 − 𝐵 ⊆ 𝑓(𝐻) ⊆ 𝑓(𝑈 −  𝑓−1(𝐵) ⊆ 𝑉 − 𝐵 which implies 𝑓(𝐻) = 𝑉 − 𝐵. Since 𝑉 − 𝐵 is Ngpc-closed, 

𝑓(𝐻) is a Ngpc-closed set in (𝑉, 𝜏𝑅
′ (𝑌)). That is 𝑓(𝐻) is Ngpc-closed in 𝑉 for every nano closed set  𝐻 of  𝑈. Hence 𝑓 is a 

Ngpc-closed map. 
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    Theorem 5.8. A function 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  is Ngpc-open if and only if for each subset 𝐴 of  𝑉  and for each nano 

closed set 𝐻 of  (𝑈, 𝜏𝑅(𝑋)) containing  𝑓−1(𝐴), there is a Ngpc-closed set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝐴 ⊆ 𝐵 and  𝑓−1(𝐵) ⊆ 𝐻. 

     Proof.  Let 𝐴 be a subset of  (𝑉, 𝜏𝑅
′ (𝑌)) and 𝐻 be a nano closed set of  (𝑈, 𝜏𝑅(𝑋)) such that 𝑓−1(𝐴) ⊆ 𝐻. Then 𝑈 − 𝐻  is a 

nano open set of 𝑈. Since 𝑓 is Ngpc-open, 𝑓(𝑈 − 𝐻) is Ngpc-open in (𝑉, 𝜏𝑅
′ (𝑌)). Now 𝐵 = 𝑉 − 𝑓(𝑈 − 𝐻) is a Ngpc-closed 

set containing 𝐴 in 𝑉 such that  𝑓−1(𝐵) ⊆ 𝐻.  

          Conversely let  𝐺 be a nano open set of  (𝑈, 𝜏𝑅(𝑋)), then 𝑓−1(𝑉 − 𝑓(𝐺)) ⊆ 𝑈 − 𝐺 and 𝑈 − 𝐺 is nano closed. By our 

assumption there is a Ngpc-closed set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝑉 − 𝑓(𝐺) ⊆ 𝐵 and 𝑓−1(𝐵) ⊆ 𝑈 − 𝐺. Hence 𝑉 − 𝐵 ⊆

𝑓(𝐺)and 𝐺 ⊆ 𝑈 − 𝑓−1(𝐵). Thus 𝑉 − 𝐵 ⊆ 𝑓(𝐺) ⊆ 𝑓(𝑈 −  𝑓−1(𝐵) ⊆ 𝑉 − 𝐵 which implies 𝑓(𝐺) = 𝑉 − 𝐵. Since 𝑉 − 𝐵 is 

Ngpc-open, 𝑓(𝐺) is a Ngpc-open set in (𝑉, 𝜏𝑅
′ (𝑌)). That is 𝑓(𝐺) is Ngpc-open in 𝑉 for every nano open set  𝐺 of  𝑈. Hence 𝑓 

is a Ngpc-open map. 

    Theorem 5.9.   Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a function. Then the following statements are equivalent 

(i) 𝑓 is Sngpc-closed. 

(ii) For every subset 𝐴 of  𝑉  and every Ngpc-open set 𝐺 of  (𝑈, 𝜏𝑅(𝑋)) containing  𝑓−1(𝐴), there is a Ngpc-open set 𝐵 of 

 (𝑉, 𝜏𝑅
′ (𝑌)) with 𝐴 ⊆ 𝐵 and  𝑓−1(𝐵) ⊆ 𝐺. 

Proof. Let 𝐴 be a subset of  (𝑉, 𝜏𝑅
′ (𝑌)) and 𝐺 be a Ngpc-open set of  (𝑈, 𝜏𝑅(𝑋)) such that 𝑓−1(𝐴) ⊆ 𝐺. Then 𝑈 − 𝐺  is a 

Ngpc-closed set of 𝑈. Since 𝑓 is Sngpc-closed, 𝑓(𝑈 − 𝐺) is Ngpc-closed in (𝑉, 𝜏𝑅
′ (𝑌)). Now 𝐵 = 𝑉 − 𝑓(𝑈 − 𝐺) is a Ngpc-

open set containing 𝐴 in 𝑉 such that  𝑓−1(𝐵) ⊆ 𝐺.  

     Conversely let  𝐻 be a Ngpc-closed set of  (𝑈, 𝜏𝑅(𝑋)), then 𝑓−1(𝑉 − 𝑓(𝐻)) ⊆ 𝑈 − 𝐻 and 𝑈 − 𝐻 is Ngpc-open. By our 

assumption there is a Ngpc-open set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝑉 − 𝑓(𝐻) ⊆ 𝐵 and 𝑓−1(𝐵) ⊆ 𝑈 − 𝐻. Hence 𝑉 − 𝐵 ⊆ 𝑓(𝐻)and 

𝐻 ⊆ 𝑈 − 𝑓−1(𝐵).Thus 𝑉 − 𝐵 ⊆ 𝑓(𝐻) ⊆ 𝑓(𝑈 −  𝑓−1(𝐵) ⊆ 𝑉 − 𝐵 which implies 𝑓(𝐻) = 𝑉 − 𝐵. Since 𝑉 − 𝐵 is Ngpc-closed, 

𝑓(𝐻) is a Ngpc-closed set in (𝑉, 𝜏𝑅
′ (𝑌)). That is 𝑓(𝐻) is Ngpc-closed in 𝑉 for every Ngpc-closed set  𝐻 of  𝑈. Hence 𝑓 is a 

Sngpc-closed map. 

     Theorem 5.10.   Let 𝑓: (𝑈, 𝜏𝑅(𝑋)) → (𝑉, 𝜏𝑅
′ (𝑌))  be a function. Then the following statements are equivalent 

(i) 𝑓 is Sngpc-open,  

 (ii)      For every subset 𝐴 of  𝑉  and every Ngpc-closed set 𝐻 of  (𝑈, 𝜏𝑅(𝑋)) containing 𝑓−1(𝐴), there is a Ngpc-closed set 𝐵 

of  (𝑉, 𝜏𝑅
′ (𝑌)) with 𝐴 ⊆ 𝐵 and  𝑓−1(𝐵) ⊆ 𝐻. 

Proof.  Let 𝐴 be a subset of  (𝑉, 𝜏𝑅
′ (𝑌)) and 𝐻 be a Ngpc-closed set of  (𝑈, 𝜏𝑅(𝑋)) such that 𝑓−1(𝐴) ⊆ 𝐻. Then 𝑈 − 𝐻  is a 

Ngpc-open set of 𝑈. Since 𝑓 is Sngpc-open, 𝑓(𝑈 − 𝐻) is Ngpc-open in (𝑉, 𝜏𝑅
′ (𝑌)). Now 𝐵 = 𝑉 − 𝑓(𝑈 − 𝐻) is a Ngpc-closed 

set containing 𝐴 in 𝑉 such that  𝑓−1(𝐵) ⊆ 𝐻.  

            Conversely let  𝐺 be a Ngpc-open set of  (𝑈, 𝜏𝑅(𝑋)),  then 𝑓−1(𝑉 − 𝑓(𝐺)) ⊆ 𝑈 − 𝐺 and 𝑈 − 𝐺 is Ngpc-closed.  By our 

assumption there is a Ngpc-closed set 𝐵 of  (𝑉, 𝜏𝑅
′ (𝑌)) such that 𝑉 − 𝑓(𝐺) ⊆ 𝐵 and 𝑓−1(𝐵) ⊆ 𝑈 − 𝐺. Hence 𝑉 − 𝐵 ⊆

𝑓(𝐺)and 𝐺 ⊆ 𝑈 − 𝑓−1(𝐵). Thus 𝑉 − 𝐵 ⊆ 𝑓(𝐺) ⊆ 𝑓(𝑈 −  𝑓−1(𝐵) ⊆ 𝑉 − 𝐵 which implies 𝑓(𝐺) = 𝑉 − 𝐵. Since 𝑉 − 𝐵 is 

Ngpc-open, 𝑓(𝐺) is a Ngpc-open set in (𝑉, 𝜏𝑅
′ (𝑌)). That is 𝑓(𝐺) is Ngpc-open in 𝑉 for every Ngpc- open set  𝐺 of  𝑈. Hence 𝑓 

is a Sngpc-open map. 
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