TRANS-SASAKIAN MANIFOLD AND HYPERSURFACE

DEEPA KANDPAL

ABSTRACT. Object of present paper is to study of trans-Sasakian manifold with its hypersurface , considering some special condition satisfied by hypersurface. In addition , some theorems are given related to hypersurfaces of trans-Sasakian manifold and its curvature tensor with induced connection.

1. Introduction

Oubina [6] introduced the notion of trans-Sasakian manifolds which contains both the class of Sasakian and co-symplectic structures and are closely related to the locally conformal Kahler manifolds. A trans-Sasakian manifold of type (0,0), $(\alpha,0)$ and $(0,\beta)$ are the cosymplectic, α -Sasakian and β -Kenmotsu manifold respectively. In 1972, Chen and Yano introduced the notion of manifold of quasiconstant curvature [3]. Generalizing this notion, M.C. Chaki [7] introduced the idea of a manifold of generalized quasi-constant curvature. In this paper, section 2 contains definition and some of its relations on trans-Sasakian manifold. Section 3 and 4 deals with some properties of hypersurface of trans-Sasakian manifold together with its curvature tensor and theorems.

2. Trans-Sasakian Manifold

A (2n+1) dimensional differentiable manifold M^{2n+1} is said to be an almost contact metric manifold [4] if it admits a (1,1) tensor field ϕ , a contravariant vector field ξ , a 1-form η and a Riemannian metric g which satisfy

$$\phi^{2}X = -X + \eta(X)\xi, \phi\xi = 0, \eta(\phi X) = 0$$
(2.1)

$$g(\phi X, \phi Y) = -g(\phi X, \phi Y), \eta(X) = g(X, \xi), \eta(\xi) = 1$$
 (2.2)

$$g(\phi X, \phi Y) = -g(X, Y) - \eta(X)\eta(Y) \tag{2.3}$$

for all vector fields X , Y on M^{2n+1} .

An almost contact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$ is said to be trans-Sasakian Manifold [6], if $(M \times R, J, G)$ belongs to the class W_4 of the Hermitian manifolds, where J is the almost complex structure on $M \times R$ defined by

$$J(Z, f\frac{d}{dt}) = (\phi Z - f\xi, \eta(Z)\frac{d}{dt})$$

 ${\it Date}$: Received: xxxxxx; Revised: yyyyyy; Accepted: zzzzzzz.

2010 Mathematics Subject Classification. Primary 53A30; Secondary 53D15, 53C43.

Key words and phrases. Almost Contact Manifold, Sasakian Manifold, Metric Connection , Hypersurface and Invariant Hypersurfaces.

for any vector field Z on M and smooth function f on $M \times R$ and G is the product metric on $M \times R$.

This may be defined by the condition [5]

$$(\nabla_X \phi)Y = \alpha[g(X, Y)\xi - \eta(Y)X] + \beta[g(\phi X, Y)\xi - \eta(Y)\phi X]$$
 (2.4)

where α, β are smooth functions on M^{2n+1} and we say that a structure trans-Sasakian structure of type (α, β) . From Equation (2.4) it follows that

$$\nabla_X \xi = -\alpha \phi X + \beta [X - \eta(X)\xi] \tag{2.5}$$

$$(\nabla_X \eta) Y = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y). \tag{2.6}$$

In trans-Sasakian Manifold $M^{(2n+1)}(\phi, \xi, \eta, g)$ the following relation hold [9].

$$R(X,Y)\xi = (\alpha^{2} - \beta^{2})[\eta(Y)X - \eta(X)Y] - (X\alpha)\phi Y - (X\beta)\phi^{2}(Y)$$

$$+ 2\alpha\beta[\eta(Y)\phi X - \eta(X)\phi Y] + (Y\alpha)\phi X + (Y\beta)\phi^{2}X \qquad (2.7)$$

$$\eta(R(X,Y,Z)) = (\alpha^{2} - \beta^{2})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]$$

$$-2\alpha\beta[g(\phi X,Z)\eta(Y) - g(\phi Y,Z)\eta(X)]$$

$$-(Y\alpha)g(\phi X,Z) - (X\beta)[g(Y,Z) - \eta(Y)\eta(Z)]$$

$$+ (X\alpha)g(\phi Y,Z) + (Y\beta)[g(X,Z) - \eta(Z)\eta(X)] \qquad (2.8)$$

$$R(\xi, X)\xi = (\alpha^2 - \beta^2 - \xi\beta)[\eta(X)\xi - X]$$
 (2.9)

$$S(X,\xi) = [2\eta(\alpha^2 - \beta^2) - \xi\beta]\eta(X) - (\phi(X) - \alpha) - (2n-1)(X\beta)$$
 (2.10)

$$S(\xi,\xi) = 2n(\alpha^2 - \beta^2 - \xi\beta) \tag{2.11}$$

$$(\xi, \alpha) + 2\alpha\beta = 0 \tag{2.12}$$

$$\phi \xi = \left[2\eta(\alpha^2 - \beta^2 - \xi\beta)\right]\xi + \phi(grad\alpha) + (2n-1)(grad\beta) \tag{2.13}$$

for all vector fields X [1] .

3. Hypersurface of Trans-Sasakian Manifold

Let M^{2n+1} trans-Sasakian manifold with Riemannian metric g and Riemannian connection ∇ . Also let \overline{M} be a hypersurface of M^{2n+1} . Let for a hypersurface \overline{M} of M^{2n+1} we have[8]

$$(\nabla_X \eta) Y = (\nabla_Y \eta) X, \tag{3.1}$$

$$g(\eta(Y), Z) = H(Y, Z) \tag{3.2}$$

for all $X, Y \in \overline{M}$. By (2.6), we have

$$(\nabla_X \eta)Y = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y)$$

Also, by equation (2.2) we get,

$$\alpha(g(\phi X, Y)) = 0 \tag{3.3}$$

Let ∇ be Riemannian connection on trans-Sasakian manifold M^{2n+1} and $\overline{\nabla}$ be induced connection on hepersurface \overline{M} of trans-Sasakian manifold M^{2n+1} , then by Gauss-Wiengarten equations, we have

$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{3.4}$$

$$\overline{\nabla}_X \xi = \nabla_X \xi + h(X, Y) \tag{3.5}$$

$$g(h(X,Y),N) = g(A_N X,Y), \tag{3.6}$$

for all $X, Y \in \overline{M}$, where h is the second fundamental form on \overline{M} and A is shape operator[2]. So we have the following results:

Theorem 3.1. If M^{2n+1} is trans-Sasakian manifold and \overline{M} be a hypersurface of trans-Sasakian manifold M^{2n+1} , then \overline{M} is β -Sasakian manifold if $g(\phi X, Y) \neq 0$.

Proof. By equations
$$(2.2)$$
, (2.6) , (3.1) and (3.2) , we got the result.

Theorem 3.2. The hypersurface \overline{M} of a trans-Sasakian manifold M^{2n+1} have invariant structure iff $g(\phi X, Y) = 0$, $\alpha \neq 0$, $\beta \neq 0$.

Proof. Let \overline{M} be a hypersurface of trans-Sasakian manifold M^{2n+1} , then by equation (3.3), let us take $\alpha \neq 0$, $\beta \neq 0$, this implies

$$g(\phi X, Y) = 0,$$

for all X, Y in \overline{M} .

 \Rightarrow Since \overline{M} is a hypersurface of trans-Sasakian manifold M^{2n+1} . Conversely, if $g(\phi X,Y)=0 \Rightarrow g(X,\phi Y)=0$.

Theorem 3.3. If \overline{M} is a hypersurface of M^{2n+1} and if \overline{M} is invariant then we have

$$(a)(\nabla_X \phi)Y = \alpha[g(X, Y)\xi - \eta(Y)] - \beta\eta(Y)\phi X \tag{3.7}$$

and

$$(b)(\nabla_X \eta)Y = \beta g(\phi X, \phi Y) \tag{3.8}$$

 \Box

Proof. By equations (2.4), (2.6) and (3.1), we got results (a) and (b).

Theorem 3.4. If \overline{M} is hypersurface of a trans-Sasakian manifold M^{2n+1} and if $\alpha g(\phi X, Y) = 0$, then hypersurface \overline{M} is co-symplectic if

$$g(\phi X, Y)\xi - \eta(y)\phi X = 0$$

and

$$g(\phi X, \phi Y) = 0 \tag{3.9}$$

or

$$g(X,Y)\xi - \eta(Y)\phi X = 0,$$

$$\eta(Y)\phi X = 0,$$
(3.10)

for all $X, Y \in M$.

Proof. By equations (2.4), (2.6) and (3.3), we have the results (3.9) and (3.10).

Theorem 3.5. Let \overline{M} is hypersurface of a trans-Sasakian manifold M^{2n+1} , then

$$(\overline{\nabla}_X \phi) Y = \alpha [g(X, Y)\xi - \eta(X)Y] + \beta [\eta(X)\phi Y - g(\phi Y, X)\xi] - \phi(\nabla_X Y) - h(X, Y) - g(\phi Y, h(X, \xi))\xi,$$
(3.11)

and

$$\overline{\nabla}_X \eta) Y = \alpha g(X, \phi Y) + \beta [g(X, Y) - \eta(X)\eta(Y)] + \eta(h(X, Y)) + g(Y, h(X, \xi))$$
(3.12)

for all $X, Y \in \overline{M}$.

Proof. With the help of equations (2.2), (2.3), (3.4) and (3.5), we got both results.

Theorem 3.6. On hypersurface \overline{M} of trans-Sasakian manifold M^{2n+1} , we have

$$(i)(\overline{\nabla}_X\phi)Y = (\nabla_X\phi)Y$$

if

$$\eta(X)\phi Y + \eta(Y)\phi X = 0$$

and

$$\phi(\nabla_X Y) + h(X, Y) + q(\phi Y, h(X, \xi))\xi = 0,$$

for all $X, Y \in M$.

$$(ii)(\nabla_X \eta)Y = (\overline{\nabla}_X \eta)Y.$$

if

$$h(X,Y) + g(h(X,\xi),Y)\xi = 0$$

Proof. With the help of equations (2.4), (3.11) and (3.12), we got both results.

Theorem 3.7. If \overline{M} invariant hypersurface of trans Sasakian manifold then if X and ξ are conjugate then X and Y are also conjugate in \overline{M} .

Proof. The result followed by previous theorem.

Theorem 3.8. If \overline{M} invariant hypersurface of trans Sasakian manifold M^{2n+1} then if X and ξ are conjugate then all X and Y are asymptotic in \overline{M} .

Proof. The proof is trivial.

4. RIEMANNIAN CURVATURE TENSOR OF HYPERSUFACE WITH CONNECTION E

If R is Riemannian Curvature in trans-Sasakian manifold M^{2n+1} given by

$$R(X, Y, Z) = \nabla_X \nabla_Y Z + \nabla_Y \nabla_X Z + \nabla_{[X,Y]} Z$$

then the Riemannian curvature tensor \overline{R} on hypersurface \overline{M} is given by

$$\overline{R}(X,Y,Z) = R(X,Y,Z) + \alpha[g(A_ZY,\phi X)\xi - g(A_ZX,\phi X)\xi + \phi X\eta(A_ZY) - \eta(A_ZX)\phi Y]$$

$$-\beta[g(A_ZX,\phi^2Y)\xi - g(A_ZY,\phi^2X)\xi - \eta(A_ZX)\phi^2X] + [g((E_Yh)(X,\xi),Z)$$

$$-g((E_Xh)(Y,\xi),Z)]\xi + \eta(h(X,\xi))\eta(A_ZY)\xi - \eta(A_ZX)\eta(h(Y,\xi))\xi$$

$$+\eta(A_ZX)\phi^2Y + \eta(A_Z[X,Y])\xi + [\eta(A_Z(\nabla_YZ)) - \eta(A_Z(\nabla_XY))]\xi$$

$$+[\eta(A_YX)\eta(A_Z\xi) + \eta(A_XY)\eta(A_Z\xi)]\xi]$$

where

$$g(A_Z \nabla_X Y, \xi) = g(h(\nabla_X Y), N)$$

$$E_X Y = \nabla_X Y - g(h(X, \xi), Y)\xi,$$

and we have the following relations:

$$\overline{R}(X,\xi,Z) = R(X,\xi,Z) + \alpha[g(A_Z\xi,\phi X) - g(A_ZX,\phi X)\xi]$$

$$+\phi X \eta(A_{Z}\xi) - \eta(A_{Z}\phi X)] - \beta[-g(A_{Z}\xi,\phi^{2}X)\xi - \eta(A_{Z}X)\phi^{2}X] +[g((E_{X}h)(X,\xi),Z) - g((E_{X}h)(\xi,\xi),Z)]\xi + \eta(h(X,\xi))\eta(A_{Z}\xi)\xi -[\eta(A_{Z}(\nabla_{\xi}Z))]\xi + [\eta(A_{\xi}X)\eta(A_{Z}\xi) + \eta(A_{X}\xi)\eta(A_{Z}\xi)]\xi$$
(4.1)

and

$$\overline{R}(\xi,\xi,Z) = \eta(h(\xi,\xi))\eta(A_Z\xi)\xi - \eta(A_\xi\xi)\eta(h(\xi,\xi))\xi
[\eta(A_Z(\nabla_\xi Z))] + [\eta(A_\xi\xi)\eta(A_Z\xi) + \eta(A_\xi\xi)\eta(A_Z\xi)]\xi$$
(4.2)

Theorem 4.1. If ξ is conjugate along any $X \in \overline{M}$ of trans-Sasakian manifold M^{2n+1} , then

$$\overline{R}(X,Y,Z) = R(X,Y,Z) + [g((E_Y h)(X,\xi),Z) - g((E_X h)(Y,\xi),Z)]\xi$$
 (4.3)

Proof. If ξ is conjugate along any $X \in \overline{M}$ that is on trans Sasakian manifolds M^{2n+1} then by conjugate property $h(X,\xi) = 0$, we got the equation (4.3).

Theorem 4.2. If M^{2n+1} is trans-Sasakian manifold and \overline{M} is a hypersurface of M^{2n+1} , then

$$\overline{R}(X,\xi,Z) = R(X,\xi,Z) + \alpha [g(A_Z\xi,\phi X) - g(A_ZX,\phi X)\xi + \phi X\eta(A_Z\xi) - \eta(A_Z\phi X)] - \beta [-g(A_Z\xi,\phi^2X)\xi - \eta(A_ZX)\phi^2X]$$
(4.4)

if

$$[g((E_X h)(X,\xi),Z) - g((E_X h)(\xi,\xi),Z)] = -\eta(h(X,\xi))\eta(A_Z \xi) + [\eta(A_Z(\nabla_{\xi} Z))] - [\eta(A_{\xi} X)\eta(A_Z \xi) - \eta(A_X \xi)\eta(A_Z \xi)].$$
(4.5)

Acknowledgment. The author is thankful to the refree for his valuable comments and suggestions towards the improvement of the paper.

References

- A.A. shaikh and Y.Matsuyama , On trans sasakian manifolds, SUT Journal of Mathematics Vol. 45 No.1(2009), 25-41.
- Aysel Turget Vanli and Ramzansari, On Invariant Submanifolds of a Generalized Kenmotsu Manifold, arXiv: 1410.4662v1[math.DG] 17 Oct 2014.
- B.Y. Chen and K.Yano , Hypersurfaces of Conformally flat space , Tensor , N.S., 26(1972), 318-322.
- 4. D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math 509, Springer-Verlag, 1976.
- 5. D.E. Blair and J.A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Mathematiques, 34 (1990), 199-207.
- 6. J.A. Oubina , New class of almost contact metric manifolds, Publ.Math. Debrecen 32(1985), 187-193.
- 7. M.C. Chaki and R.K. Maity, On Quasi-Einstien manifolds, Publ.Math. Debrecen , 57(2000), 297-306.
- 8. Quddas Khan, Differential Geometry of Manifolds, PHI Learning Private Limited (2016).
- 9. U. C. De, M.M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43(2)(2003), 247-255.

Department of Mathematics, S.S.J. Campus, Almora, Kumaun University , Nainital, , India.

 $E ext{-}mail\ address: kandpal.diya@gmail.com}$