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Abstract  
Killing symmetry equations in both coordinate formalism and tetrad formalism form a system of 

coupled partial differential equations and require decoupling before integration. This discourse discovers 

the method of minimum partial differentiation and applies it to decouple teleparallel Killing equations for 

a non-static spherically symmetric space-time involving functions )( tR  and )( r . This method together 

with the method of separation of variables helps to decouple the basic system of teleparallel Killing 

equations and integrate. It finds that the function )( tR  remains arbitrary for teleparallel Killing vectors 

where as for the function )( r  there arise two cases. For one case the function rr ln)(   and for 

other it is not. It shows eight teleparallel Killing vector fields for the first case and seven teleparallel 

Killing vector fields for the second.  

 

Keywords:  Torsion fields, Teleparallel Killing vector fields, Weitzenbock connection,  Method of 

minimum partial differentiation 

 

I. INTRODUCTION 

  The well-known Einstein’s general theory of relativity (GR) assumes a spin-less particle, 

with generalized coordinates, follow the geodesic of the underlying space-time. The generalized 

coordinate transformation formalism (CF) of this theory discovers Levi-Civita 

connection 


 symmetric in lower two indices. Thus, it discovers that the presence of gravitation field 

produces a curvature in space-time and the effect of torsion vanishes from the very beginning [1]. For the 

sake of argument let us assume the connection coefficient 


  is anti-symmetric i.e. 

0 





 then it easy to prove that the quantity 










*

T  now becomes a tensor 

[2]. However, this quantity disappears in GR because of its assumption.  

 

An alternate to CF is tetrad formalism (TF). In this formalism, a set of four axes called tetrad 

 
3210

,,,  
m                                            (1) 

are attached to each point 


x of space-time. Further, at each point of space-time there are a local set of 

coordinates 
m

 associated with the tetrad frame  

},,,{
3210

 
m

         (2) 

Unlike the coordinate 


x  of the background geometry, the local coordinates 
m

  do not extend beyond 

the local frame at each point. The condition for orthonormality is the scalar product of these axes 

constitute the Minkowski metric  1,1,1,1 
nm

  and the scalar space-time distance 
2

ds  is  
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nm

nm
ddds 

2
        (3) 

where
nmnm

   is a symmetric matrix called tetrad metric.   

 

The transformation matrix between the tetrad frame (TF) and the coordinate frame (CF) is  


m
h  

(the tetrad components) and the matrix inverse of it is 
m

h  (the inverse tetrad components), so that  






 

m

m
hh  and  

m

nn

m
hh 


       (4) 

 

In TF, the rising and lowering of indices are performed through tetrad metric 
nm

  and it’s inverse
nm

 . 

This is similar to CF where the rising and lowering of indices are performed by the Riemannian metric 

g  and its inverse


g . Comparing the scalar space-time distance (3) for orthonormal tetrads with the 

scalar space-time distance of CF, the metric tensor 
g  is found to be [ 3] 




nm

nm
hhg            (5) 

In order to distinguish coordinate frame and tetrad frame with their indices we will follow the Andrew’s 

convention where Latin dummy indices label tetrad frame  3,2,1,0,,, pnm  and Greek dummy 

indices label coordinate frame  3,2,1,0,,,  .  

The directed derivative 
m

  is a 4-vector in TF defined as 




x

h
mm




 and it is independent of 

the choice of coordinates as it has tetrad index only and no coordinate index. Unlike the derivatives in CF, 

the directed derivatives in TF do not commute. Based on the commutation of the directed derivatives in 

TF, two kinds of tetrads holonomic and non-holonomic are defined. Among the various modifications of 

Einstein’s theory, an alternative and equivalent formulation of GR is the Teleparallel Gravity (TG). 

Teleparallel equivalent of General Relativity (TEGR) relies on a global flat space-time (zero curvature ) 

with a non-vanishing torsion. In TEGR, non-holonomic tetrad is chosen to describe the gravitation. This 

theory is different from GR in the sense that it attributes torsion responsible for the acceleration of the 

universe in place of curvature and uses the Weitzenbook connection in place of the Levi-Civita 

connection. The TEGR for a given a nontrivial tetrad defines the connection as 

 

n

mk
nm

k

x

h
h










def.
~

         (6) 

The connection defined by (6) is called Weitzenbock connection, it is anti-symmetric in lower two indices 

and the quantity  

mn
k

nm
k

nm
k

T 
~~

        (7) 

is defined as torsion tensor. With the definition (7) it is easy to prove that the quantity nm
k

T  of equation 

(7) is non-zero but the curvature tensor vanishes. Thus, in TEGR, curvature vanishes in place of torsion 

[4-7].  

 

 Symmetries play a key role in modern physics. The symmetries of curved space-time are 

determined by existence of  Killing vectors (KVs). Let there is a vector )(


xK  at every point 


x  of 
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space-time in CF. Formulating with the help of Lie derivative, the condition for the metric 
g  to remain 

unchanged or to be symmetric under translation in the direction of this vector 


K  is given by following 

Killing equation 

  

0;;,,,
 










 KKKgKgKg     (8) 

 

where “;” (semi-colon ) represents covariant derivative and “,” (comma) represents partial derivative [8]. 

Thus, symmetry in space is present if and only if equation (8) is satisfied. For a given metric
g , 

equation (8) is a system of partial differential equations determining the vector field )(


xK ; if it has no 

solution, then space has no symmetry. Vector


K , which is a solution of the equation (8) is Killing vector 

[8-9]. 

 

Sharif and Jamil (2008) obtained the condition of Killing symmetry in TEGR for a given 

metric
nm

g . They established the TP version of Lie derivative of a second rank covariant and 

contravariant tensor along the vector field 
m

K ( called TP Killing vectors ) and obtained the TP Killing 

equations for metric tensor 
nm

g  as follow    

  0,,,


k

pnkm

k

pmnk

p
n

p

pmm
p

np

p

pnm
TgTgKKgKgKg   (9) 

where nm
k

T  is torsion tensor given by (7). Equation (9) is a system of partial differential equations 

determining the TP Killing vectors )(


xK
p

; if it has no solution, then space has no TP symmetry [10]. 

 

 In order to answer the question of Killing symmetry it is required to solve the corresponding 

coupled partial differential equations (8) or (9) whichever is the case. One common technique for solving 

equations for Killing vectors or TP Killing vectors is to decouple unknowns before integration.  

 The paper is organized as follows. Section 2 discovers the method of minimum partial 

differentiation. Section 3 provides the system of TP Killing equations for a non-static spherically 

symmetric space-time. Section 4 provides solution of the TP Killing equations of section 3 using method 

of section 2. The last section presents the result.  

  

II. METHOD OF MINIMUM PARTIAL DIFFERENTIATION 
One of the methods for solution of an ordinary differential equation (ODE) is the “method of 

differentiation”. The idea of this method is to differentiate the given ODE with respect to the independent 

variable to result in a new ODE that may sometimes factor. One may find several possible solutions by 

considering each factor of this new equation equal to zero. However, the general solution of each term 

must then be used in the original equation, possibly to constraint some of the parameters. According to 

Deniel Zwillinger (1989), this method is applicable to nonlinear ODE [11]. 

The Killing equation (8) is system of partial differential equations (PDE). Stephani H. (1996) has 

applied a technique similar to the “method of differentiation” for the solution of Killing equations (8) for 

Minkowski space in Cartesian coordinates. His idea is to differentiate partially “all the given Killing 

equations with respect to all the independent variables” to result in new PDE’s. He then combines and 

integrates the resulting equations for Killing vectors. Finally, substitutes the solutions to original PDEs for 

possible constraint of the parameters [12]. The technique of Stephani H. (1996) is similar to the “method 
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of differentiation” but instead of ordinary derivatives, it applies partially derivatives therefore we may call 

it “method of partial differentiation” (PD).  

The Literatures [13-20] discuss Killing symmetry through (8) of some static and non-static space-

time using PD similar to Stephani (1996) but they have applied partial differentiation intuitively to a 

minimum number of times. Mushtaq (1997) [20] argued that it is not necessary to differentiate “all the 

given Killing equations with respect to all the independent variables” instead “minimum number of partial 

differentiation” can result the same. The method of [13-20] will be referred hare as the “method of 

minimum partial differentiation” (MPD). 

 

III. BASIC TELEPARALLEL KILLING EQUATIONS FOR NON-STATIC SPACE-TIMES 

 The idea of symmetry of space-time with torsion only is given in [10]. Finding the TP version of 

Lie derivative and the corresponding Killing equations it evaluates the TP KVs of the Einstein universe. 

The TP KVs of static spherically symmetric and the Friedmann space-time has evaluated in [21]. The TP 

KVs of the Schwarzschild space-time is calculated in [22] through non-othogonal tetrads. The TP KVs of 

Bianchi type VIII and IX space-times are calculated and classified according to their TP KVs in [23]. It 

further shows that the TP KVs for Bianchi type VIII and IX are different from that in general relativity. 

The TP KVs of Kantowski-Sachs space-time are explored in [24] using non-diagonal tetrad. The authors 

of the article [24] claim of using direct integration technique to solve the related system of coupled partial 

differential equations. Where as at page 497 they differentiate the related differential equation with 

respect to selected independent variable thus decouples the function before integration and substitute back 

in equations for possible solution. Again the direct integration method is claimed in [25] for classifying 

the cylindrically symmetric static space-times according to their teleparallel homothetic vector fields. 

Although the authors of the article [25] have avoided the calculation details but it is easy to check that 

direct integration without decoupling the related functions is not possible. Therefore, the appropriate 

name for the method of [24-25] is MPD.  

  

Using the procedure of [10] and MPD technique, in this communication, we find TP KVs for the 

following non-static space-times in spherical coordinates  3210
,,, xxxx  labeled by   ,,, rt   

 

 222222)(222
sin)( 


drdrdretRdtds

r
     (10) 

 

Therefore  


 222

33

22

22

)(2

1100 sin)(,)(,)(,1 rtRgrtRgetRgg
r

   (11) 

The tetrad components and inverse tetrad components for the non-static space-time (10) from equation (5) 

applying (11) are  

 


sin)(,)(,)(,1
2/)(

rtRrtRetRh
r

m
     (12) 

and 

 111112/)(1
)(sin)(,)(,)(,1


 


 rtRrtRetRh
rm

  (13) 

Using equations (12-13) in equation (6), we obtain the following non-vanishing Weitzenbock connection 

coefficients 
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where  
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)(

)(
)(

tR

tR
tH


   and  

td

tRd
tR

)(
)(        (15) 

Utilizing (14) in (7), we find following non-vanishing torsion tensor components  

cot,
1

),(
3

23

3

13

2

12

3

03

2

02

1

01 


 T
r

TTtHTTT    (16) 

Substituting equations (11) and (16) in equation (9) for the TP Killing vector field  

 3210
,,, KKKKK

p
  , we find following basic coupled partial differential equations 

 

0
0

0,
K           (17) 

11

1,
2

KK
 

           (18) 

0
2

2,
K           (19) 

0
3

3,
K           (20) 

02,
1

1,
222

 KeKrKr


       (21) 

0sinsin 3,
1

1,
32232

 KeKrKr


       (22) 

0sincossin 3,
2

2,
323

 KKK        (23) 

01,
0

0,
1212

 KKeRKeHR


      (24) 

02,
0

0,
222222

 KKrRKrHR       (25) 

0sinsin 3,
0

0,
32223222

 KKrRKrHR      (26) 

 

 

IV. DECOUPLING AND SOLUTIONS OF BASIC EQUATIONS 

 

On direct partial integration, the equations (17-20) provides   

),,(
0

rAK           (27) 

),,(
2/1




tBeK


          (28) 

),,(
2

rtCK           (29) 

),,(
3

rtDK           (30) 

where DCBA ,,,  are functions due to partial integration. Applying the method of MPD, the method of 

separation of variables and integration, we have  

 

   
24232221

2/

4321

0
CCCCdreK   


 (31) 

and 
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where i  are separation constants and 
1iC  and 

2iC  are constants of integration and }4,3,2,1{i . Now in 

order to determine 
2

K  and 
3

K we apply the method of MPD on equations (17-26) and utilizing 

equations (27-32), we obtain following constraint equations 

 

  02
2/2/

2
 


 erdreC

jj
       (33) 

 

where }3,2,1{j . Equation (33) leads to following two cases 

 

Case I:  02 jC , and   02
2/2/




erdre     (34)  

Case II: 02 jC , and   02
2/2/




erdre    (35) 

 

The case I keeps )( tR  arbitrary, implies 









r

c
ln  and decoupling of 

2
K  and 

3
K  with the method of 

MPD requires  

0,0,1 311131  CCc   .      (36) 

Therefore, the TP KVs of the metric (10), for rln  are following   

  

 
2442
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2 CrK          (37) 

   
R

r
CCdt

RR

r
K

141242

1 1
        (38) 

 

Rr
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RRr

K
21

1222/3

2 12 












       (39) 

 





sin

2/tanln
133

rR
K


         (40) 

j  , }3,2,1{j are constant of integrations. 

 

This leads to the space-time  












222222222
sin

1
)(  drdrdr

r
tRdtds     (41) 

having following eight generators of the TP KVs   

t
K






)1(
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Similarly, the case II keeps )( tR  arbitrary, rln  and decoupling of 
2

K  and 
3

K  with the method 

of MPD requires  

0,0
3111321

 CC ,      (43) 

and provides following TP KVs of the metric (10) 
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4  , is constant of integrations. 

 

This leads to space-times having following seven generators of the TP KVs  
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V. CONCLUSION 

This communication discovers the method of “minimum partial differentiation”.  The idea of this 

method is to differentiate partially “the given system of PDE minimum number of times with respect to 

minimum number of the independent variables” to result in new PDE’s that may sometimes factor. One 

may find several possible solutions by considering each factor of this new equation equal to zero. 

However, the general solution of each term must then be used in all the original partial differential 

equations, possibly to constraint some of the parameters. 

Applying the method of minimum partial differentiation it finds TP Killing vector field of a non-

static spherically symmetric space-time involving two functions )( tR  and )( r . For arbitrary )( tR  and 

two cases for )( r , it shows that TP Killing symmetry is present. In one case rln  and for other it is 

not. There are seven generators of TP Killing vectors for the case rln and for rln  there are 

eight generators of TP Killing vectors.  
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