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Abstract — In this article, an efficient numerical technique based on second kind Chebyshev wavelets is proposed to solve a 

class of fractional delay integro-differential equations. The operational matrix of fractional integration is used to convert the 

equation under investigation into a system of algebraic equations which can be solved easily. Illustrative examples are 

included to demonstrate the high accuracy and applicability of the method. In addition, the numerical results are compared 

with exact solutions and other existing methods confirm that present technique is more efficient. 
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I. INTRODUCTION  

In recent years, many important problems in fluid mechanics, visco-elasticity, biology, oscillation theory, airfoil theory and 

other branches of science & engineering are involving fractional derivatives and integrals to an arbitrary order (real or 

complex) called as fractional calculus[1].Fractional calculus is a generalisation of ordinary differentiation & integration 

through arbitrary order. During last three decades, fractional calculus attracted by many scientist and researchers due its 

numerous applications in real life science and engineering problems. Some applications of fractional calculus are electrolyte 

polarization [2], optics and signal processing [3], circuit systems [4], probability and statistics [5], plasma physics, image 

processing and neutral network [6]. 

The problems containing delay integro-differential equations of fractional order are complex in nature and cannot be solved 

easily. Due to this complex nature and non-local issues of these problems development of approximate and numerical 

techniques play important role. 

There have been few different techniques developed for solving fractional integro-differential equations, such as CAS wavelet 

method [7], Legendre wavelets method [8], variational iteration method and Homotopy perturbation method [9], Adomian 

decomposition method [10] and Taylor expansion method [11]. The methods based on wavelets are more efficient. 

From last two decades, wavelet theory has been applied in many branches of science and engineering. It permits exact 

representation of functions. The properties of wavelets result into more accurate solutions of difficult problems. 

In this paper, we consider the fractional integro-differential equation as 
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For delay fractional Fredholm integro-differential equation, we have 
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                                                                  , ,

t

a

K t f t k t s f t dt                                                                                (3) 

In the available literature, we noticed that there are few numerical techniques for the solution of fractional integral and 

differential equations based on wavelet theory [12].In the present work, we have used Chebyshev wavelets of second kind and 

its operational matrix for solving delay integro-differential equation of fractional order. 

The remaining part of this article is organized as follows: In section 2, the basic definitions and mathematical preliminaries of 

Chebyshev wavelets and function approximation is given. The operational matrix of fractional integration using Chebyshev 

wavelets is obtained in section 3. In section 4, the method of solution is given. Some examples are included in section 5, to 

provide evidence of efficiency of present method. Lastly, the conclusion is given in section 6. 

II. PRELIMINARIES OF CHEBYSHEV WAVELETS 

This section gives some basic definitions and properties of Chebyshev wavelets of second kind. 

 

A. Chebyshev wavelet of second kind  

The wavelets are usually constructed by their polynomials. In the same way, the Chebyshev wavelets are constructed from the 

second kind Chebyshev polynomials which have important properties and are applicable in many fields. 

Wavelets constitute a family of various functions formed by dilation and translation of a single function  t  called as 

mother wavelet. The family of continuous wavelets is given by the following equation with variation of dilation parameter ‘a’ 

and translation parameter ‘b’ as, 
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When these parameters a & b are restricted as   k
aa


 0 ,   kabb  00 , 00a & 00 b  then we get the family of 

discrete wavelets as 
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Here  tnm,  forms wavelet basis for  2L R . Also  tnm,  forms an orthonormal basis when 20 a
  
and 10 b . 

The second kind Chebyshev wavelets  ,n m t  defined on the interval 10  t  and have four arguments 

  , , , ,n m t k n m t  where  
11,2,3,...,2 ,kn k is a positive integer, ‘m’ is degree of Chebyshev polynomials and ‘t’ 

is normalized time. The  ,n m t  is defined as, 
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where  mV t is the Chebyshev polynomial of second kind of degree of m and is given from the following equation 
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These second kind Chebyshev wavelets  , , 0,1,2,3,..., 1n m t m M    forms orthonormal basis with weight function 
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B. Chebyshev wavelet function approximation 

By using the orthonormality property of the second kind Chebyshev wavelets, the function  f t   defined over 0 1t   can 

be expanded as 

                                                   , ,0 0 m n m nn m
f t C t

 

 
                                                                                               (5)

 

The above equation having infinite sets when truncated, then it can also be written as  
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                                                                                   (6)                     

where C  and  t  are the column vectors with ˆ 2km M  and are given by 
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From these notations, the above equation can be written as  
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By using the collocation points as  
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We, now define the second kind Chebyshev wavelet matrix m mQ   as                 
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To illustrate the above matrix, for 3M  and 2K   the second kind Chebyshev wavelet can be expressed as  
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III. CHEBYSHEV WAVELET OPERATIONAL MATRIX OF THE FRACTIONAL INTEGRATION 

 
Now, we obtain the fractional integration operational matrix by using second kind Chebyshev wavelets as follows: 

In equation (8), the integration of the vector  t  can be expressed as 

                                                                         
0

t

d P t                                                                                              (11) 

It can also be re-written as, 
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Where the matrix m mP

  is second kind Chebyshev wavelet fractional integration operational matrix 
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From equations (13) and (14), the equation (12) can be expressed as 
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By equation (12) and (16), we have  
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                                                         m m m m m mP t Q H D t                                                                                             (17) 

Therefore the fractional integration operational matrix 


mmP   by using second kind Chebyshev wavelet is  

                                                          
1

m m m m m mP Q H Q  

                                                                                                        (18) 

We use this operational matrix for the solution of fractional order delay integro-differential equation in modified from as per 

the requirement based on the delay term. 

IV. METHOD OF SOLUTION 

Consider the fractional delay integro-differential given by equation (1).We approximate the fraction  tg  by using second kind 

Chebyshev wavelet as  

                                                            g x S t                                                                                                               (19) 

Also, it can be written as  

                                                    
   tCtfE                                                                                                                  (20) 

By using the given conditions, it can be expressed as, 
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Using equation (10) in the above equation (18), we get     
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Also, by using equations (10) and (11), we get 
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By using induction property, we get 
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Using the disjointness & orthogonality properties of block pulse function and simplifying the above equation’s integral part, we 

have 
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Now, equation (26) becomes, 
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                                         
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Next, we substitute these equations (16), (17), (4) and (24) in equation (1), we get  

                                      
1T T T
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Multiplying above equation (28) by  t  on both sides, then we have by the orthonormality property of second kind 

Chebyshev wavelet integration over the interval ]1,0[  as, 

                                    
1

m m qC GQ B H
m

                                                                                                                         (29) 

This is a nonlinear system containing algebraic equations. Solving this nonlinear system of algebraic equations, we obtain the 

numerical solution of equation (1) in accordance with equation (25). For the delay term     the same procedure is carried with 

the modification in the variables. 

V. NUMERICAL EXAMPLES 

 

The purpose of this section is to demonstrate the accuracy and applicability of the present technique. 

 

Example 1. Consider the delay fractional Fredholm integro-differential equation [12] 

                  
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subjected to the initial condition  
1

0, 0
3

y t t      .      
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81 567
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J J






 with , 1,2,3,...,i R i   for a integer  and i be the Riemann-Liouville 

fractional integral of order 0i  . 

The exact solution of the above equation (30) is  
5

2 2y t t t  . This equation (30) can be solved by using the present 

technique which is described in previous section. The computational results are displayed in table 1 and shown in Fig.1.As we 

see the results in table 1 and Fig.1, it is clear that the numerical solution converges to the exact solution. 

 

                                                Table 1.  Exact and numerical solutions of example 1. 

 

 

 

 

 

 

 

 

t  Exact solution Numerical solution 

0 0.00000000000 0.000000000000 

0.1 0.01316227766 0.013169925011 

0.2 0.05788854382 0.057887923951 

0.3 0.13929503017 0.139294903018 

0.4 0.26119288512 0.261191988521 

0.5 0.42677669529 0.426769723492 

0.6 0.63885480092 0.638853984215 

0.7 0.89996341300 0.899959341985 

0.8 1.21243340224 1.212429638213 

0.9 1.57843347142 1.578429832605 

1.0 2.00000000000 1.999942659872 
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      Fig.1 Graph of exact and numerical solution at various values of t  of example 1. 

 

Example 2. Consider the following linear delay fractional integro-differential equation [13] 

                                    
12

0.7 0.5 0.5

2

1

1 3 3 , 0 1
x

d y
D y t D y t D y t x t y x dx f t t

dt


                            (31)  

with initial conditions    '0 1, 0 0y y   

where             
31

2 2
1.3

2 5.3333 2.2563 1.7142 3.0087f t t t t t      . 

The equation (31) has the exact solution as   2 1y t t  . The approximate solutions obtained by applying the present scheme 

are listed in the following table 2 over the interval 0,1 . The solutions obtained are converging with the exact solutions and 

are shown in the Fig.2. 

                                

                              Table 2.  The exact, obtained approximate solutions and absolute errors of example 2. 

t  Exact solution  Approximate solution Absolute error 

0 1.00000000 1.00004572 54.572 10  

0.1 1.01000000 1.01021524 42.1524 10  

0.2 1.04000000 1.04001522 51.522 10  

0.3 1.09000000 1.09004519 54.519 10  

0.4 1.16000000 1.16005416 55.416 10  

0.5 1.25000000 1.25001523 51.523 10  

0.6 1.36000000 1.36000541 65.410 10  

0.7 1.49000000 1.49005653 55.653 10  

0.8 1.64000000 1.64001528 51.528 10  

0.9 1.81000000 1.81000254 62.540 10  

1.0 2.00000000 2.00000021 72.100 10  
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Fig.2 Graph of exact and numerical solution of example 2 at various values of t . 

 

Example 3. Consider another linear delay fractional integro-differential equation [13] 

                              
1

'

1

1 1 3 2 , 0 1
x

dy
y t t t y t y t y t f t x t y x dx t

dt





                                 (32) 

subjected to the conditions    '0 1, 0 0y y   

where              22 sin cos cos sin 1 cos 1 4 sin 1 .f t t t t t t t t t            

This delay fractional integro-differential equation at 2 
 
has the analytic solution as    cosy t t  . The computational 

results of this example are displayed for various values of   in the following table 3 and are shown in Fig.3.  From this table 3 

and Fig.3, it is clearly observed that the present scheme has good accuracy and converges to the exact solution. 

 

Table 3. Computational results for various values of   of example 3. 

t  
Exact solution 

at 2   
Present method at 2   

Present method at 

1.9   

Present method at 

1.8   

0 1.00000000 1.00000120 1.00000214 1.00000218 

0.1 0.99500416 0.99500415 0.99500335 0.99857512 

0.2 0.98006657 0.98006591 0.98006581 0.98042569 

0.3    0.95533648 0.95533647 0.95533623 0.95236214 

0.4 0.92106099 0.92106098 0.92106521 0.92473768 

0.5 0.87758256 0.87758245 0.87845293 0.87523906 

0.6 0.82533561 0.82533554 0.83034528 0.83906854 

0.7 0.76484218 0.76484216 0.77584215 0.78459212 

0.8 0.69670671 0.69670668 0.71074512 0.73412586 

0.9 0.62160996 0.62160984 0.63614258 0.68955421 

1.0 0.54030230 0.54030221 0.57854123 0.61095684 
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  Fig. 3 Comparison of exact and approximate solutions for different values of  of example 3. 

 

Example 4. Consider another fractional integro-differential equation with delay as [13] 

                            
1

0.5

0

, 1 ,1
12

x

t
D y t xy x dx g t t 



                                                                                  (33) 

subjected to the condition  0 0y   

The exact solution of (33) when 0  is   2y t t t   .The obtained results by applying the present scheme are displayed in 

table 4 and Fig. 4. In table 4, we compare the results with other method in [13].Also from this table 4, it is clear that the present 

technique has good accuracy with exact solution and other methods. 

 

Table 4. Comparison of numerical results at various values of   for example 4. 

t  

Exact 

solution 

at 0   

Spectral collocation method [13] solution at 
      

            Present method solution at  

0.01   0.02   0.03   0.01   0.02   0.03   

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.2 -0.16000 -0.160769 -0.157172 -0.153576 -0.160012 -0.157254 -0.153498 

0.4 -0.24000 -0.245119 -0.237903 -0.230698 -0.240193 -0.238541 -0.230125 

0.6 -0.24000 -0.251869 -0.241074 -0.230300 -0.249511 -0.241254 -0.230298 

0.8 -0.16000 -0.180557 -0.1662231 -0.151918 -0.180023 -0.165984 -0.151891 

1.0 0.00000 -0.030929 -0.013094 0.0044010 -0.002984 -0.013009 0.0044009 
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                               Fig. 4 Comparison of exact and numerical solutions at various values of   of example 4. 

VI. CONCLUSIONS 

In this study, Chebyshev wavelets of second kind and its operational matrix of the fractional integration are used for the 
solution of fractional order delay integro-differential equations. The main advantage of this method is that converts considered 

equation into system of algebraic equations & can be solved easily. The achieved numerical results are compared with the 

exact solutions and with other existing methods to demonstrate the powerfulness of the present technique. Through examples, 

the high accuracy, computational efficiency and direct applicability of this method have been expressed. 
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