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Abstract - The purpose of this paper is to study an analytical first order solution to the one-dimensional advection-dispersion 

equation with adsorption term 
t

eC


0  to study the transport of pollutant vary exponentially with time using a generalized 

integral transform method to investigate the transport of sorbing but otherwise non-reacting solutes in hydraulic homogenous 

but geochemically heterogeneous porous formations. The solution is derived under conditions of steady-state flow and 

arbitrary initial and inlet boundary conditions. The results obtained by this solution agree well with the results obtained by 

numerically inverting Laplace transform-generated solutions previously published in the literature. The solution is developed 

for a third or flux type inlet boundary condition, which is applicable when considering resident solute concentrations and a 

semi-infinite porous medium.  
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I. INTRODUCTION 

      Recent field evidence shows that the classical form of the convection-dispersion equation is inadequate for describing 

discipline-scale solute transport [Matheron and De Marsily (1980), Sposito et. al. (1986), Sudheendra (2012)] due, in part, to an 

apparent increase in the dispersity as a function of the travel distance. This has inspired research to develop other techniques 

for describing the sector transport behavior. Freeze and Cherry (1979) briefly discuss chemical adsorption and methods of 

measurement.  Charbeneau (1981) has shown how the method of characteristics may simply be used in the analysis of linear or 

non-linear sorption and multi-component ion exchange. Finally, the transport solution from the dimensionless streamline and 

the breakthrough curve are combined to yield the pollutant break-through curve.  

      In many ground water problems, this added complexity makes no sense considering the fact that molecular diffusion is 

normally immaterial. neglecting molecular diffusion, Hunt (1998) established one-dimensional analytical solutions of a scale-

based dispersion equation for instable flow with an immediate supply, and for stable flow with a continuous source. however, 

solutions acquired by Hunt (1998) are for infinite model areas, at the whereas few ground water problems require solutions for 

semi-infinite areas. 

II. MATHEMATICAL MODEL 

    The Advection Dispersion Equations along with Initial and Boundary Conditions can be written as  
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Consider a semi-infinite porous medium in a unidirectional flow field in which the input tracer concentration is 
teC 

0  , where 

C0 is a reference concentration and   is a constant as show in figure 1. Originally, saturated flow of fluid of concentration, C 

= 0, taking place in the permeable media. At t = 0, the concentration of the higher surface is instantly reformed to C=
teC 

0  

 
 

Thus, the suitable Boundary Conditions for the given model   
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The problem is describe the concentration as a function of z and t,  

To reduce equation (3) to a more conversant form, we take 

   
 








 


n

tnK

D

tw

D

wz
ExptztzC d 1

42
,,

2

                                            (3) 

Substituting equation (3) into equation (1) gives    
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The Initial  and Boundary Conditions (2) transform to    
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Equation (4) can be resolved for a time dependent arrival of the fluid at z = 0.  

If  tzyxFC ,,, , same has been explain the previous chapter, then the solution of the problem in which the surface is 

maintained at temperature  t is 
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Figure 1  
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Let us consider, the problem which C0 is zero and the Boundary Condition is sustained at concentration unity. The Boundary 

Conditions are 
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The Laplace transform of equation (4) is  
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Henceforth, it is condensed to an Ordinary Differential Equation 

                                                






D

p

z 2

2

                                                                            (6) 

The solution of the equation is  
qzqz BeeA  

    where, 
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p
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The Boundary Condition as z  requires that B = 0 and Boundary Condition  at z = 0 requires that 
p
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specific  
solution of the Laplace transform equation is 
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The transposal of the above function using table of Laplace transform. The outcome is  
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Using Duhamel’s theorem, we have 
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Since 
2e is a constant function, , which gives 
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The solution to the problem is  
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Putting 
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Since  
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where,  
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III. EVALUATION OF THE INTEGRAL SOLUTION 

The integration of 1st term of equation (9) gives 
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For suitability the 2nd  integral can be stated in terms of error function  
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The 2nd  integral of equation (9) becomes 
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Then the system of reducing integral to a tabularized function is the same for both integrals in the right side of equation (11), 

only the 1st term is considered. Let a  and the integral can be stated as  
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Similar evaluation of the 2nd  integral of equation (11) gives 
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Again substituting a
a



  into the first term, the result is 
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Noticing that 
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Thus, equation (9)  becomes 
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Though, by definition, 
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Equation  (15) in terms of error functions, we have 
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Hence, Substitute in Equation (3) the solution is  
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Re-substituting for  and  gives 
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IV. RESULTS AND DISCUSSIONS 

      In this paper, we accomplish that the mathematical results were advanced for forecasting the feasible concentration of a 

given liquified constituent in unidirectional ejection flows through semi-infinite, homogeneous, and isotropic permeable media 

subject  to basis concentration  that  vary exponentially with time. The terms take into account the pollutants as well as mass 

transmission from the liquid to the solid stage because of adsorption. For instant dispersion and adsorption of a solute, the 
dispersion system is measured to be adsorbing at a rate related to its concentration. 

      The major limits of analytical techniques are that the applicability is only for simple problems. The geometry of the 

problem must be consistent. The belongings of the soil inside the area taken into consideration should be homogeneous in the 

sub area. 

      The analytical process  is relatively more elastic than the usual form  of different processes for one-dimensional 

transference model. Figures 3 to 12 denotes the concentration contours v/s distance inside the adsorbing media for exclusive 

values of time and permeability n . it's  seen that for a static velocity w, dispersal coefficient D and distribution coefficient Kd, 

C/C0 decreases with depth as permeability n decreases because of the distributive coefficient Kd and if time increases the 

concentration decreases for distinct depth  and decay  

Figures 4 to 12 represent the break-through-Curves for C/C0, and is maximum on the surface z=0 and reduces to reaches 

zero on the depth of a 100 meters. With an increase in most of the contaminants get absorbed by the solid surface and 

thereby retarding the movements of the contaminants as evident from the graphs. maximum of the pollutants are 

diminished within the unsaturated area itself and therefore the risk of ground water being polluted is minimize  

 
Figure (2): Effects of various processes on the break through curve for a continuous injection reactor and Ground 

water contamination

 

 
                 Figure (3) 

 

 
                     Figure (4)  
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Figure (6)  
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Figure (5)  
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                        Figure (9)  

 
              Figure (10)  
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                 Figure (12) 
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