Mathematical Proof of Collatz Conjecture

Nishad T M, MSc,MPhil,(PhD)
Research Scholar, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli-620020, Tamilnadu, India.

Abstract

Lothar Collatz introduced Collatz Conjecture in 1937. No one succeeded in proving this conjecture. In this article a convincing mathematical proof is introduced. Initially it is proved that for every natural number n in $N=\{1,2,3, .$.$\} , the set$ An exists where $A n=\{x / x$ is a term in Hailstone sequence starting with $n\}$. Later it is proved thatthe intersections of An and Am is not empty foreverynatural number $n \neq m, m, n>1$. Then it is observed that the countable intersection of all $A n$ contains $A_{0}=\{1\}$.This observation brings the conclusion that for all Hailstone sequences starting with any positive integer n ,there exists a a term 1 in the Hailstone sequence.This conclusion implies that for any positive integern, the Hailstone sequence starting with n eventually ends in 1 .

AMS Mathematics Subject Classification (2010): Primary 11Y16, 97A20, Secondary 33D99, 68 W01

Keywords -Collatz conjecture, Lothar Collatz, Hailstone sequence, $3 n+1, n / 2$ function, Proof of Collatz Conjecture

1. INTRODUCTION

Lothar Collatz introduced Collatz Conjecture in 1937.Collatz Conjecture explains a sequence that eventually ends in 1.The sequence is called Hailstone sequence which is defined as " Start with any positive integer , if that integer is odd number then triple it and add one to get the next term, but if the selected number is even divide it by 2 .Continuing this procedure , whatever be the selected number at the end of the sequence the sequence reaches 1 . Using computer the conjecture is tested till 5×10^{18} and scientists believe that this conjecture might be true for all natural numbers. But nobody has succeeded to bring a proof which can convince the conjecture is correct or not. In this article a convincing mathematical proof is introduced. Initially it is proved that for every natural number n in $N=\{1,2,3, .$.$\} , the set A n$ exists where $A n$ is the set that consists the numbers in Hailstone sequence starting with n. Later it is proved that $A m \cap A n \neq \emptyset, \forall m, n$ where $m \neq n$.
Then it is proved that the countable intersection of all $A n$ contains $A_{0}=\{1\}$.Thisproof brings the conclusion that all Hailstone sequences starting with any positive integern, eventually ends in 1.

2.PRELIMINARIES

Definition 2.1. Hailstone sequence
Hailstone sequence corresponding to a positive integer n is a sequence $\left\{a_{i}\right\}$ where a_{i} is obtained as the value applied to n recursively i times $a_{i}=\mathrm{f}^{\mathrm{i}}(n), n \in\{1,2,3,4, \ldots\}$ and $\mathrm{i}=0,1,2, .$. wheref ${ }^{0}(n)=n$ and for $\mathrm{i}>0$,
$\mathrm{f}^{\mathrm{i}}(n)=\left\{\begin{array}{c}\frac{n}{2}, \text { if } n \text { is even } \\ 3 n+1, \text { if } n \text { is odd }\end{array}\right.$

2.2. Collatz Conjecture

Statement : For any positive integer $n \in N$, the Hailstone sequence starting with n eventually ends in 1 .
Remark1: Some authors consider the set of natural numbers $N=\{0,1,2,3, .$.$\} .In this article the set of natural numbers N$ is considered as $\mathrm{N}=\{1,2,3, \ldots\}$ since Indian students follow the definition $\mathrm{N}=\{1,2,3 .$.$\} from school level and author is from$ India.

3.PROBLEM THAT DISCUSSED IN THIS ARTICLE AND SOLUTION

For any positive integer $n \in N$, the Hailstone sequence starting with n eventually ends in 1 . Though this statement is tested and seemed true, a convincing mathematical proof is not introduced by any one since1937. So this statement remains as a conjecture

Solution to the Problem- Mathematical Proof of Collatz Theorem

It is proved that for all Hailstone sequences starting with any natural number n, there exists a natural number i such that there exists a term $a_{i}=\mathrm{f}^{\mathrm{i}}(n)=1$. This proves collatz conjecture.
Theorem 1. $\forall n \in N$, Anexistswhere $A n$ is the set that consists the numbers in Hailstone sequence starting with n.
Theorem 2. $A m \cap A n \neq \emptyset, \forall m, n \in N, \quad m \neq n$.
Corollary 3. $\cap_{n=1}^{\infty} A n=A_{2} \supset A_{0}=\{1\}, n \in N$

4.PROOF OF THEOREMS

Theorem 1. $\forall n \in N, A n$ exists.
Proof. The set $A n$ consists the numbers a_{i} where a_{i} is obtained as the value applied to n recursively i times $a_{i}=\mathrm{f}^{\mathrm{i}}(n), n \in N$
As per definition, $\mathrm{f}^{0}(n)=n$ and for $\mathrm{i}>0$, and $\mathrm{f}^{\mathrm{i}}(n)=\left\{\begin{array}{c}\frac{n}{2}, \text { if } n \text { is even } \\ 3 n+1, \text { if } n \text { is odd }\end{array}\right.$
It is clear that for every $n \in N, \mathrm{f}^{\mathrm{i}}(n)$ is a natural number and so a_{i} exists. Hence $A n$ exists $\forall n \in N$.
Remark1:The above proof never implies that $A n$ must contain 1 or $A n$ must be finite. The proof conveys that $A n$ exists and the elements in $A n$ are positive integers.

Theorem 2. $A m \cap A n \neq \emptyset, \forall m, n \in N, \quad m \neq n$.

To prove theorem 2, first we shall prove the following lemmas.
Lemma 2.1 : For any odd number $p>1$, the number $(3 p+1)$ is even and $(3 p+1)>p$.
Lemma 2.2: For any odd number $p>1$, If $\frac{(3 p+1)}{2}$ is odd then $\frac{(3 p+1)}{2}>p$
Lemma 2.3 : For any odd number $p>1$, If $\frac{(3 p+1)}{2^{i}}$ is odd then $\frac{(3 p+1)}{2^{i}}<p$ where $i>1$
Lemma 2.4 : If m is an even number then it is a term of either the sequence $\left\{2^{u}\right\}$ or the sequence $\left\{(2 \mathrm{k}+1)^{\mathrm{v}} 2^{\mathrm{u}}\right\}$ where $\mathrm{u}, \mathrm{v}, \mathrm{k} \in N$

5.PROOF OF LEMMAS

Lemma 2.1: For any odd number $p>1$, the number $(3 p+1)$ is even and $(3 p+1)>p$.
Proof. Trivial .
Since p is odd, $p=2 k+1$, where $k \in N$,
$p<(3 p+1)=3(2 k+1)+1=6 k+4=2(3 k+2)$

Lemma 2.2:For any odd number $p>1$, If $\frac{(3 p+1)}{2}$ is odd then $\frac{(3 p+1)}{2}>p$

Proof.

Since p is odd, $p=(2 k+1)$, where $k \in N, \frac{(3 p+1)}{2}=(3 k+2)$.
$3 k+2=3 \frac{(p-1)}{2}+2=1.5 p-1.5+2=1.5 p+.5>p$.

Lemma 2.3:For any odd number $p>1$, If $\frac{(3 p+1)}{2^{i}}$ is odd then $\frac{(3 p+1)}{2^{i}}<p$ where $i>1$
Proof.
Since p is odd, $p=2 k+1$, where $k \in N$, and $\frac{(3 p+1)}{2}=(3 k+2)$
It is obvious that $1.5 k<2 k$ for all $k \in N$.
i.e, $(1.5 k+1)<(2 k+1)$, where $k \in N$
i.e, $\frac{(3 k+2)}{2}<(2 k+1)$, where $k \in N$
i.e, $\frac{(3 k+2)}{2^{i}}<(2 k+1)=p$, where $i, k \in N$
i.e, $\frac{(3 k+2)}{2^{i-1}}<(2 k+1)=p$, where $i>1, k \in N$
i.e, $\frac{(3 p+1)}{2^{i}}=\frac{(3 k+2)}{2^{i-1}}<p$, where $i>1, k \in N$
i.e, If $\frac{(3 p+1)}{2^{i}}$ is odd or even then $\frac{(3 p+1)}{2^{i}}<p$ where $i>1$

Hence, If $\frac{(3 p+1)}{2^{i}}$ is odd then $\frac{(3 p+1)}{2^{i}}<p$ where $i>1$
Notes: 1. The Lemma 2.3 holds if $\frac{3 p+1}{2^{i}}$ is even.
Notes: 2. The Lemma 2.3 holds for $p=1$.
Corollary 1:From the above proofs and the definitions of $\mathrm{f}(n)$ and $A n$, we shall observe the following inequalities and sub set relations.
If $p>1$ is an odd number
2.3.1 $\quad A_{3 p+1} \subset A_{p}$
2.3.2 If $\frac{(3 p+1)}{2}$ is odd then $\frac{(3 p+1)}{2}>p$ and $A_{\frac{(3 p+1)}{2}} \subset A_{(3 p+1)} \subset A_{p}$
2.3.3 If $\frac{(3 p+1)}{2^{i}}$ is odd then $\frac{(3 p+1)}{2^{i}}<p$ where $i>1$ and

$$
A_{\frac{(3 p+1)}{2^{i}}} \subset A_{\frac{(3 p+1)}{2^{i-1}}} \subset \ldots \subset A_{\frac{(3 p+1)}{2}} \subset A_{3 p+1} \subset A_{p}
$$

Let $p>1$ be any odd numbers in N, then the relations 2.3 .2 and 2.3.3 imply that there exist some odd number q holding any of the following inequalities.

$$
\begin{equation*}
q=\frac{(3 p+1)}{2}>p \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
p=\frac{(3 q+1)}{2}>\mathrm{q} \tag{ii}
\end{equation*}
$$

(iii) $\quad q=\frac{(3 p+1)}{2^{i}}<p$

$$
\begin{equation*}
p=\frac{(3 q+1)}{2^{i}}<q \tag{iii}
\end{equation*}
$$

Corollary 2 :

Let p be any odd number .Then atleast any one of the following cases will hold.
Case 1:There exist some odd number q such that $A p \subset A q$.
Case 2:There exist some odd number q such that $A q \subset A p$.
Case 3:There exists an even number k such that $A_{k} \subset A p$.

Define a relation R on the set $\{A n\}$, where $n \in N$ such that $A p R A q$ iff $A p \sqsubseteq A q$. Now R defines a partial order relation since it is reflexive, anti symmetric and transitive $\cdot \operatorname{Now}(\{A n\}, R)$ is a partially ordered set.

Lemma 2.3.1: The minimum element in a partially ordered set is unique.
Proof : Suppose there are two minimum elements $A p$ and $A q$.
Since $A p$ is minimum $A p \sqsubseteq A q$
Since $A q$ is also minimum $A q \sqsubseteq A p$.
Hence $A p=A q$. That means the minimum element is unique.
Lemma 2.3.2: A_{5} is unique minimum element in partially ordered set ($\{A n\}, R$) for a set of odd numbers (say P).
Proof :From the relation R, definition of $A n$, lemmas 2.2 to 2.3.1, corollary 1 and corollary 2 we get
Observation 1: By corollary 1, when $p=3$, we get $\mathrm{A}_{5} R \mathrm{~A}_{3}$.
Observation 2:The relation R, definition of $A n$, lemmas 2.2 to 2.3 .1 , corollary 1 and corollary 2, when applied to odd numbers, we get $\mathrm{A}_{5} R \mathrm{~A}_{13} R \mathrm{~A}_{17} R \mathrm{~A}_{11} R \mathrm{~A}_{7} R \mathrm{~A}_{9} R \ldots .$.
Observations 1 ,observation 2 and lemma 2.3 .1 implies that A_{5} is the unique minimum element in partially ordered set $(\{A n\}, R)$ for a set of odd numbers .Let P be that set of odd numbers in N for which A_{5} is unique minimum element.

Then $\cap_{p \in P}^{\infty} A p=A_{5}$ \qquad Equation (1).
Let Q be the set of odd numbers in the set $N-P$. i.e, $Q=\{\mathrm{x} / \mathrm{x}$ is an odd number in $N-P\}$
Lemma 2.4:If m is an even number then it is a term of either the sequence $\left\{2^{\mathrm{u}}\right\}$ or the sequence $\left\{(2 \mathrm{k}+1)^{\nu} 2^{\mathrm{u}}\right\}$ where $\mathrm{u}, \mathrm{v}, \mathrm{k} \in N$. Proof. The first sequence $\left\{2^{u}\right\}$ contains all even numbers that can be written as 2^{u}. Suppose m is an even number such that $m \neq 2^{\mathrm{u}}$. Then $m=2 s$ where $s>1$ and s is a natural number. If s is odd, then m is a term of the second sequence $\left\{(2 \mathrm{k}+1)^{v} 2^{u}\right\}$. If s is even, s can be written as product of powers of prime numbers. Since all prime numbers except 2 are odd, one factor of s is of the form $(2 \mathrm{k}+1), \mathrm{k} \in N$. Hence $m=2 s$ is a term of the second sequence $\left\{(2 \mathrm{k}+1)^{v} 2^{u}\right\}$. Hence If m is an even number then it is a term of either the sequence $\left\{2^{\mathrm{u}}\right\}$ or the sequence $\left\{(2 \mathrm{k}+1)^{v} 2^{\mathrm{u}}\right\}$ whereu,v, $\mathrm{k} \in N$.
Let $\mathrm{S}=\left\{\mathrm{x} / \mathrm{x} \in\left\{2^{\mathrm{u}}\right\}\right.$ or $\left.\mathrm{x} \in\left\{(2 \mathrm{k}+1)^{v} 2^{\mathrm{u}}\right\}\right\}$. Now $N=S U Q U P$. The sets P and $S U Q$ is a partition for N .

Lemma 2.4.1: A_{2} is unique minimum element in partially ordered set $(\{A n\}, R)$) where $n \in S U Q$.
Proof :The definition of $A n$ and relation R implies that A_{2} is included in all $A \mathrm{n}$ where $\mathrm{n} \in\left\{x / x=2^{\mathrm{u}}, \mathrm{u} \in N\right\}$.
Also $A_{(2 k+1)}{ }^{v} R \mathrm{~A}_{(2 k+1)^{\nu} 2^{u}}$ where $\mathrm{u}, \mathrm{v}, \mathrm{k} \in N$.If $(2 \mathrm{k}+1)^{v}=p \in P$, then by lemma 2.3.2, $A_{5} \mathrm{R} A_{(2 k+1)^{v}}$ and by lemma 2.3, $A_{2} \mathrm{R} A_{5}$ Hence $A_{2} R A_{(2 k+1)^{v} 2^{u}}$.Suppose ($\left.2 \mathrm{k}+1\right)^{v}=p \in Q$. By lemma 2.3, $A_{4} R A_{l}$, and $A_{2} R A_{1}$. For all odd $p \in Q$ where $p>1$, by corollary 1 and corollary 2 , there exists an odd q such that either $A q R A p$ or $A p R A q$. If $q \in P, A_{2} R A_{5} R A q$.Hence $A p$ includes A_{2}.If $q \in Q$, without loss of generality suppose $A_{r}, r \in Q$ be the set such that $A_{r}=\cap A_{q i}$ for a set of $q_{i} \in Q$ where $i=1,2,3, \ldots$. Now $3 r+1$ is even and except 1 there is no $q_{i} \in Q$ such that $A_{q i} R A_{3 r+1}$.Hence by corollary 1 , Subset relation 2.3.3 we get $3 r+1 \in\left\{x / x=2^{\mathrm{u}}\right.$, u $\in N$ \}.For all odd numbers in q in Q ,the number $3 q+1$ is even and belongs to S. This implies that A_{2} is the unique minimum element in partially ordered set $(\{A n\}, R)$ where $n \in S U Q$.

Hence $\bigcap_{q \in S U Q}^{\infty} A q=A_{2}$ \qquad Equation (2)

From equations (1) and (2), $\forall m, n \in N=S U P U Q, m \neq n, A m \cap A n \supset A_{5} \cap A_{2}=A_{2}$.
Hence $\forall m, n \in N, m \neq n, A m \cap A n \neq \emptyset$.
Corollary 3. $\cap_{n=1}^{\infty} A n=A_{2} \supset A_{0}=\{1\}, n \in N$.
Proof.
$\bigcap_{n=1}^{\infty} A n=\bigcap_{p \in P}^{\infty} A p \cap_{q \in S U Q}^{\infty} A q=A_{5} \cap A_{2}=A_{2} \supset A_{0}$.
This shows that the set A_{0} is subset of all $n, n \in N$. Which implies that the element 1 belongs to all Hailstone sequences. Therefore, for all Hailstone sequences staring with $n, n \in N$, there exists a number i in N such that $a_{i}=\mathrm{f}^{\mathrm{i}}(n)=1$. In other words all the Hailstone sequences staring with $n, n \in N$, contains the term 1. This proves the famous Collatz Conjecture.

Conclusion

Lothar Collatz introduced Collatz Conjecture in 1937. In this article Collatz Theorem is proved.

Acknowledgement

I wish to thank the research supervisors Dr A Prasanna, Jamal Mohamed College Tiruchirappally,Tamilnadu and Dr B Mohamed Harif ,Rajah Serfoji Govt.CollegeTanjavur, Tamilnadu,India for encouraging me to try unsolved conjecture. I wish to thank the Professors Prof.Issam Kaddoura Lebanses International University,Lebanon and Prof Joachim Domsta, The State university of Applied Science Elblag, Poland for pointing errors in initial version.I wish to thank Mr.Shin Fukuse the CEO of BAKUAGE Corporation Ltd.Tokyo Japan for offering 120 Million JPY to those who proves Collatz Conjecture.

REFERENCE

1. J.J. O’Connor and E.F. Robertson, Lothar Collatz, St Andrews University School of Mathematics and Statistics, Scotland; (2006).
2. Livio Colussi, The convergence classes of Collatz function, Theoretical Computer Science; vol. 412 issue 39 pp .54095419 (2011).
3. Jeffrey C. Lagarias and Daniel J. Bernstein, The $3 x+1$ conjugacy map, Canadian journal of mathematics; vol. 48 issue 6 pp . 1154-116 (1996).
4. Marc Chamberland, A continuous extension of the $3 x+1$ problem to the real line, dynamic of continuous, discrete impulse system; vol. 2 no. 4 pp. 495-509 (1996).
5. Jeffery C. Lagaries, The $3 x+1$ problem and its generalization, Journal of American Mathematical Monthly; vol. 92 no. 1 pp.3-23 (1985)
6. Shalom Eliahou, The $3 x+1$ problem: new lower bounds on nontrivial cycle lengths, Discrete Mathematics; vol. 118 issues 1-3 pp. 4556 (1993).
7. Leavens, Gary T., Vermeulen, Mike, $3 x+1$ Search Programs, Computers and Mathematics with Applications; vol. 24 issue 11 pp. 7999 (1992).
8. Ben-Amram, Amir M., Mortality of iterated piecewise affine functions over the integers: decidability and complexity, Computability; vol. 4 no. 1 pp. 19-56 (2015), doi:10.3233/com-150032.
9. Alex V. Kontorovich, Yakov G.Sinai, Structure theorem for (d,g,h)-Maps, https://arXiv.org/abs/math/0601622; (2006).
