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Abstract : Lothar Collatz introduced Collatz Conjecture in 1937. No one succeeded in proving this conjecture. In this article 

a convincing mathematical proof is introduced. Initially it is proved that for every natural number n in N={1,2,3,..}, the set 

An  exists where An ={x/x is a term in Hailstone sequence starting with n}. Later it is proved thatthe intersections of An and 

Am is not empty foreverynatural number  n≠m, m,n >1. Then it is observed that the countable intersection of all An 

contains A0= {1}.This observation brings the conclusion that for all Hailstone sequences starting with any positive integer n 

,there exists a a term 1 in the Hailstone sequence.This conclusion implies that for any positive integer𝒏, the Hailstone 

sequence starting with n eventually ends in 1. 
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1. INTRODUCTION  
 

Lothar Collatz introduced Collatz Conjecture in 1937.Collatz Conjecture explains a sequence that eventually ends in 1.The 

sequence is called Hailstone sequence which is defined as “ Start with any positive integer , if that integer is odd number then 

triple it and add one to get the next term, but if the selected number is even divide it by 2.Continuing this procedure , whatever 

be the selected number at the end of the sequence the sequence reaches 1. Using computer the conjecture is tested till 5 x1018 
and scientists believe that this conjecture might be true for all natural numbers. But nobody has succeeded to bring a proof 

which can convince the conjecture is correct or not. In this article a convincing mathematical proof is introduced. Initially it is 

proved that for every natural number n in N ={1,2,3,..}, the set An  exists where An is the set that consists the numbers in 

Hailstone sequence starting with n. Later it is proved that  𝐴𝑚 ∩ 𝐴𝑛 ≠ ∅, ∀𝑚, 𝑛 𝑤ℎ𝑒𝑟𝑒 𝑚 ≠ 𝑛 . 
Then it is proved that the countable intersection of all An contains A0  = {1}.Thisproof brings the conclusion that all Hailstone 

sequences starting with any positive integern, eventually ends in 1. 

 

2.PRELIMINARIES 

 
Definition 2.1. Hailstone sequence  

Hailstone sequence corresponding to a positive integer  n  is a sequence {ai} where ai is obtained as the value applied to n 

recursively i times ai = f i(n), 𝑛 ∈ {1,2,3,4, … } and i=0,1,2,.. wheref 0(n) = n and for i > 0, 

 

 f i(n) = {

𝑛

2
, 𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

3𝑛 + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

 

2.2. Collatz Conjecture 

Statement : For any positive integer 𝑛 ∈ N, the Hailstone sequence starting with n eventually ends in 1. 

 

Remark1: Some authors consider the set of natural numbers N={0,1,2,3,..} .In this article the set of natural numbers N is 

considered as N ={1,2,3,…} since Indian students follow the definition N ={1,2,3..} from school level and author is from 

India. 
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3.PROBLEM THAT DISCUSSED IN THIS ARTICLE AND SOLUTION 

 

For any positive integer 𝑛 ∈ N, the Hailstone sequence starting with n eventually ends in 1. Though this statement is tested and 

seemed true, a convincing mathematical proof is not introduced by any one since1937.So this statement remains as a conjecture 

Solution to the Problem- Mathematical Proof of  Collatz Theorem 

It is proved that for all Hailstone sequences starting with any natural number n, there exists a natural number  i such that there 

exists a  term ai= f i (n) = 1.This proves collatz conjecture.  

Theorem 1 .∀𝑛 ∈ N,  𝐴𝑛existswhere An is the set that consists the numbers in Hailstone sequence starting with n.  

Theorem 2.  𝐴𝑚 ∩ 𝐴𝑛 ≠ ∅, ∀𝑚, 𝑛 ∈ N,    𝑚 ≠ 𝑛. 
Corollary 3.⋂ 𝐴𝑛 =∞

𝑛=1 A2⊃A0 ={1} , 𝑛 ∈ N 

 

4.PROOF OF THEOREMS 

 

Theorem 1.∀𝑛 ∈ N, 𝐴𝑛 𝑒𝑥𝑖𝑠𝑡𝑠. 

 

Proof. The set An consists the numbers aiwhere ai is obtained as the value applied to n recursively i times ai = f i(n), 𝑛 ∈ N 

 

As per definition,f 0(n) = n and for i > 0,and  f i(n)= {

𝑛

2
, 𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

3𝑛 + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

It is clear that for every 𝑛 ∈ N , f i(n)is a natural number and so ai exists. Hence 𝐴𝑛  exists ∀𝑛 ∈ N. 

 

Remark1:The above proof never implies that An must contain 1 or An must be finite. The proof conveys that An exists and the 

elements in An are positive integers. 

 

Theorem  2 .  𝐴𝑚 ∩ 𝐴𝑛 ≠ ∅, ∀𝑚, 𝑛 ∈ N,    𝑚 ≠ 𝑛. 
 

 

To prove theorem 2, first we shall prove the following lemmas.  

Lemma 2.1 :For any odd number   1,  (3 1)    (3 1)  p the number p is even and p p    . 

Lemma 2.2:For any odd number 
   

 
2 2

3 1 3 1
  1,             

p p
p If is odd then p

 
   

Lemma 2.3 :For any odd number 
   3 1 3 1

  1,                 1
2 2i i

p p
p If is odd then p wherei

 
    

Lemma 2.4 :                  2uIf m is an even number then it is a term of either the sequence  

or the sequence{(2k+1)v2u}where u,v, k ∈ N
  

5.PROOF OF LEMMAS 

 

Lemma 2.1:For any odd number   1,  (3 1)    (3 1)  p the number p is even and p p    . 

 

Proof. Trivial .  
 

 

 

 

 

   

   ,   2 1,  where ,  

  (3 1)  3 2 1 1  6  4  2 3 2

Since p is odd p k k N

p p k k k
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Lemma 2.2:For any odd number 
   

 
2 2

3 1 3 1
  1,             

p p
p If is odd then p

 
 

 

 

Proof.                  

 
 

 

 

3 1
   ,   2 1 ,  where  ,    3 2 .

2

1
3 2  3  2  1.5  1.5 2 1.5  .5  .

2

 

p
Since p is odd p k k N k

p
k p p p


    


        

 

Lemma 2.3 :For any odd number 
   3 1 3 1

  1,                 1
2 2i i

p p
p If is odd then p wherei

 
    

Proof. 

 
 

 
 

 
 

3 1
   ,   2 1,  where  ,     3 2

2

      1. 5   2    .

. ,  (1.5  1)  (2 1),   

3 2
 . ,    2 1  ,    

2

3 2
. ,     2 1 ,     ,   

2

. ,

i

p
Since p is odd p k k N and k

It is obvious that k k for all k N

i e k k where k N

k
i e k where k N

k
i e k where i k N

i e

p


    

 

   


  


  

 
 

   

1

1

3 2
    2 1 ,    1 ,   

2

3 1 3 2
. ,     ,    1 ,   

2 2

i

i i

k
k where i k N

p k
i e where i k N

p

p










  


   

 

 

   

   

3 1 3 1
.  ,    or even         1

2 2

3 1 3 1
 ,            1

2 2

i i

i i

p p
i e If is odd then p where i

p p
Hence If is odd then p where i

 
 

 
 

 

Notes : 1. The Lemma 2.3   holds if   
3𝑝+1

2𝑖   is even .  

Notes : 2.  The Lemma 2.3 holds   for p =1 . 

Corollary 1:From the above proofs and the definitions of fi(n) and An, we shall observe the following inequalities and  sub set 

relations. 
If   p > 1 is an odd number 

2.3.1 3 1p pA A   

2.3.2
   

  3 13 1

2

( )

3 1 3 1
                 

2 2
p pp

p p
If is odd then p and A A A


 


  

2.3.3       
   3 1 3 1

             1  
2 2i i

p p
If is odd then p where i and

 
   

                 

     
1

3 13 1 3 1 3 1

2 2 2

.  ...
i i

p pp p p
A A A A A
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 Let  1p   be any odd numbers in N,  then the relations 2.3.2 and 2.3.3 imply that there exist some odd number q  holding any 

of the following inequalities. 

 
 

 
 

 
 

 

3 1
                

2

3 1
                q

2

3 1
              

2

3 1
( )              

2

 

i

i

p
i q p

q
ii p

p
iii q p

q
iv p q


 


 


 


 

 

Corollary 2: 

 

Let p  be any odd number .Then atleast any one of the following cases will hold. 

 

Case 1:There exist some odd number q  such that Ap Aq . 

Case 2:There exist some odd number q such that Aq Ap . 

Case 3:There exists an even number k such that Ak ⊂ Ap. 

 

Define a relation R on the set {An}, where n∈ Nsuch that Ap R Aq   iff  𝐴𝑝 ⊑ 𝐴𝑞  . Now R defines a partial order relation 

since it is reflexive, anti symmetric and transitive .Now({An}, R ) is a partially ordered set.  

 
Lemma 2.3.1:The minimum element in a partially ordered set is  unique. 

 

Proof : Suppose there are two minimum elements Ap and Aq.  

Since Ap is minimum 𝐴𝑝 ⊑ 𝐴𝑞
 

Since Aq is also  minimum 𝐴𝑞 ⊑ 𝐴𝑝.  

Hence  Ap = Aq. That means the  minimum element is unique. 
 

Lemma 2.3.2:A5  is unique  minimum element in partially ordered set  ({An}, R) for a set of odd numbers (say P). 

Proof :From the relation  R ,definition of An , lemmas 2.2 to 2.3.1 ,corollary 1 and corollary 2 we get 

Observation 1: By corollary 1, when  =3p , we get A5 R A3. 

Observation 2:The relation  R ,definition of An , lemmas 2.2 to 2.3.1 ,corollary 1 and corollary 2, when applied to odd 

numbers, we  get A5 R A13 R A17 R A11 R A7 R A9 R ….. 

Observations 1 ,observation 2  and lemma 2.3.1 implies that A5 is the unique minimum element in partially ordered set    

({An}, R) for a set of odd numbers .Let P be that set of odd numbers in N for which  A5  is unique  minimum element. 

 

Then⋂ 𝐴𝑝 =∞
𝑝∈𝑃  A5_______Equation  (1). 

LetQ be the set of odd numbers in the set  N – P. i.e, Q ={ x/ x is an odd number in  N-P} 

 

Lemma 2.4:If m is an even number then it is a term of either the sequence{ 2u} or the sequence{( 2k+1)v 2u} where u,v,k ∈ 𝑁. 

Proof. The first sequence { 2u} contains all even  numbers that can be written as  2u . Suppose m is an even number such that 

m ≠ 2u.Then m = 2s where s > 1 and s is a natural number.  If  s is odd, then m is a term of the second sequence{( 2k+1)v2u}. If  

s is even, s can be written as product of  powers of prime numbers .Since all prime numbers except 2 are odd, one factor of s is 

of the form ( 2k+1) , k ∈ 𝑁. Hence  m =2s is a term of the second sequence {( 2k+1)v 2u}. Hence If m is an even number then it 

is a term of either the sequence { 2u} or the sequence  {( 2k+1)v 2u} whereu,v, k ∈ 𝑁. 

Let S ={x/ x∈{ 2u} or x∈{( 2k+1)v 2u }} .  Now N = SUQUP. The sets P and SUQ is a partition for N. 
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Lemma 2.4.1: A2  is unique  minimum element in partially ordered set  ({An}, R)) where n∈ 𝑆𝑈𝑄. 

Proof :The definition of An and relation R implies that A2  is included in all An where n ∈ { 𝑥 /𝑥 = 2u, u∈ 𝑁 }. 

Also  A( 2k+1)
v  R  A( 2k+1)

v
 2

u where u,v, k ∈ 𝑁.If ( 2k+1)v= 𝑝 ∈ 𝑃, then by lemma 2.3.2, A5 R A( 2k+1)
v  and by lemma 2.3 , A2 R A5   

Hence A2 R A( 2k+1)
v
 2

u  .Suppose ( 2k+1)v= 𝑝 ∈ 𝑄. By  lemma 2.3,   A4 𝑅 A1, and A2  𝑅 A1. For all odd 𝑝 ∈ 𝑄 where p >1, by 

corollary 1 and corollary 2, there exists an odd  q  such that either Aq R Ap  or  Ap R Aq. If  q ∈ 𝑃,  A2 R A5  R Aq   .Hence Ap 

includes A2 .If q ∈ 𝑄, without loss of generality suppose Ar, r ∈ 𝑄 be the set such that Ar  = ∩ Aqi  for a set of  qi ∈ 𝑄 𝑤ℎ𝑒𝑟𝑒     

i= 1,2,3,….  .Now 3r +1 is even and  except 1 there is no  qi ∈ 𝑄  such that Aqi R A3r+1 .Hence by corollary 1, Subset relation 

2.3.3 we get  3r+1∈ { 𝑥 /𝑥 = 2u, u∈ 𝑁 }.For all odd numbers in q in Q ,the number 3q+1 is even and belongs to S.This implies 

that A2 is the unique minimum element in partially ordered set ({An}, R) where n ∈ 𝑆𝑈𝑄. 

 

Hence⋂ 𝐴𝑞 =∞
𝑞∈𝑆𝑈𝑄  A2  _______ Equation  (2) 

 

From equations (1) and (2), ∀𝑚, 𝑛 ∈ 𝑁 = 𝑆𝑈𝑃𝑈𝑄, 𝑚 ≠ 𝑛, 𝐴𝑚 ∩ 𝐴𝑛 ⊃A5∩A2 = A2.  

Hence ∀𝑚, 𝑛 ∈ 𝑁, 𝑚 ≠ 𝑛, 𝐴𝑚 ∩ 𝐴𝑛 ≠ ∅. 

 

Corollary 3.⋂ 𝐴𝑛 =∞
𝑛=1 A2⊃A0= {1}, 𝑛 ∈ 𝑁. 

Proof. 

⋂ 𝐴𝑛 =∞
𝑛=1 ⋂ 𝐴𝑝 ⋂ 𝐴𝑞 =∞

𝑞∈𝑆𝑈𝑄
∞
𝑝∈ 𝑃  A5∩A2 = A2 A0. 

This shows that the set A0 is subset of all 𝑛 , 𝑛 ∈ 𝑁. Which implies that the element 1 belongs to all Hailstone sequences. 

Therefore, for all Hailstone sequences staring with n , 𝑛 ∈ 𝑁 ,there exists a number i in N such that  ai = f  i(n) = 1. In other 

words all the  Hailstone sequences staring with n , 𝑛 ∈ 𝑁 , contains the term 1. This proves the  famous Collatz Conjecture. 

Conclusion 
Lothar Collatz introduced Collatz Conjecture in 1937. In this article Collatz Theorem is proved.  
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