Strong β - \mathcal{H} -Open Sets In Generalized Topological Space

R. Shankar¹, D.Sivaraj.²

Research Scholar¹ (MAHER), Asst. Prof., Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu, India.

Abstract - The aim of this paper is to characterize and discuss the properties of strong β - \mathcal{H} -open sets in a generalized topological space (X, λ) with a hereditary class \mathcal{H} .

Keywords - Hereditary class, Pre-H-open set, \mathcal{H}_R -closed set, Semi-H-open set, Semi* – H-closed set, Strong β -H-open set.

2010 hematics subject classification: 54A05, 54A10.

I. INTRODUCTION

Let X a nonempty set. A nonempty subfamily λ of $\mathscr{D}(X)$ is called a generalized topology on X [1] if $\emptyset \in \lambda$ and λ is closed under arbitrary union. The pair (X, λ) is called generalized topological space. A GTS (X, λ) is said to be strong if $X \in \lambda$. Elements of λ are called λ -open sets and the complement of a λ -open set is called a λ -closed set. The largest λ -open set contained in a subset A of X is denoted by $int_{\lambda}(A)$ [2] and is called the λ -interior of A. The smallest λ -closed set containing A is called the λ - closure of A and is denoted by $cl_{\lambda}(A)$ [2]. A subset A is said to be λ -dense if $cl_{\lambda}(A) = X$. A generalized topology (X, λ) is said to be a quasi topology [4] on X if M, N $\in \lambda$ implies $M \cap N \in \lambda$. A hereditary class \mathcal{H} is a nonempty collection of subset of X such that $A \subset B$, $B \in \mathcal{H}$ implies $A \in \mathcal{H}[2]$. For each subset A of X, a subset $A^*(\mathcal{H})$ or simply A^* of X is defined by $A^* = \{x \in X \mid M \cap A \notin \mathcal{H}$ for every $M \in \lambda$ containing $x\}$ [2]. Let (X, λ) be a generalized topological space and \mathcal{H} be a hereditary class of subset of X if $cl_{\lambda}^*(A) = X$ then A is called λ^* - dense. If \mathcal{H} is said to be λ -codense hereditary class is λ -codense but the converse is not true [2]. If $cl_{\lambda}^*(A) = A \cup A^*$ for every subset A of X, with respect to λ and a hereditary class \mathcal{H} of subsets of X, then $\lambda^* = \{A \subset X/cl_{\lambda}^*(X - A) = X - A\}$ is a generalized topology [2]. Elements of λ^* are called λ^* -open sets and the complement of a λ^* -open set is called a λ^* -closed set. $Int_{\lambda}^*(A) = X$, then A is called λ^* -dense.

Lemma. 1.1[3].

Let (X, λ) be generalized topological space and \mathcal{H} be a hereditary class of subsets of X. If $E, F \subset X$ then the following hold

- (i) If $E \subset F$ then $E^* \subset F^*$
- (ii) $(E^*)^* = E^*$ For every $E \subset X$.
- (iii) $E \subset F \subset X$. implies that $cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(F)$.
- (iv) $(E \cup E^*)^* \subset E^*$ for every $E \subset X$
- (v) $(E \cup F)^* = E^* \cup F^*$
- (vi) $\lambda \subset \lambda^*$.
- (vii) If $\beta = \{N H : N \in \lambda, H \in \mathcal{H}\}$ is a base for λ^* .

Definition 1.2[3].

A subset E of a generalized topological space (X, λ) with a hereditary class $\mathcal H$ is said to be

- 1. λ^* -dense in itself if $E \subset E^*$
- 2. λ^* -closed if $E^* \subset E$

- 3. Strong- β - \mathcal{H} -open[10] if $E \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$,
- 4. Semi \mathcal{H} open[3] if $E \subset cl_{\lambda}^{*}(int_{\lambda}(E))$
- 5. $semi^* \mathcal{H} open[3]$ if $E \subset cl_{\lambda}(int^*_{\lambda}(E))$,
- 6. pre \mathcal{H} open[3] if $E \subset int_{\lambda}(cl^*_{\lambda}(E))$
- 7. \mathcal{H}_R -closed set[11] if $E \subset cl_{\lambda}^*(int_{\lambda}(E))$

The complement of a strong β - \mathcal{H} - open (resp., Semi - \mathcal{H} -open, semi* - \mathcal{H} -open, pre - \mathcal{H} -open,) set is said to a strong β - \mathcal{H} -closed (resp., Strong- β - \mathcal{H} -closed, Semi - \mathcal{H} -closed, semi* - \mathcal{H} -closed, pre - \mathcal{H} -closed,) set. The largest pre- \mathcal{H} -open set contained in E, denoted by $p\mathcal{H}int_{\lambda}(E)$, is called the pre- \mathcal{H} -interior of E. The following lemma 1.3 will be useful in the sequel.

Lemma. 1.3.

Let (X, λ) be a quasi topological space, \mathcal{H} be a hereditary class of subsets of X and $E \subset X$ then $p\mathcal{H}int_{\lambda}(E) = E \cap int_{\lambda}(cl_{\lambda}^{*}(E))$.

Proof.

Since, $E \cap int_{\lambda}(cl_{\lambda}^{*}(E)) \subset int_{\lambda}(cl_{\lambda}^{*}(E)) = int_{\lambda}(int_{\lambda}(cl_{\lambda}^{*}(E))) = int_{\lambda}(cl_{\lambda}^{*}(E) \cap int_{\lambda}(cl_{\lambda}^{*}(E))) \subset int_{\lambda}(cl_{\lambda}^{*}(E))) \subset int_{\lambda}(cl_{\lambda}^{*}(E))) \subset int_{\lambda}(cl_{\lambda}^{*}(E)) \subset p\mathcal{H}int_{\lambda}(E).$ Since $p\mathcal{H}int_{\lambda}(E)$ is pre- \mathcal{H} -open, $p\mathcal{H}int_{\lambda}(E) \subset int_{\lambda}(cl_{\lambda}^{*}(E))) \subset int_{\lambda}(cl_{\lambda}^{*}(E)) \subset p\mathcal{H}int_{\lambda}(E)$. Since $p\mathcal{H}int_{\lambda}(E)$ is pre- \mathcal{H} -open, $p\mathcal{H}int_{\lambda}(E) \subset int_{\lambda}(cl_{\lambda}^{*}(E))) \subset int_{\lambda}(cl_{\lambda}^{*}(E))$ and so $p\mathcal{H}int_{\lambda}(E) \subset E \cap int_{\lambda}(cl_{\lambda}^{*}(E))$. Hence $p\mathcal{H}int_{\lambda}(E) = E \cap int_{\lambda}(cl_{\lambda}^{*}(E)).$

Theorem 1.4

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E \subset X$. Then, E is a strong $\beta - \mathcal{H}$ open if and only if $cl_{\lambda}^{*}(E)$ is \mathcal{H}_{R} -closed set.

Proof.

Let E be a strong $\beta - \mathcal{H}$ -open set. Then, we have $E \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$ and so $cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E))) \subset cl_{\lambda}^{*}(E)$ which implies that $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$. Conversely, let $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$, since $E \subset cl_{\lambda}^{*}(E)$ for every subset E of X. Therefore, by using hypothesis, we have $E \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$. This shows that E is strong $\beta - \mathcal{H}$ -open set.

Theorem 1.5.

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E \subset X$ then the following are equivalent.

- (i) E is strong $\beta \mathcal{H}$ -open set.
- (ii) There exist a pre- \mathcal{H} -open set M such that $M \subset E \subset cl_{\lambda}^{*}(M)$.
- (iii) $cl_{\lambda}^{*}(E)$ is \mathcal{H}_{R} closed set.

Proof.

 $(i) \Rightarrow (ii)$. Let E be a strong $\beta - \mathcal{H}$ -open set in X. Then, we have $E \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$ and so $cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E))) \subset cl_{\lambda}^{*}(cl_{\lambda}^{*}(E)) \subset cl_{\lambda}^{*}(E)$ which implies that $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$. If $M = E \cap int_{\lambda}(cl_{\lambda}^{*}(E))$, then by lemma 1.3 $M = p\mathcal{H}int_{\lambda}(E)$ and so M is pre- \mathcal{H} -open. Also, $cl_{\lambda}^{*}(M) = cl_{\lambda}^{*}(E \cap int_{\lambda}(cl_{\lambda}^{*}(E))) \supset cl_{\lambda}^{*}(E) \cap int_{\lambda}(cl_{\lambda}^{*}(E))) \supset cl_{\lambda}^{*}(E) \cap int_{\lambda}(cl_{\lambda}^{*}(E))$ which implies that $cl_{\lambda}^{*}(M) \supset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$ and so $cl_{\lambda}^{*}(M) \supset cl_{\lambda}^{*}(E)$. Since $M \subset E \subset cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(M)$. $(ii) \Rightarrow (iii)$. Suppose there exists a pre- \mathcal{H} -open set M such that $M \subset E \subset cl_{\lambda}^{*}(M)$ then $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(M) \subset cl_{\lambda}^{*}(cl_{\lambda}^{*}(M)) \subset cl_{\lambda}^{*}(cl_{\lambda}^{*}(E)) \subset cl_{\lambda}^{*}(E)$ and so $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$ which implies that $cl_{\lambda}^{*}(E)$ is \mathcal{H}_{R} closed set.

 $(iii) \Rightarrow (i)$. By theorem 1.4

Theorem 1.6.

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E \subset X$ then the following are equivalent.

- (i) E is strong $\beta \mathcal{H}$ -open.
- (ii) $cl_{\lambda}^{*}(E) semi \mathcal{H}$ -open
- (iii) E is λ^* -dense in a \mathcal{H}_R -closed subspace of X.
- (iv) E is λ^* -dense in a semi- \mathcal{H} -open subspace in X.

Proof.

 $(i) \Rightarrow (ii)$. Suppose E is strong $\beta - \mathcal{H}$ -open by theorem 1.5, $cl_{\lambda}^{*}(E)$ is \mathcal{H}_{R} -closed and since every \mathcal{H}_{R} -closed set is semi- \mathcal{H} -open, $cl_{\lambda}^{*}(E)$ semi- \mathcal{H} -open.

 $(ii) \Rightarrow (iii). cl_{\lambda}^{*}(E) \text{ is semi} - \mathcal{H}\text{-open implies that } cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E))) \subset cl_{\lambda}^{*}(E) \text{ which implies that } cl_{\lambda}^{*}(E) \text{ is } \mathcal{H}_{R}\text{-closed}.$ closed. Therefore, E is λ^{*} -dense in a \mathcal{H}_{R} -closed subspace of X.

 $(iii) \Rightarrow (iv)$. Since every \mathcal{H}_R -closed set is semi- \mathcal{H} -open, the result follows.

 $(iv) \Rightarrow (i)$. Let E is λ^* -dense in a semi- \mathcal{H} -open subspace in X then there exists a semi- \mathcal{H} -open set U such that $E \subset U \subset cl_{\lambda}^*(E)$. Now $cl_{\lambda}^*(E) \subset cl_{\lambda}^*(U) \subset cl_{\lambda}^*(E)$ implies that $cl_{\lambda}^*(E) = cl_{\lambda}^*(U)$ and so $cl_{\lambda}^*\left(int_{\lambda}(cl_{\lambda}^*(E))\right) = cl_{\lambda}^*\left(int_{\lambda}(cl_{\lambda}^*(U))\right) \supset cl_{\lambda}^*(int_{\lambda}(U)) = cl_{\lambda}^*(E)$. Also, $cl_{\lambda}^*\left(int_{\lambda}(cl_{\lambda}^*(E))\right) \subset cl_{\lambda}^*(E)$ and so $cl_{\lambda}^*(E) = cl_{\lambda}^*\left(int_{\lambda}(cl_{\lambda}^*(E))\right)$. Hence, by theorem 1.4. E is a strong $\beta - \mathcal{H}$ -open set.

Theorem 1.7.

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E, F \subset X$ such that $E \subset F \subset cl_{\lambda}^{*}(E)$. If E is strong $\beta - \mathcal{H}$ -open set, then $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(F)$ and hence F is a strong $\beta - \mathcal{H}$ -open set.

Proof.

Let $E \subset F \subset cl_{\lambda}^{*}(E)$ and E is strong $\beta - \mathcal{H}$ -open. Then, we have $cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(F) \subset cl_{\lambda}^{*}(E)$ which implies that $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(F)$. On the other hand $E \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E)))$. By hypothesis, Since $E \subset F \subset cl_{\lambda}^{*}(E)$, we obtain that $F \subset cl_{\lambda}^{*}(cl_{\lambda}^{*}(E))) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E))) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(F)))$. Therefore, we have $F \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(F)))$ and this shows that F is a strong $\beta - \mathcal{H}$ -open set.

Theorem 1.8.

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E, F \subset X$. If $E \subset F \subset cl_{\lambda}^{*}(E)$ and E is pre- \mathcal{H} -open set then F is strong $\beta - \mathcal{H}$ -open.

Proof.

Let $E \subset F \subset cl_{\lambda}^{*}(E)$ and E is pre- \mathcal{H} -open. Then, we have $cl_{\lambda}^{*}(E) \subset cl_{\lambda}^{*}(F) \subset cl_{\lambda}^{*}(E)$ which implies that $cl_{\lambda}^{*}(E) = cl_{\lambda}^{*}(F)$. Since $F \subset cl_{\lambda}^{*}(E)$ and $E \subset int_{\lambda}(cl_{\lambda}^{*}(E))$ so $F \subset cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(E))) = cl_{\lambda}^{*}(int_{\lambda}(cl_{\lambda}^{*}(F)))$. This shows that F is strong $\beta - \mathcal{H}$ -open set.

Theorem 1.9.

Let (X, λ) be a generalized topological space, \mathcal{H} be a hereditary class of subsets of X and $E \subset X$. If E is both strong $\beta - \mathcal{H}$ -open and *semi*^{*} – \mathcal{H} -closed then E is semi- \mathcal{H} -open.

Proof.

If E is $semi^* - \mathcal{H}$ -closed, then $int_{\lambda}(cl^*_{\lambda}(E) \subset E$ and so $int_{\lambda}(cl^*_{\lambda}(E)) \subset int_{\lambda}(E)$. Therefore, $cl^*_{\lambda}(int_{\lambda}(cl^*_{\lambda}(E))) \subset cl^*_{\lambda}(int_{\lambda}(E))$. Since E is strong $\beta - \mathcal{H}$ -open, it follows that $E \subset cl^*_{\lambda}(int_{\lambda}(E))$ and so E is semi- \mathcal{H} -open.

References

- [1] A.Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar, 96(2002) 351-357.
- [2] A. Csaszar, Generalized Open Sets, Acta Mathematica Hungaria., 75(1-2) (1997) 65-87.
- [3] A.Csaszar, Modifications of generalized topologies via hereditary classes, Acta Math. Hungar, 115(2007) 29 36.
- [4] A.Csaszar, Remarks on quasi-topologies, Acta Math. Hungar, 119(1-2) (2007) 197 200
- [5] V.Renukadevi and Sheena Scaria, On hereditary classes in generalized topological spaces, J. Adv. Res. Pure. Math., 3(2) (2011) 21-30
- [6] V.Renukadevi and K. Karuppayi, On modifications of generalized topologies via hereditary classes, J. Adv. Res. Pure. Math., 14-20 (2010).
- [7] K.Karuppayi, Some subsets of GTS with hereditary classes, Journal of Advanced Studies in Topology5 (1) 25-33.
- [8] K.Karuppayi, A Note on $\delta \mathcal{H}$ -sets in GTS with hereditary classes, International Journal of Mathematical Archive-5(1) (2014) 226-229.
- [9] K.Karuppayi, A Note on RH-open sets in GTS with hereditary classes, International Journal of Mathematical Archive-5(1) (2014) 312-316.
- [10] R.Shankar, A.P. Ponraj and D. Sivaraj Weakly semi- H -open sets and almost strong H-κ-open sets, International Journal of Pure and Applied Mathematics, 117 (17) (2017) 7-13
- [11] A.P.Ponraj, R. Shankar, D.Sivaraj, \mathcal{H}_R *closed set* in Generalized topological space, International Journal of Pure and Applied Mathematics, 119(15) (2018) 2153-2158.
- [12] R. Shankar, A.P.Ponraj, D.Sivaraj, $A_{\mathcal{H}R}$ sets in Generalized topological space, International Journal of Pure and Applied Mathematics, 119(15) (2018) 2165-2170.