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Abstract- Here we are considering the Vaidya-Tikekar metric which represents a 3- di-
mensional space with time time equals a constant, in a spheroidal super dense star. We
report a general solution to Vaidya-Tikekar metric (in terms of hyper-geometric series),
used in modelling Einstein’s field equations. These models permits densities approxi-
mates to the order of 2×1014gmcm−3, radii of the order of few kilometers and maximum
mass up to four times the solar mass.
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0.1 INTRODUCTION

Theory of general relativity consolidates gravity as a phenomenon that virtually relates
with the geometry of space-time and succeeds in attaining at a broader understanding of the
space times linked with distribution of physical fields of cosmological and astrophysical
significance. The adequate mass of gravitational field as evident from the Einstein’s field
equations of general relativity accomplish constraints in attaining simple exact solutions
which may serve as models of relativistic stars. Lack of dependable knowledge about the
properties of central core area of comparatively compact stars is another hindrance which
warrants of a general nature. Correspondingly, it is desiderate to have analytic solutions
at hand, which may serve as significant models for these stars [Tolman (1939)]. If similar
closed form solutions[Tolman (1939); Adler (1974); Leibovitz (1969); Buchdahl (1959)]
adhere to certain general fundamental properties expected from fluids at ultra high masses
and pressure; then it will be of astrophysical significance.
Tikekar and Vaidya (1982) have established that the space-times with t = constant having
the geometry of a 3D-spheroid characterized by two parameters K measuring the oblate-
ness and R showing the spherical nature of the spheroid are useful in developing easily
surveyable relativistic design for super dense stars such as neutron stars. Perhaps these
space-times can be used to establish static models portraying the strong gravitational field
in the interior of superdense condensations of matter like white dwarfs and neutron stars.
The physical soundness of the class of models by Tikekar and Vaidya was examined by
Knutsen (1988) and concluded that these models are stable with respect to infinitesimal
radial beats. Tikekar (1990) again reported another class of models with above geometry.
References shows that only a limited number of analytic closed form solutions of Einstein’s
field equations for static spherical distributions of material can be useful as easily significant
modes for superdense stars, it is necessary to investigate the suitability of other particular
classes of models in this set up.
This paper deals with the study of spheroidal space time and its suitability to represent the
interior of compact fluid spheres in equilibrium. The space times are characterised by two
curvature parameters R and K. The requirement that the space time of a matter distribu-
tion in equilibrium be spheroidal determines the law of variation of density of matter in the
configuration and the problem of solving a second order linear differential equation. Leach
and Maharaj (1996) and Mukherjee et al. (1997) have discussed methods for solving this
differential equation. We have discussed two methods for obtaining general solution of this
differential equations one of which is similar to the one given by Maharaj and Leach (1996).
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Our other method consists of converting this differential equation to hyper geometric func-
tion. Evaluation of the mass and size of a class of physically feasible static relativistic star
models are an attractive feature of this model because boosting the limit of the maximum
mass of a neutron star is of very high implication in deciding whether the undiscovered part
is a black hole or a neutron star in a binary system of star.

0.2 MATTER DISTRIBUTION ON SPHEROIDAL SPACE
TIME

Consider Tikekar and Vaidya’s (1982) approach, we look at the static spherically symmetric
space-time with the metric,

ds2 = −
1−K r2

R2

1− r2

R2

dr2 − r2(dθ2 + sin2θdφ2) + eν(r)dt2 (1)

where K = 1 − b2

R2 represents the space-time in the interior of a spherical distribution
of matter at rest.

Considering the physical content of the space time to an ideal fluid having associated energy
momentum tensor as,

Tij = (ρ+
p

c2
)uiuj − (

p

c2
)gij (2)

where ρ represents matter density and p the fluid pressure.

Representing the unit four velocity field of matter mentioned as ui= (0, 0, 0, e−ν/2),
Einstein’s field equations:

Rij −
1

2
Rgij =

8πG

c2
Tij (3)

reduce to the system of three equations given by

8πρ =
3(1−K)

R

[
1− K

3
r2

R2

]
[

1−K r2

R2

]2 (4)

8πp =

[
ν ′

r
+

1

r2

] [1− r2

R2

]
[

1−K r2

R2

] − 1

r2
(5)

and

c

[
1−K r2

R2

][
ν ′′ +

ν ′2

2
− ν ′

r

]
− 1−K

R2
(rν ′ + 2) +

2(1−K)

R2

[
1−K r2

R2

]
= 0 (6)

Here and in what follows an overhead prime mentions differentiation with respect to radial
variable r. In our proposal the prevailing choice of state of matter is replaced with the
option of the spheroidal geometry which demonstrate the rate of change with respect to
r. Equation (4) displays that the density of the fluid is figured out by the curvature of the
physical 3-space. The field equation (5) presents the variation of pressure with r when ν is
chosen to satisfy Equation (6). It is shown by Tikekar (1990), that the relativistic condition
for hydro static equilibrium is:

1

c2

dp

dr
= −

(ρ+ p
c2

)

r2

[
m(r) + (4πGp

c4
)r3

1− 2m(r)
r

]
(7)
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This usually replaces the field equation (6) with the explicit form:

1

c2

dp

dr
= −

[
1−K r2

R2

]
[
1− r2

R2

] [4πGpr

c4
+

(1− k)r

2R2
[
1−K r2

R2

]](ρ+
p

c2
) (8)

This law points out that the pressure gradient coupled with the repulsive force make up
for the gravitational force of attraction of matter and thus establishes equilibrium. We shall
examine how the law of variation of the density given by Equation (4) facilitates us to assess
the mass and the radius of the configuration.

0.3 GENERAL SOLUTION OF FIELD EQUATIONS

Adopting new variable ψ and z2 defined as,

ψ = eν/2

z2 = 1− r2

R2
(9)

in to the second order, non linear ordinary differential equation (6), resulting in a second
order linear differential equation of the form,

(1−K +Kz2)
d2ψ

dz2
−Kzdψ

dz
+K(K − 1)ψ = 0 (10)

Defining an independent variable,

u2 =
K

K − 1
z2,K < 0

changes the differential equation (10) to the form

(1− u2)
d2ψ

du2
+ u

dψ

du
+ (1−K)ψ = 0 (11)

used by Tikekar and Vaidya (1982). Further considering the new independent variable
x = u2, the differential equation (11) can be written in the form of a hyper-geometric
equation as

x(1− x)
d2ψ

dx2
+

1

2

dψ

du
+

(1−K)

4
ψ = 0 (12)

The function ψ = eν/2 which satisfies the above equation can be equated to

ψ = AF

[
−1 +

√
2−K

2
,
−1−

√
2−K

2
,
1

2
, x

]
+Bx1/2F

[√
2−K

2
,
−
√

2−K
2

,
3

2
, x

]
(13)

where F [a, b, c, x] is the hyper-geometric function with its argumentsA andB are arbitrary
constants. The closed form solutions that can be obtained from (13) can be put into two
classes based on the values of K.
The solution ψ for the equation (13) for both the cases of K can be determined.

Case 1: K = 2− (2n2 − 1), n = 2, 3, 4, · · · ,

ψ = AF

[
−1 +

√
2−K

2
,
−1−

√
2−K

2
,
1

2
, x

]
+Bx

1
2 (1− x)

3
2F

[
3 +
√

2−K
2

,
3−
√

2−K
2

,
3

2
, x

]

Case 2: K = 2− 4n2, n = 1, 2, 3, · · · ,

ψ = A(1− x)
3
2F

[
2 +
√

2−K
2

,
2−
√

2−K
2

,
1

2
, x

]
+Bx

1
2F

[√
2−K

2
,
−
√

2−K
2

,
3

2
, x

]
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The solution given by (13) can be used in general for all K < 0 as far as numerical calcu-
lations are concerned.
As we have reached the solution for the Einsteins field equation without making any as-
sumption on the equation of state for its matter content, it is required to examine the physi-
cal plausibility of the solution thus obtained.

0.4 PHYSICAL PLAUSIBILITY AND BOUNDARY
CONDITIONS

For the metric of field equation given by (1) with eν/2 given by (13) to have a physically
meaningful solution, it must satisfy the following requirements. (Knutsen 1988)

1. The metric should join continuously with the Schwarzschild’s exterior metric which
is given by,

ds2
1 = −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2θdφ2

)
+

(
1− 2m

r

)
dt2 (14)

2. Across the boundary r = a, p(a) must be 0.

3. The matter density ρ and the fluid pressure p should be positive within the configura-
tion.

4. The gradients dp
dr and dρ

dr should be negative.

5. dp
dρ < 1.

The first two boundary conditions leads to the relations,

1− a2

R2

1−K a2

R2

= 1− 2m

a

eν(a) = 1− 2m

a
and p(a) = 0

These conditions helps to decide the constants A, B and m in terms of a, R and K.
The remaining conditions helps to derive,

dρ

dr
=

(1−K)Kr

8πR4

(
5−K r2

R2

)
(

1−K r2

R2

)3 , (15)

and that implies for K < 0, dρdr < 0.
The expression for fluid pressure in general can be expressed as

8πp =
1

1−K +Kz2

[
ν ′

r
z2 +

K − 1

z2

]
,

and the positive nature of matter pressure within the configuration gives,

ν ′

r
z2 ≥ 1−K

z2

dρ

dr
(16)

Differentiating p with respect to r gives the relation,

dp

dr
= −(p+ ρ)

1−K r2

R2

1− r2

R2

[
4πpr +

(1−K)r

2R2
(

1−K r2

R2

)] (17)

Page 4

ssrg 5
Text Box
                                                                                                                                                                                  18

ssrg 5
Text Box
                                   Aiswarya S. Sasidharan & Dr. Sabu M. C. / IJMTT, 67(8), 15-25, 2021



International Journal of Mathematics Trends and Technology
ISSN: 2231 – 5373 /doi:10.14445/22315373/IJMTT-VXXXX

Volume 66 Issue 10, 1-4, October 2020
© 2020 Seventh Sense Research Group®

Satisfying (16) by the above equation, implies dp
dr < 0 for K < 0

In the case of isentropic fluids, the speed of sound is given by
√

dp
dρ and all perfect fuid

being isentropic implies that
√

dp
dρ < 1.

Merging (15) and (17), gives

dp

dρ
=

2πR2(p+ ρ)

[
(1−K) + 8πpR2

(
1−K r2

R2

)]
(

1−K r2

R2

)3

K(K − 1)
(

1− r2

R2

)(
5−K r2

R2

) (18)

At the centre r = 0,

(
dp

dρ

)
0

=

2πR2(p(0) + ρ(0))
[
(1−K)+

8πp(0)R2
]

5K(K − 1)
(19)

where p(0) and ρ(0) denotes the fluid pressure and density at the center. For the fluid
distribution to complement with the strong energy condition at the centre, ρ(0)−3p(0) ≥ 0,
it follows, (

dp

dρ

)
0

≤ 2(K − 1)

5K
(20)

and hence for
(
dp
dρ

)
0
< 1, K < −2

3 .

At the boundary, r = a, (
dp

dρ

)
a

=
−2πR2ρ(a)

[
1−K a2

R2

]3

K

[
1− a2

R2

][
5−K a2

R2

] (21)

Using the expression (4) for ρ(a), the above equation becomes,(
dp

dρ

)
a

=
3(K − 1)

4K

[
1− Ka2

3R2

][
1−K a2

R2

]
[
1− a2

R2

][
5−K a2

R2

] (22)

The last condition dp
dρ < 1 will be satisfied if and only if,

a2

R2
≤
−12 +

√
144 + (K − 5)(3 + 17K)

K(K − 5)
(23)

which gives the condition K < −3
17 .

0.5 THE SOLUTION FOR K = −1

The line element describing the space-time metric for the value of K = −1 has the
form

ds2 = −
1 + r2

R2

1− r2

R2

dr2 − r2(dθ2 + sin2θdφ2) + eν(r)dt2 (24)

If the matter content of the space time is a perfect fluid in equilibrium, ν is determined by
solving the differential equation (10). The equation for K = −1 reduces to

(2− z2)
d2ψ

dz2
+ z

dψ

dz
+ 2ψ = 0 (25)
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The hyper-geometric solution of (10) for the choice of K = −1 gives

ψ = eν/2 = AF

[
−1 +

√
3

2
,
−1−

√
3

2
,
1

2
, x

]
+Bx

1
2 (1− x)

3
2F

[√
3

2
,
−
√

3

2
,
3

2
, x

]
(26)

Here A and B are constants. The expressions for matter density and pressure is given by,

8πρ =
6

R2

[1 + 1
3
r2

R2 ]

[1 + r2

R2 ]2
(27)

8πp =
1

2− z2

[
ν ′

r
z2 − 2

z2

]
, (28)

where

ν ′

r
= − 2

R2

−AF

[
1+
√

3
2 , 1−

√
3

2 , 3
2 , x

]
− 1

2Bx
1/2

F

[
2+
√

3
2 , 2−

√
3

2 , 5
2 , x

]
− F

[
√

3
2 ,
√

3
2 ,

3
2 , x

]

AF

[
−1+

√
3

2 , −1−
√

1
2 , 3

2 , x

]
+Bx1/2

F

[
√

3
2 ,
√

3
2 ,

3
2 , x

]
(29)

The density and the pressure attains the value ρ0 and p0 at the centre (r=0) and is given by,

8πρ0 =
6

R2
(30)

8πp0 =
−2

R2

[−0.23589A+ 0.161366B

0.23589A+ 0.32274B
− 2
]

(31)

The pressure at the center being positive is ensured by imposing the condition,

A

B
> −1.6840 (32)

The boundary condition that ensures continuity of metric (24) with eν implies

1− 2m

a
=

1− a2

R2

1 + a2

R2

(33)

1− 2m

a
= eν(a) = ψ2 =

(
AF

[
−1 +

√
3

2
,
−1−

√
3

2
,
1

2
, x

]
+BzF

[√
3

2
,
−
√

3

2
,
3

2
, x

])2

(34)

Imposing the strong energy condition ρ0− 3p0 ≥ 0 at the centre gives further restriction on
A and B such that

A

B
≥ −1.3712 (35)

A physically plausible fluid distribution is expected to comply with the requirement of
causality condition that the speed of light dp

dρ will be the limiting speed of propagation of

any signals in it. Accordingly, the causality requirement demand
(
dp
dρ

)
0
< 1.

Since ρ0 > 3p0 then from (20), (
dp

dρ

)
0

≤ 0.8 (36)

At r = a,
a2

R2
≤ −12 +

√
144 + 6× 14

6
(37)
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then dp
dρ < 1 at r = a.

Hence it is expected that speed of sound will not exceed speed of light throughout the con-
figuration for fluid spheres with a2 < 0.5166R2.

The condition of pressure being 0 at the surface r = a together with the continuity of
metric coefficients gives

m =
4πG

c2

∫ a

0
ξ2p(ζ)dζ =

a3

a2 +R2
(38)

and(
1− 2m

a

) 1
2

= AF

[
−1 +

√
3

2
,
−1−

√
3

2
,
1

2
, x

]
+Bx

1
2F

[√
3

2
,
−
√

3

2
,
3

2
, x

]
(39)

The pressure p = 0 at r = a gives

−AF

[
1 +
√

3

2
,
1−
√

3

2
,
3

2
, x

]
=

1

2
Bx

1
2F

[
2 +
√

3

2
,
2−
√

3

2
,
5

2
, x

]
(40)

The conditions (39) and (40) determine the constants A and B while the condition (38)
decides the total mass m of the distribution.

The density variation parameter λ is defined as,

λ =
ρa
ρ0

=
1 + a2

3R2

(1− a2

R2 )2
(41)

Following the strong energy condition, we reached out a condition that a2

R2 < 0.5166 and
this requirement is fulfilled for models with λ. The above equations are used for modelling,
and finding the values of R, r M , M

Ma
Θ

, A and B and the same is tabulated below.

Table 1: Masses and equilibrium radii matching to ρa = 2× 1014 gm/cm3 for the class of
relativistic star models.

λ R(km) a(km) a2/R2 m m/MΘ A B

0.9 38.07 9.75 0.07 0.5995 0.4064 5574.942879 -4071.812627
0.85 36.99 11.88 0.10 0.1108 0.7531 5974.428971 -4363.904013
0.8 35.89 13.65 0.14 1.7253 1.1697 6516.443218 -4760.176525

0.75 34.75 15.18 0.19 2.43 1.65 7273.947259 -5313.959013
0.7 33.57 16.54 0.24 3.23 2.19 8375.914451 -6119.519593

0.65 32.35 17.75 0.30 4.11 2.79 10069.48439 -7357.494467
0.6 31.08 18.85 0.37 5.0695 3.4370 12881.25442 -9412.7759

0.55 29.76 19.85 0.44 6.1121 4.1438 18109.67936 -13234.40686
0.5 28.37 20.76 0.54 7.2359 4.9057 29721.51038 -21721.68567

0.45 26.92 21.58 0.64 8.4416 5.7231 64894.43843 -47429.76592
0.4 25.38 22.32 0.77 9.5094 6.44717 272783.69 -199375.9281

0.35 23.74 22.97 0.94 11.1053 7.5290 19297280.38 -14104341.85
0.3 21.98 23.53 1.15 12.5683 8.5209 - -

0.25 20.06 24.00 1.43 14.1228 9.5747 - -

Note: The mass m recorded in table is measured in km. 1 MΘ= 1.475 km.

0.6 STABILITY ANALYSIS OF THE MODEL FOR K = −1

Chandrasekhar (1964) developed the method to investigate the stability of the star models
with respect to infinitesimal radial pulsations. A normal mode of radial oscillation for an
equilibrium configuration is defined as,

δr = ξ(r)triale
iσt (42)
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and is said to be stable if and only if σ is real [Knutsen (1988)]. A trial function u is written
as [Bardeen, Thorne and Meltzer]

u = ξtrialr
2e−

ν
2 (43)

Chandrasekhars pulsation equation for the line element ,

ds2 = −eλdr2 − r2(dθ2 + sin2θdφ2)eνdt2 (44)

is given as

σ2

∫ a

0
e

1
2

(3λ+ν)(p+ρ) u
2

rv2 dr =

∫ a

0
e

1
2

(λ+3ν) p+ρ
r2

[(
−2

r

dν

dr
− 1

4

(dν
dr

)2
+ 8πpeλ

)
u2

+
dp

dρ

(du
dr

)2
]
dr (45)

The condition that the Lagrangian change in pressure vanishes at the surface of the star
r = a,

∆p = e
−nu

2
1

r2
νp
du

dr
= 0 (46)

is satisfied if [
du

dr

]
r=a

= 0 (47)

Consider a trial function of the form,

u = R3(1− z2)
3
2

[
1 + a1(1− z2) + b1(1− z2)2 + · · ·

]
(48)

The condition (47) demands

3 + 5a1y + 7b1y
2 + · · · = 0 (49)

where y = a2

R2 and a1, b1 · · · are arbitrary constants.
The integral IR on the right hand side of the pulsation equation is written as,

IR =
R

8π
√

2

∫ a

0
e(λ+3ν) p+ρ

2R2 y

[
y

(
2

z

dν

dz
− y

4z2

(dν
dr

)2
+ 8πpeλ

)

(1 + a1y + b1y
2)2 +

dp

dρ
(3 + 5a1y + 7b1y

2)

]√
1

y
dy

where p, ρ, ν and λ are given by the equation (28), (27), (26) and (1). By assuming different
combinations of values for a1 and b1, we found that the IR remains positive for particular
models. It gives a strong indication that the model presented here is stable with respect to
infinitesimal radial pulsations.

0.7 DISCUSSIONS

When the thermonuclear sources of energy inside the star gets exhausted, it starts to
contract under the control of gravitational interplay of its substance content until it ends
up in its final fate as a black hole, white dwarf, or neutron star depending upon the mass.
The models of Tikekar and Vaidya (1982) describe a super dense star having densities of
their matter content in the range of 1014 - 1016 gmcm−3 which is formed during these last
stages of stellar development. We assume that at the boundary r = a, the density of the star
is ρa = 2 × 1014 gmcm−3 which corresponds to that of neutron star. Then, adopting the
scheme explained by giving different values of λ= ρa

ρ0
and for each chosen value of λ and

the assumed value, ρa we calculate ρ0. Equation (30) is then used to calculateR2. Equation
(27) then gives us an estimate of a, the radius of the star and finally Equation (33) gives the
mass of the star. The value of m as given by Equation (33) will be in km. The mass of the
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star in gm is obtained by MG
c2

= m or M = mc2

G . It is easier to express the mass of the star
as a multiple of one solar mass Mθ. The results of the calculations for various values of λ
are given in Table 1.
From Table 1 it is very well clear that a2

R2 is a decreasing function of λ. Now the physical
requirement that ρ, p and ρ−3p/c2 be all 0 restricts to the condition (37) viz. a2

R2 ≤ 0·5166.
Therefore the corresponding restriction on λ is λ ≤ 0·55. Thus the first eleven values in
the table gives a series of physically viable solutions to the above star-models. The most
interesting fact is that each of these models possess an equilibrium radius which is equal to
that of the radius of a neutron star. The maximum mass for the configuration is 4.14Mθ and
is obtained at the radius of 19.85 km. Both m and a are decreasing functions of λ .However
if we relax the physical requirement to ρ > 0, p ≥ 0, ρ – 3 p

c2
≥0, the restriction on A

B is ≥
-1.3712 and considering this condition along with the other restrictions we end up with the
highlighted value in the value as the most appropriate value for m

MΘ
.

Graphs showing the variation of pressure (p), weak energy condition (ρ – p), strong energy
condition (ρ – 3p) and rate of change of pressure with respect to density are plotted against
different values of radius.

Fig. 1. Graph of p, ρ− 3p and ρ− p corresponding to λ = 0.55 is plotted against radius.

Fig. 2. Graph of dpdρ at λ = 0.55 is plotted against radius.
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Fig. 3. Graph of p, ρ− 3p and ρ− p corresponding to λ = 0.65 is plotted against radius.

Fig. 4. Graph of dpdρ at λ = 0.65 is plotted against radius

One good feature of Vaidya-Tikekar model is that they permit comparatively higher val-
ues of maximum mass of a neutron star than the values permitted by a similar non-nuclear
analysis by Rhoades and Ruffini (1974). According to Tikekar and Vaidya the solution to
the differential equations involves solving a recurrence relation and hence that solution can
be applicable only to certain values of K (few integral values like K = −2,−7,−14,−23
· · · ). There arises the importance of our solution that we have mentioned in this paper.
We had derived a hypergeometric solution to Vaidya-Tikekar metric, that it could be used
for any values of K with K < −3

17 and henace the solution can be considered as a general
solution to V-T metric. The same general solution can be used even for pseudospheroidal
geometry in which many researchers are working on. In order to check the validity of the
solution, a particular value of K(K = −1) is considered and the physical plausibility of
the system was studied. All the five boundary conditions are evaluated for K = 1 and its
noted that all the boundary conditions go well in hand with the general conditions. The
most interesting and significant result is that with K = −1, our general solution to V-T
metric is awarding a better limit to the maximum mass a neutron star can hold (4.14 Mθ).
Thus the series of equilibrium configurations given by these space-time metric, each having
mass, radii and surface density of the same order as in a neutron star.
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