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Abstract - Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑢 ∈
𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 𝑢𝑣 ∈ 𝐸(𝐺). A dominating set 𝑆 is called a super dominating set if for very vertex 𝑢 ∈
𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 𝑁𝐺(𝑣) ∩ (𝑉(𝐺)\𝑆) = {𝑢}. A super dominating set 𝑆 is called a secure super dominating 

set if for every vertex 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that (𝑆\{𝑣}) ∪ {𝑢} is a super dominating set of 𝐺. In this paper, we 

investigate the concept and give some important results. 
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I. INTRODUCTION  

Suppose that 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is a simple graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). In simple graph, we mean, finite 

and undirected graph with neither loops nor multiple edges. For the general graph theoretic terminology, the readers may refer 

to [1]. 

 

A vertex 𝑣 is said to dominate a vertex 𝑢 if 𝑢𝑣 is an edge of 𝐺 or 𝑣 = 𝑢. A set of vertices 𝑆 ⊆ 𝑉(𝐺) is called a 

dominating set of 𝐺 if every vertex not in 𝑆 is dominated by at least one member of 𝑆. The size of a set of least cardinality 

among all dominating sets for 𝐺 is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). A dominating set of cardinality 

𝛾(𝐺) is called 𝛾 − 𝑠𝑒𝑡 of 𝐺. Domination in a graph has been a huge area of research in graph theory. It was introduced by 

Claude Berge in 1958 and Oystein Ore in 1962 [2]. Domination in graphs has been studied in [3, 4, 5, 6, 7, 8, 9, 10].  

 

A dominating set 𝑆 is called super dominating set if for every vertex 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 

𝑁𝐺(𝑣) ∩ (𝑉(𝐺)\𝑆) = {𝑢}. The super domination number of 𝐺, is the minimum cardinality of a super dominating set of 𝐺 and 

is dentoed by 𝛾𝑠𝑢𝑝(𝐺) [11]. A super dominating set cardinality 𝛾𝑠𝑢𝑝(𝐺) is called a 𝛾𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Super domination has been 

studied in [12, 13, 14, 15, 16, 17, 18, 19].  

 

A dominating set 𝑆 of 𝑉(𝐺) is a secure dominating set of 𝐺 if for each 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 𝑣 ∈ 𝑆 such that 𝑢𝑣 ∈

𝐸(𝐺) and the set (𝑆\{𝑣}) ∪ {𝑢} is a dominating set of 𝐺. The secure domination number of 𝐺, is the minimum cardinality of a 

secure dominating set of 𝐺 and is denoted by 𝛾𝑠(𝐺). A secure dominating set of cardinality 𝛾𝑠(𝐺) is called 𝛾𝑠 − 𝑠𝑒𝑡 of 𝐺. The 

secure domination has been studied in [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].   

 

Motivated by the idea of secure [20] and super [11] domination in graphs, we initiate the study of a secure super 

dominating set. A super dominating set 𝑆 is called a secure super dominating set if for every vertex 𝑢 ∈ 𝑉(𝐺)\𝑆, there exists 

𝑣 ∈ 𝑆 such that (𝑆\{𝑣}) ∪ {𝑢} is a super dominating set of 𝐺. The secure super domination number of 𝐺, is the minimum 

cardinality of a secure super dominating set of 𝐺 and is denoted by 𝛾𝑠𝑠𝑢𝑝(𝐺). A secure super dominating set of cardinality 

𝛾𝑠𝑠𝑢𝑝(𝐺) is called 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. In this paper, we investigate the concept and give some important results. We further give 

the characterization of a secure super dominating set in the join and corona of two graphs. 

II. RESULTS 

Definition 2.1 [12] A set 𝑆 ∈ 𝑉(𝐺) is called a secure dominating set of a graph 𝐺 if for every vertex 𝑢 ∈ 𝑉(𝐺)\𝑆 there exists 

𝑣 ∈ 𝑆 ∩ 𝑁𝐺(𝑢) such that (𝑆\{𝑣}) ∪ {𝑢} is dominating. It is super secure dominating set if 𝑁𝐺(𝑣) ∩ (𝑉(𝐺)\𝑆) = {𝑢}. 

 

Remark 2.2 A secure super dominating set need not be a super secure dominating set of a graph 𝐺. 

 

Example 2.3 In Figure 1, the subset 𝑆 = {𝑣1, 𝑣3, 𝑣4} is a secure dominating set and a super dominating set. Hence, 𝑆 is a 
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super secure dominating set. But 𝑆 is not a secure super dominating set of 𝐺 since (𝑆\𝑆4) ∪ {𝑣5} = {𝑣1, 𝑣3, 𝑣5} is not a super 

dominating set of 𝐺. 

 

  

 

 

 

 

 

 

 
 

 

 

 

Figure 1: 𝑺 = {𝒗𝟏, 𝒗𝟑, 𝒗𝟒} is a super secure dominating set. 

 

Remark 2.4 The set 𝑆 = 𝑉(𝐺) is a super dominating set and a secure dominating set. 

 

Proof: If 𝑆 = 𝑉(𝐺), then every vertex in 𝑉(𝐺)\𝑆 = ∅ vacuously satisfies the definitions of a super dominating set and a secure 

dominating set. ∎ 

 

Remark 2.5 Every graph 𝐺 has a super dominating set and a secure dominating set. 

 

Proof: By Remark 2.4, 𝑆 = 𝑉(𝐺) is a super dominating set and a secure dominating set. ∎ 

From the definitions of secure super dominating set and Remark 2.5, the following is immediate. 

 

Remark 2.6 Let 𝐺 be a nontrivial graph. Then 1 ≤ 𝛾(𝐺) ≤ 𝛾𝑠𝑠𝑢𝑝(𝐺) ≤ 𝑛. 

For a nontrivial connected graph 𝐺, the following result says that 𝛾𝑠𝑠𝑢𝑝(𝐺) ranges over all integers from 1 to 𝑛 − 1. 

 

Theorem 2.7 Given positive integers 𝑘,𝑚, and 𝑛 such that 1 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛 − 1, where 𝑛 ≥ 2, there exists a connected graph 

𝐺 with |𝑉(𝐺)| = 𝑛, 𝛾(𝐺) = 𝑘, and 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑚. 

 

Proof: Consider the following cases. 

Case 1. Suppose that 1 = 𝑘 ≤ 𝑚 = 𝑛 − 1. 

 Consider 𝐺 = 𝐾𝑛 = [𝑣1, 𝑣2, … , 𝑣𝑛] with 𝐷 = {𝑣1} a 𝛾-𝑠𝑒𝑡 of 𝐺, and 𝑆 = 𝑉(𝐺)\𝐷 a 𝛾𝑠𝑠𝑢𝑝-𝑠𝑒𝑡 of 𝐺 (see Figure 2). 

 

 

 

 

 

 

 

 

  

 

Figure 2: A graph 𝑮 with 𝟏 = 𝒌 ≤ 𝒎 = 𝒏 − 𝟏. 

 

Thus, |𝑉(𝐺)| = |𝑉(𝐾𝑛)| = 𝑛, 𝛾(𝐺) = |𝐷| = 1 = 𝑘, and 𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑉(𝐺)\𝐷| = |𝑉(𝐺)| − |𝐷| = 𝑛 − 𝑘 = 𝑛 − 1 = 𝑚. 

Case 2. Suppose that 1 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛 − 1. 
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Then 𝐺 = 𝑃𝑘 ∘ 𝑃𝑝 with 𝑛 = (𝑘 + 1)𝑝 for all positive integers 𝑘 ≥ 1 and 𝑝 ≥ 2. (see Figure 3). 

 

 

 

 

 

 

 

 

Figure 3: A graph 𝑮 with 𝟏 ≤ 𝒌 ≤ 𝒎 ≤ 𝒏− 𝟏. 

 

 Let 𝑚 = 𝑘𝑝. The set 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑘} is a 𝛾-𝑠𝑒𝑡 of 𝐺 and 𝑆 = 𝑉(𝐺)\𝐷 is a 𝛾𝑠𝑠𝑢𝑝-𝑠𝑒𝑡 of 𝐺. Thus,                             

|𝑉(𝐺)| = |𝑉(𝑃𝑘 ∘ 𝑃𝑝)|  = |𝑉(𝑃𝑘)||𝑉(𝑃𝑝)| + |𝑉(𝑃𝑘)| = 𝑘𝑝 + 𝑘 = (𝑝 + 1)𝑘 = 𝑛, 𝛾(𝐺) = |𝐷| = 𝑘, and 𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆| =

|𝑉(𝐺)\𝐷| = 𝑛 − 𝑘 = (𝑝 + 1)𝑘 − 𝑘 = 𝑝𝑘 = 𝑚.∎ 

 

Corollary 2.8 The difference between 𝛾𝑠𝑠𝑢𝑝(𝐺) − 𝛾(𝐺) can be arbitrarily large. 

 

Proof: By Theorem 2.7, there exists a connected graph 𝐺 such that 𝛾(𝐺) = 1 and 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑛 + 1. Then 𝛾𝑠𝑠𝑢𝑝(𝐺) − 𝛾(𝐺) =

(𝑛 + 1) − 1 = 𝑛. Hence, the difference between 𝛾𝑠𝑠𝑢𝑝(𝐺) − 𝛾(𝐺) can be made arbitrarily large. ∎ 

 Let 𝑃𝑛 = [𝑣1, 𝑣2,… , 𝑣𝑛] such that 𝑉(𝑃𝑛) = {𝑣1, 𝑣2,… , 𝑣𝑛} and 𝐸(𝑃𝑛) = {𝑣1𝑣2, 𝑣2 𝑣3, … , 𝑣𝑛−1𝑣𝑛}. The next result 

shows the super inverse domination number of a path graph 𝑃𝑛. 

 

Theorem 2.9 Let 𝐺 = 𝑃𝑛 of order 𝑛 ≥ 2. Then, 

 

𝛾𝑠𝑠𝑢𝑝(𝐺)

{
 
 
 
 

 
 
 
 

2𝑛

3
,                     𝑖𝑓 𝑛 = 3 𝑜𝑟 𝑛 = 6                    

2𝑛 − 3

3
,                 𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3), 𝑛 ≠ 3, 𝑛 ≠ 6

3,                       𝑖𝑓 𝑛 = 4                                     
2(𝑛 − 1)

3
,               𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3), 𝑛 ≠ 4              

2𝑛 − 1

3
,                 𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3)                         

 

 

Proof: Let 𝐺 = 𝑃𝑛 of order 𝑛 ≥ 2. 

 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 3). Consider the graph G below (see Figure 4). 

 

 

 

 

Figure 4: A graph 𝑮 with 𝜸𝒔𝒔𝒖𝒑𝑮 =
𝟐𝒏−𝟑

𝟑
, 𝒏 ≠ 𝟑 and 𝒏 ≠ 𝟔. 

 

 If 𝑛 ≠ 3 and 𝑛 ≠ 6, then the set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2,… ,
𝑛−3

3
} ∪ {𝑉3𝑖−1: 𝑖 = 1, 2, … ,

𝑛

3
} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 

𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆| =
𝑛−3

3
+

𝑛

3
=

2𝑛−3

3
. If 𝑛 = 3 or 𝑛 = 6, then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 2 or 𝛾𝑠𝑠𝑢𝑝(𝐺) = 4 is clear (see Figure 4). Thus, 

𝛾𝑠𝑠𝑢𝑝(𝐺) =
2𝑛

3
. 
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Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 3). Consider the graph 𝐺 below (see Figure 5). 

 

 

 

 

Figure 5: A graph 𝑮 with 𝜸𝒔𝒔𝒖𝒑(𝑮) =
𝟐(𝒏−𝟏)

𝟑
, 𝒏 ≠ 𝟒. 

 

 If 𝑛 = 4, then the set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2,… ,
𝑛−1

3
} ∪ {𝑉3𝑖−1: 𝑖 = 1, 2,… ,

𝑛−1

3
} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 𝛾𝑠𝑠𝑢𝑝(𝐺) =

|𝑆| =
𝑛−1

3
+

𝑛−1

3
=

2(𝑛−1)

3
. If 𝑛 = 4, then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 3 is clear. 

 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 3). Consider the graph 𝐺 below (see Figure 6). 

 

 

 

 

Figure 6: A graph 𝑮 with  𝜸𝒔𝒔𝒖𝒑(𝑮) =
𝟐𝒏−𝟏

𝟑
. 

 

 The set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2, … ,
𝑛−2

3
} ∪ {𝑉3𝑖−1: 𝑖 = 1, 2, … ,

𝑛+1

3
} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆| =

𝑛−2

3
+

𝑛+1

3
=

2𝑛−1

3
. If 𝑛 = 4 then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 3 is clear. ∎ 

 

 Let 𝐶𝑛 = [𝑣1, 𝑣2,… , 𝑣𝑛] such that 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸(𝐶𝑛) = {𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1}. The next 

result shows the super inverse domination number of a cycle graph 𝐶𝑛. 

Theorem 2.10 Let 𝐺 = 𝐶𝑛 of order 𝑛 ≥ 3. Then, 

 

{
  
 

  
 

2𝑛

3
,                 𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3)           

2𝑛 + 1

3
,             𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)               

2𝑛 − 1

3
,             𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑 3), 𝑛 ≠ 8  

6,                    𝑖𝑓 𝑛 = 8                          

 

 

Proof: Let 𝐺 = 𝐶𝑛 of order 𝑛 ≥ 3. 

 

Case 1. 𝑛 ≡ 0(𝑚𝑜𝑑 3). Consider the graph 𝐺 below (see Figure 7). 

 

 

 

 

 

 

Figure 7: A graph 𝑮 with 𝜸𝒔𝒔𝒖𝒑(𝑮) =
𝟐𝒏

𝟑
. 

 

The set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2, … ,
𝑛

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2, … ,

𝑛

3
} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 
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𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆|                                                                                                

= |{𝑉3𝑖: 𝑖 = 1, 2, … ,
𝑛

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2, … ,

𝑛

3
}| 

= |𝑉3𝑖: 𝑖 = 1, 2, … ,
𝑛

3
| + |𝑉3𝑖−2: 𝑖 = 1, 2, … ,

𝑛

3
|      

=
𝑛

3
+
𝑛

3
=
2𝑛

3
                                                               

 

Case 2. 𝑛 ≡ 1(𝑚𝑜𝑑 3). Consider the graph 𝐺 below (see Figure 8). 

 

 

 

 

 

 

Figure 8: A graph 𝑮 with 𝜸𝒔𝒔𝒖𝒑(𝑮) =
𝟐𝒏+𝟏

𝟑
. 

 

 The set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2, … ,
𝑛−4

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2, … ,

𝑛+2

3
} ∪ {𝑢𝑛−2} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 

 

𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆|                                                                                                                                  

= |{𝑉3𝑖: 𝑖 = 1, 2,… ,
𝑛 − 4

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2,… ,

𝑛 + 2

3
} ∪ {𝑢𝑛−2}| 

=
𝑛 − 4

3
+
𝑛 + 2

3
+ 1 =

2𝑛 + 1

3
                                                                

 

Case 3. 𝑛 ≡ 2(𝑚𝑜𝑑 3). Consider the graph 𝐺 below (see Figure 9). 

 

 

 

 

 

 

Figure 9: A graph 𝑮 with 𝜸𝒔𝒔𝒖𝒑(𝑮) =
𝟐𝒏−𝟏

𝟑
, 𝒏 ≠ 𝟖. 

 

If 𝑛 ≠ 8, then the set 𝑆 = {𝑉3𝑖: 𝑖 = 1, 2,… ,
𝑛−2

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2, … ,

𝑛−2

3
} ∪ {𝑣𝑛} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Thus, 

 

𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆|                                                                                                                                  

= |{𝑉3𝑖: 𝑖 = 1, 2,… ,
𝑛 − 2

3
} ∪ {𝑉3𝑖−2: 𝑖 = 1, 2,… ,

𝑛 − 2

3
} ∪ {𝑢𝑛−2}| 

=
𝑛 − 2

3
+
𝑛 − 2

3
+ 1 =

2𝑛 − 1

3
                                                                

 

 If 𝑛 = 8, then the set 𝑆 = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8} is a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺. Hence, 𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆| =

|{𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8}| = 6. ∎ 

  

A complete graph on 𝑛 vertices, denoted by 𝐾𝑛, is a simple graph that contains exactly one edge between each pair of distinct 

vertices. The next following result shows the domination number of 𝐾1 +𝐻 where 𝐻 is a nontrivial graph. 
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Theorem 2.11 Let 𝐺 = 𝐾1 + 𝐻 be a connected graph of order 𝑛 ≥ 2. Then, 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑛 − 1. 

 

Proof: Let 𝐺 = 𝐾1 +𝐻 be a connected graph of order 𝑛 ≥ 2. Clearly, 𝑆 = 𝑉(𝐺)\𝑉(𝐾1) = 𝑉(𝐻) is a secure super dominating 

set of 𝐺. Hence, 𝛾𝑠𝑠𝑢𝑝(𝐺) ≤ |𝑆|. Let 𝑉(𝐾1) = {𝑣} and 𝑥 ∈ 𝑆. Then 𝑥 ∈ 𝑉(𝐻). Since 𝐻 is nontrivial, 𝑉(𝐻)\{𝑥} ≠ ∅. Let 𝑦 ∈

𝑉(𝐻)\{𝑥} = 𝑆1. 

 

Case 1. If 𝑥𝑦 ∈ 𝐸(𝐺), then there exists 𝑥 ∈ 𝑉(𝐺)\𝑆1 and 𝑦 ∈ 𝑆1 such that 𝑁𝐺(𝑦) ∩ (𝑉(𝐺)\𝑆1) = {𝑣, 𝑥}. Hence, 𝑆1 is not a 

super dominating set of 𝐺. 

 

Case 2. If 𝑥𝑦 ∉ 𝐸(𝐺), then there exists 𝑥 ∈ 𝑉(𝐺)\𝑆1 that is not dominated by any elements of 𝑆1. Hence, 𝑆1is not a dominating 

set of 𝐺. 

  

In any case, 𝑆1 is not a secure super dominating set of 𝐺. Similarly, any proper subset of 𝑆′ of 𝑉(𝐻) is not a secure super 

dominating set of 𝑉(𝐺). Therefore, 𝑆 = 𝑉(𝐻) must be a 𝛾𝑠𝑠𝑢𝑝 − 𝑠𝑒𝑡 of 𝐺, that is,  

 

𝛾𝑠𝑠𝑢𝑝(𝐺) = |𝑆|                                                                 

= |𝑉(𝐺)\𝑉(𝐾1)|                           

= |𝑉(𝐺)| − |𝑉(𝐾1)| = 𝑛 − 1∎ 

 

Corollary 2.12 If a graph 𝐺 is a wheel 𝑊𝑛 = 𝐾1 + 𝐶𝑛−1, or a star 𝑆𝑛 = 𝐾1 + 𝐾̅𝑛−1 , or a fan 𝐹𝑛 = 𝐾1 + 𝑃𝑛−1, or a complete 

graph 𝐾𝑛 , then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑛 − 1. 

 

Proof: Clearly, 𝐾𝑛 = 𝐾1 + 𝐾𝑛−1. Thus, if 𝐺 is 𝑊𝑛 , 𝑆𝑛 , 𝐹𝑛, or 𝐾𝑛, then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑛 − 1 by Theorem 2.11. ∎ 

 A complete bipartite graph 𝐾𝑚,𝑛 is a graph that has its vertex set partitioned into two subsets of 𝑚 and 𝑛 vertices, 

respectively with an edge between pair of vertices if and only if one vertex in the pair is in the first subset and the other vertex 

is in the second subset. 

 

Remark 2.13 If a graph 𝐺 is a complete bipartite 𝐾𝑚,𝑛 with 𝑚 ≥ 2 and 𝑛 ≥ 2, then 𝛾𝑠𝑠𝑢𝑝(𝐺) = 𝑛 − 1. 

 

III. CONCLUSIONS 

In this paper, we introduced the concept of secure super domination in graphs and prove that given positive integers 

𝑘,𝑚 and 𝑛 such that 1 ≤ 𝑘 ≤ 𝑚 ≤ 𝑛 − 1, where 𝑛 ≥ 2, there exists a connected graph 𝐺 with |𝑉(𝐺)| = 𝑛, 𝛾(𝐺) = 𝑘, and  

𝛾sup(𝐺)
−1 = 𝑚. Further, we prove the domination number of a path graph 𝑃𝑛 , a cycle 𝐶𝑛 , a wheel graph 𝑊𝑛 , a fan graph 𝐹𝑛 , a 

star graph 𝑆𝑛 , a complete graph 𝐾𝑛, and a complete bipartite 𝐾𝑚,𝑛 . Some related problems on secure super domination in graphs 

are still open for research. 

1. Characterize the secure super dominating sets of the join, corona, Cartesian product, and lexicographic product of two 

graphs. 

2. Find the secure super dominating sets of the join, corona, Cartesian product, and lexicographic product of two graphs. 
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