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Abstract 

In this study, the effect of discrete time delays on the stability of a dynamical system was considered. On the 
implementation of the computational techniques called ODE15s, it is shown that the dynamical system is dominantly 

unstable. It is also observed from the results that as the discrete time delays is increased then the yeast species 2 (Candida 

Parapsilosis) dominates yeast species 1 (Candida Albican) which implies thatyeast species 2will drive yeast species 1into 

extinction.    
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I. INTRODUCTION 

Often times when real life situation are modeled and analyzed, it usually leads to ordinary differential equation or partial 

differential equation [1]. Dynamical system is a system that evolves in time through the iterated application of an 

underlying dynamical rule. It is a mathematical model that one usually constructs in order to investigate some physical 

phenomenon that evolves in time [2].[3], defined stability as the return to steady-state as determined by eigen values of the 

Jacobian matrix of a mathematical system. This definition is in total conformity with (4) whose emphasized that the type o 

stability for specific steady-state solutions should be tested for continuity and partial differentiability of the interacting 

functions that are imposed on the dynamical system. The stability of a dynamical system with continuous discrete time 

delays using Lambert W. functions and obtained a stable system was study by [5].[6], then investigated the stability 
analysis of a dynamical system using iterative algorithm method and obtained a stability in a delayed equation. Though [7] 

used numerical simulation technique to investigate the steady-state solution and its type of stability of the intrinsic growth 

rates of two interacting plant species. The result shows that irrespective of the variation of the intrinsic growth rates, the 

positive co-existence steady-state solution is dominantly stable. But [8] who studied the survival of two competing species 

in a polluted environment with the help of local stability analysis. The result revealed that the competitive outcomes may 

be affected in the presence of a toxicant. See also [9].[10] have extended the work of [11], by using a differential equation 

model to investigate whether the concept of constructing a feedback control with which to stabilize an unstable steady-state 

is applicable to stabilize a market population system. [10] then used feedback control to construct a controlled in which 

two unstable steady-states of two interacting stock market populations were stabilized. The relationship that existed 

between intraspecific and interspecific competition was investigated by [12]. But in this paper, we consider the effect of 

discrete time delays on the stability of a dynamical system.  

II. MATHEMATICAL FORMULATION 

We have considered multi-parameter continuous dynamical system of a nonlinear first order ODE: 

d𝑥

dt
= ∝1 𝑥 − β1𝑥2 − 𝑟1𝑥𝑦(t − h)                                

d𝑦

dt
= ∝2 𝑦 − β2𝑦2 − 𝑟2𝑥𝑦(t − h) 

Where all parameters are assumed to be positive constant which can be any real constant.  

 𝑥(t) specifies the biomass of yeast species 1 (Candida Albican) at time t in the unit of weeks. 

 𝑦(t) specifies the biomass of yeast species 2 (Candida Parapsilosis) at time t in the unit of weeks. 

 ∝1 and ∝2 specifies the growth rate of yeast species 1 and yeast species 2 respectively. 

 β1 and β2 specifies the intra-competition coefficient of yeast species 1 and yeast species 2 respectively. 

 r1 and r2 specifies the inter-competition coefficient of yeast species 1 and yeast species 2 respectively in which r1 

is the contribution of the yeast species 1 to inhibit the growth of the yeast species 2 as r2 is the contribution of the 

yeast species 2  to inhibit the growth of the yeast species 1. 

 h is the discrete time delays with the following precise model parameters ∝1= 0.1, ∝2= 0.08, β1 = 0.0014, β2 =
0.001,r1 = 0.0012, r2 = 0.0009.  
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III. METHOD OF ANALYSIS 

We have fully employ the ordinary differential equation of order 15s (ODE15s) as a computational technique to model and 

predict the effect of discrete time delays on the stability of the proposed dynamical system.  

 

IV. RESULTS 

On the application of the above mentioned computational techniques, we have obtained the following useful results which 

are presented and displayed as shown in table 1 – table 8. 

 

Table 1: Quantifying the effect of time delays from h = 0 to h = 0.14 on the type of stability using ODE15s numerical 

method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.00 0.5962 21.2827 0.0732 0.0365 Unstable 

2 0.01 0.5980 21.2810 0.0732 0.0365 Unstable 

3 0.02 0.5998 21.2793 0.0732 0.0365 Unstable 
4 0.03 0.6016 21.2776 0.0732 0.0365 Unstable 

5 0.04 0.6034 21.2759 0.0732 0.0365 Unstable 

6 0.05 0.6052 21.2742 0.0732 0.0365 Unstable 

7 0.06 0.607 21.2725 0.0732 0.0365 Unstable 

8 0.07 0.6088 21.2708 0.0732 0.0365 Unstable 

9 0.08 0.6106 21.2691 0.0732 0.0365 Unstable 

10 0.09 0.6124 21.2674 0.0732 0.0365 Unstable 

11 0.1 0.6142 21.2657 0.0732 0.0365 Unstable 

12 0.11 0.616 21.264 0.0732 0.0365 Unstable 

13 0.12 0.6178 21.2623 0.0732 0.0365 Unstable 

14 0.13 0.6196 21.2606 0.0732 0.0365 Unstable 
15 0.14 0.6214 21.2589 0.0732 0.0365 Unstable 

 

 

Table 2: Quantifying the effect of time delays from h = 0.15 to h = 0.29 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.15 0.0457 27.4652 0.0669 0.025 Unstable 

2 0.16 0.0459 27.4614 0.067 0.025 Unstable 

3 0.17 0.0461 27.4576 0.0671 0.025 Unstable 

4 0.18 0.0463 27.4538 0.0672 0.025 Unstable 

5 0.19 0.0465 27.45 0.0673 0.025 Unstable 

6 0.20 0.0467 27.4462 0.0674 0.025 Unstable 

7 0.21 0.0469 27.4424 0.0675 0.025 Unstable 
8 0.22 0.0471 27.4386 0.0676 0.025 Unstable 

9 0.23 0.0473 27.4348 0.0677 0.025 Unstable 

10 0.24 0.0475 27.431 0.0678 0.025 Unstable 

11 0.25 0.0477 27.4272 0.0679 0.025 Unstable 

12 0.26 0.0479 27.4234 0.068 0.025 Unstable 

13 0.27 0.0481 27.4196 0.0681 0.025 Unstable 

14 0.28 0.0483 27.4158 0.0682 0.025 Unstable 

15 0.29 0.0485 27.412 0.0683 0.025 Unstable 
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Table 3: Quantifying the effect of time delays from h = 0.30 to h = 0.44 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.30 0.0006 34.9485 0.0581 0.0101 Unstable 

2 0.31 0.0006 34.9441 0.0581 0.0101 Unstable 

3 0.32 0.0006 34.9397 0.0581 0.0101 Unstable 
4 0.33 0.0006 34.9353 0.0581 0.0101 Unstable 

5 0.34 0.0006 34.9309 0.0581 0.0101 Unstable 

6 0.35 0.0006 34.9265 0.0581 0.0101 Unstable 

7 0.36 0.0006 34.9221 0.0581 0.0101 Unstable 

8 0.37 0.0006 34.9177 0.0581 0.0101 Unstable 

9 0.38 0.0006 34.9133 0.0581 0.0101 Unstable 

10 0.39 0.0006 34.9089 0.0581 0.0101 Unstable 

11 0.40 0.0006 34.9045 0.0581 0.0101 Unstable 

12 0.41 0.0006 34.9001 0.0581 0.0101 Unstable 

13 0.42 0.0006 34.8957 0.0581 0.0101 Unstable 

14 0.43 0.0006 34.8913 0.0581 0.0101 Unstable 

15 0.44 0.0006 34.8869 0.0581 0.0101 Unstable 
 

Table 4: Quantifying the effect of time delays from h = 0.45 to h = 0.59 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.45 0 42.8582 0.0486 -0.0057 Unstable 

2 0.46 0 42.8535 0.0486 -0.0057 Unstable 

3 0.47 0 42.8488 0.0486 -0.0057 Unstable 

4 0.48 0 42.8441 0.0486 -0.0057 Unstable 

5 0.49 0 42.8394 0.0486 -0.0057 Unstable 

6 0.50 0 42.8347 0.0486 -0.0057 Unstable 

7 0.51 0 42.8300 0.0486 -0.0057 Unstable 
8 0.52 0 42.8253 0.0486 -0.0057 Unstable 

9 0.53 0 42.8206 0.0486 -0.0057 Unstable 

10 0.54 0 42.8159 0.0486 -0.0057 Unstable 

11 0.55 0 42.8112 0.0486 -0.0057 Unstable 

12 0.56 0 42.8065 0.0486 -0.0057 Unstable 

13 0.57 0 42.8018 0.0486 -0.0057 Unstable 

14 0.58 0 42.7971 0.0486 -0.0057 Unstable 

15 0.59 0 42.7924 0.0486 -0.0057 Unstable 
 

Table5: Quantifying the effect of time delays from h = 0.60 to h = 0.74 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.60 0 50.5388 0.0394 -0.0211 Stable 

2 0.61 0 50.5344 0.0394 -0.0211 Stable 

3 0.62 0 50.53 0.0394 -0.0211 Stable 
4 0.63 0 50.5256 0.0394 -0.0211 Stable 

5 0.64 0 50.5212 0.0394 -0.0211 Stable 

6 0.65 0 50.5168 0.0394 -0.0211 Stable 

7 0.66 0 50.5124 0.0394 -0.0211 Stable 

8 0.67 0 50.508 0.0394 -0.0211 Stable 

9 0.68 0 50.5036 0.0394 -0.0211 Stable 

10 0.69 0 50.4992 0.0394 -0.0211 Stable 

11 0.7 0 50.4948 0.0394 -0.0211 Stable 

12 0.71 0 50.4904 0.0394 -0.0211 Stable 

13 0.72 0 50.486 0.0394 -0.0211 Stable 

14 0.73 0 50.4816 0.0394 -0.0211 Stable 
15 0.74 0 50.4772 0.0394 -0.0211 Stable 
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Table6: Quantifying the effect of time delays from h = 0.75 to h = 0.89 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.75 0 57.4679 0.031 -0.0349 Unstable 

2 0.76 0 57.4638 0.031 -0.0349 Unstable 

3 0.77 0 57.4597 0.031 -0.0349 Unstable 
4 0.78 0 57.4556 0.031 -0.0349 Unstable 

5 0.79 0 57.4515 0.031 -0.0349 Unstable 

6 0.8 0 57.4474 0.031 -0.0349 Unstable 

7 0.81 0 57.4433 0.031 -0.0349 Unstable 

8 0.82 0 57.4392 0.031 -0.0349 Unstable 

9 0.83 0 57.4351 0.031 -0.0349 Unstable 

10 0.84 0 57.431 0.031 -0.0349 Unstable 

11 0.85 0 57.4269 0.031 -0.0349 Unstable 

12 0.86 0 57.4228 0.031 -0.0349 Unstable 

13 0.87 0 57.4187 0.031 -0.0349 Unstable 

14 0.88 0 57.4146 0.031 -0.0349 Unstable 

15 0.89 0 57.4105 0.031 -0.0349 Unstable 
 

Table7: Quantifying the effect of time delays from h = 0.90 to h = 1.04 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 0.90 0 63.3008 0.024 -0.0466 Unstable 

2 0.91 0 63.2961 0.024 -0.0466 Unstable 

3 0.92 0 63.2914 0.024 -0.0466 Unstable 

4 0.93 0 63.2867 0.024 -0.0466 Unstable 
5 0.94 0 63.282 0.024 -0.0466 Unstable 

6 0.95 0 63.2773 0.024 -0.0466 Unstable 

7 0.96 0 63.2726 0.024 -0.0466 Unstable 

8 0.97 0 63.2679 0.024 -0.0466 Unstable 

9 0.98 0 63.2632 0.024 -0.0466 Unstable 

10 0.99 0 63.2585 0.024 -0.0466 Unstable 

11 1 0 63.2538 0.024 -0.0466 Unstable 

12 1.01 0 63.2491 0.024 -0.0466 Unstable 

13 1.02 0 63.2444 0.024 -0.0466 Unstable 

14 1.03 0 63.2397 0.024 -0.0466 Unstable 

15 1.04 0 63.235 0.024 -0.0466 Unstable 
 

Table 8: Quantifying the effect of time delays from h = 1.05 to h = 1.19 on the type of stability using ODE15s 

numerical method. 

Example Time delays 

h 

𝒙𝒆 𝒚𝒆 𝛌𝟏 𝛌𝟐 𝐓𝐎𝐒 

1 1.05 0 67.9419 0.0185 -0.0559 Stable 

2 1.06 0 67.9356 0.0185 -0.0559 Stable 

3 1.07 0 67.9293 0.0185 -0.0559 Stable 

4 1.08 0 67.923 0.0185 -0.0559 Stable 
5 1.09 0 67.9167 0.0185 -0.0559 Stable 

6 1.1 0 67.9104 0.0185 -0.0559 Stable 

7 1.11 0 67.9041 0.0185 -0.0559 Stable 

8 1.12 0 67.8978 0.0185 -0.0559 Stable 

9 1.13 0 67.8915 0.0185 -0.0559 Stable 

10 1.14 0 67.8852 0.0185 -0.0559 Stable 

11 1.15 0 67.8789 0.0185 -0.0559 Stable 

12 1.16 0 67.8726 0.0185 -0.0559 Stable 

13 1.17 0 67.8663 0.0185 -0.0559 Stable 

14 1.18 0 67.86 0.0185 -0.0559 Stable 

15 1.19 0 67.8537 0.0185 -0.0559 Stable 
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V. DISCUSSION OF RESULTS 

The results show clearly that when there is no discrete time delays, we found that the proposed dynamical system has one 

single positive unique steady-state solution which is unstable having two positive real eigen values. The positive eigen 

values contributes to the unbounded growth of the solution trajectory. It is clearly seen that the biomass of yeast species 2 

is a better competitor compared to the biomass of yeast species 1. Though the biomass of yeast species 1 is increasing 
monotonically and the biomass of yeast species 2 is decreasing monotonically. It is observed that the dynamical system 

maintain instability despite the increase of the discrete time delays up to 1.19 with a common difference of 0.01. 

VI. CONCLUSION 

We applied computational numerical techniques of ordinary differential equation of order 15s (ODE15s) to ascertain the 
effect of discrete time delays on the stability of a dynamical system and observed that in the presence of a relatively small 

continuous discrete time delays that the dynamical system respond unstable dominantly.  
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