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Abstract - The concept of Ramanujan Summation has been dealt with several forms in recent decades. In this paper, I will 

define Ramanujan summation evaluated through a definite integral and using this, I had computed the Ramanujan summation 

for the divergent series whose terms represent the maximum number of regions formed by considering n points in the 

circumference of a circle which are joined by chords. This classic geometric problem along with Ramanujan summation 

method has produced an interesting and new result which is derived in detail in this paper.  
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I. INTRODUCTION 

Ever since the concept of Ramanujan summation was introduced by one of the great Indian mathematician Srinivasa 

Ramanujan in connection with Riemann zeta function, several summation methods and generalizations have emerged. In this 

paper, after describing the maximum number of regions formed in circle by chords, I had determined the Ramanujan 

summation for the divergent series representing such terms. Geometric illustration was provided to understand the new result 

derived in this paper.  

II. DEFINITION 
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III. MAXIMUM NUMBER OF REGIONS IN A CIRCLE 

Let us consider the following geometric problem 

In a circle if we consider n distinct points in its circumference, and if those n points are joined by chords then what would be 

the maximum number of regions formed in the interior of the circle?  

This classic combinatorial problem is well known in recreational mathematics and is often stated for not believing initial 

patterns of numbers. I will present the solution to this problem in a novel way often given in several recreational mathematics 

textbooks. I will discuss the simplest cases first and try to generalize it further.  

If n = 1, then there will be only one point on the circumference of the circle and so there cannot be any chord that can be drawn 

with this single point on the circumference, since a chord should meet the circle at two distinct points and we have only one 

point on the circumference. In this case, the interior part of the circle is the only possible region that we can have. Figure 1 

provided below portrays this situation.  
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Figure 1: One point on the circumference of a circle 

Thus, if n = 1, we have only one possible region inside the circle.  

Now if we consider n = 2, then a single chord can be drawn in the circle and this chord divides the circle in two possible 

regions as shown in Figure 2.  

                                                                                                                                             

Figure 2: Two points on the circumference of a circle 

Thus, if n = 2, we have two possible regions inside the circle.  

If n = 3, then three chords can be drawn in the circle and they split the circle in to four possible regions as shown in Figure 3. 

Similarly, for n = 4, six possible chords can be drawn in the circle which split the circle in to eight possible regions as shown in 

Figure 4. 

For n = 5, fifteen possible chords can be drawn in the circle which split the circle in to sixteen possible regions as shown in 

Figure 5.  

 

                                     Figure 3                                             Figure 4                                             Figure 5 

We notice that (from Figures 1 to 5) for n = 1, 2, 3, 4, 5 the possible regions formed by drawing chords in the circle are 

respectively 1, 2, 4, 8, 16. These numbers seems to form a geometric progression whose common ratio is 2, since each is twice 

the previous number. In this sense, we would expect the possible number of regions for n = 6 points on the circumference of a 

circle to be 32 since it is twice 16. But when we actually take six points on the circumference of a circle and mark the number 

of regions we would get the following.  
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Figure 6: Six points on the circumference of a circle 
 

We observe from Figure 6, that the number of regions formed by chords upon taking six points on the circumference of a circle 

is 31 but not 32 as expected. I now provide a compact expression for determining the number of regions that we can get by 

taking n points on the circumference of a circle.  

A. Theorem 1 

The number of regions in the interior of a circle formed by the chords joining n distinct points on its circumference is 

(3.1)
0 2 4
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Proof: Considering the answers for first six values of n as shown in Figures 1 to 6, we find that the number of regions obtained 

for n = 1, 2, 3, 4, 5 and 6 are 1, 2, 4, 8, 16, 31 respectively. Let ( )f n  be the number of regions formed with n points in the 

circumference of the circle. Computing successive forward difference values for the number of regions formed we get the 

following forward difference table shown in Figure 7.  
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Figure 7: Forward Difference Table for Number of Regions 
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Now using Newton’s Forward Interpolation formula, we get  
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Using the Pascal’s Identity 
1 1

1

n n n

r r r

      
      

     
 we get  

( ) 1
2 4 0 2 4

n n n n n
f n

         
              

         
 

This completes the proof.  

B. Regions from Pascal’s Triangle  

Since 
n

r

 
 
 

 is the binomial coefficient for all 0 r n   and the numbers in Pascal’s triangles are binomial coefficients for 

particular values of n and r, from (3.1) we can determine the number of regions formed by chords in the interior of circle 

directly by adding the pink colored numbers displayed in the Pascal’s triangle in Figure 8.  

                                                                                            
  Figure 8: Pascal’s Triangle  

 

IV. RAMANUJAN SUMMATION FOR NUMBER OF REGIONS FORMED BY CHORDS IN A CIRCLE 

In this section, I will determine the Ramanujan summation value for the divergent series whose terms are the number of 

regions made by chords in the interior of a circle.  

A. Theorem 2 

211
( )(1 2 4 8 16 31 57 99 163 256 ) (4.1)

480
RS                

 

Proof:  Considering the number of regions formed in the interior of a circle by joining chords with n points in its 

circumference, according to (3.1) (as well as from Figure 8), we get 1, 2, 4, 8,16, 31, 57, 99, 163, 256, . . . Adding these terms, 
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we notice that the series 1 2 4 8 16 31 57 99 163 256           is divergent, since the nth term 

0 2 4
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     
doesn’t converges to 0.  

Let 
nS  denote the sum of first n terms of the series 1 2 4 8 16 31 57 99 163 256           

2 4 3 2

1 1

2 3 4

1

2 3 2 4 3 2 5 4 3

5

11
1

0 2 4 2 2 24 4 24 4

3 23

4 24 4 24

3 23 1 1

4 2 2 24 3 2 6 4 4 2 4 24 5 2 3 30

1

n n

n

k k

n

k

k k k k k k k k k
S

k k k k
n

n n n n n n n n n n n n
n

n

 



        
                 

        

 
      

 

       
                   

       



 



4 3 2 5 4 3 25 47 5 25 5 94

20 24 24 24 60 120

n n n n n n n n n   
    

 

Thus the Ramanujan summation of the series 1 2 4 8 16 31 57 99 163 256          using (2.1) we get  
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This proves (4.1) and completes the proof.  
 

B. Geometric Meaning  

In this section, I will demonstrate the reason behind the answer obtained in (4.2) of theorem 2 geometrically.  

                                                           

 Figure 9: Area bounded by Sn between X – axis in [ 1,0]  
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We notice from shaded portion of Figure 9, that the region representing the area of 
nS  between X – axis in the interval 

[ 1,0] lies below X – axis. In fact, the signed area of graph of 
nS between X – axis in the interval [ 1,0] turns out to be the 

value 
211

480
  which we obtained in (4.1) of theorem 2.  

V. CONCLUSION 

Considering the classic combinatorial problem of finding the number of regions formed in the interior of a circle containing n 

points in its circumference and joined by chords, I had obtained a nice and compact expression in (3.1) of theorem 1. Though 

this value is known in literature abundantly, the expression as in (3.1) presented in this paper is new and equivalent to the 

known values. By adding the pink colored numbers in each through the Pascal’s triangle provided in Figure 8, we can 

immediately determine the number of required regions. This is a new and novel way of doing so and appearing for the first 

time in this paper.  

In theorem 2, I had determined the Ramanujan summation for the number of regions formed by chords in the interior of a circle 

by integrating the sum up to first n terms of the number of regions formed. In doing so, I had proved that the Ramanujan 

summation for the series representing number of regions formed in the interior of a circle as in theorem 2. This new result will 

add more understanding and behavior of Ramanujan summation methods applied to various scenarios.  
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