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Abstract - We study stability analysis of HIV/AIDS model. The mathematical model of HIV/AIDS is constructed with seven 

compartments, S, E, I1, I2, A, T, and R. S is susceptible/uneducated individuals; E is educated individuals; I1 is HIV-positive 

individuals consuming ARV; and I2 is HIV-positive individuals not consuming ARV; A is full-blown AIDS not receiving 

treatment; T is individuals receiving ARV treatment; and R is recovered individuals who change and maintain their sexual 
habits for the rest of their lives. We consider multi-interaction between educated (E), uneducated (S) and infected (I1 and 

I2) subpopulations. We investigate local stability of the equilibrium points according to the basic reproduction number 

(R0) as a threshold of disease transmission. The disease-free and endemic equilibrium points are locally asymptotically 

stable when 𝑅0 < 1 and 𝑅0 > 1   respectively. We conduct numerical simulation to support the analytical results. 

Keywords — dynamical system, multi-interaction, local stability. 

I. INTRODUCTION 
AIDS (Acquired Immune Deficiency Syndrome) is a disease of the immune system caused by HIV (human 

immunodeficiency virus). AIDS is a threat in the world because people infected with HIV can cause death. WHO seeks to 

campaign for the dangers of this disease and provide various controls including the use of condoms or consume ARV 

(Antiretroviral Treatment) [8]. 

To understanding the spread of HIV-AIDS infection, we establish mathematical model. Several mathematical model of 

HIV/AIDS have been studied by [1]-[4], [8], [10], [11]. The formulated model is including treatment compartment, stated in 

the SIATR model.  Dynamical analysis of the HIV / AIDS epidemic model with different stages of infection and different 
stages of susceptible subpopulations respectively studied in [4], [5], [6], [7], [13]. In [6], they studied dynamical analysis of the 

model  locally and globally. The results were locally and globally asymptotically stable. In [13], they constructed the 

mathematical model with seven compartments, S, E, I1, I2, A, T, and R, where they studied the stability analysis of the model 

by considering multi-interaction between uneducated (S) and infected (I1 and I2) subpopulations. The proposed model is 

more realistic. 

In this research, we continue our study to analyze mathematical model of HIV/AIDS - SEI1I2ATR locally. We examine 

educated (E) subpopulation in the model such that we have the mathematical model including multi-interaction between 

educated (E), uneducated (S) and infected (I1 and I2) subpopulations. The first step is we determine the equilibrium points 

(disease-free and endemic points). Then, we determine the reproduction number (R0) as a threshold of disease 

transmission. We apply the next generation matrix to get the reproduction number. Furthermore, we analyze the stability of 

equilibrium points locally. The disease-free equilibrium point is locally asymptotically stable when R0 < 1. We used the Routh-

Hurwitz criteria to determine the stability criteria of endemic equilibrium point, and the result is the endemic equilibrium point 

is locally asymptotically stable when R0 > 1. The Runge-Kutta 4th order method is used to solve the HIV/AIDS numerically 

since the model is in the form of the system of differential equations with initial value problem. Numerical simulations are 

performed using values of selected parameters to support the analysis results. From the numerical simulation, we can see 

behavior of the model. 

II. THE MODEL ANALYSIS  

The mathematical model of HIV/AIDS is constructed using compartment diagram in Figure 1[15]. The model consists of seven 

compartments, S, E, I1, I2, A, T, and R. In this research, we study dynamical system of HIV/AIDS - SEI1I2ATR model by 

considering multi-interaction between educated (E), uneducated (S) and infected (I1 and I2) subpopulations 
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Fig. 1 The compartment diagram of HIV/AIDS model 

The system of differential equations of HIV/AIDS model is 
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(1) 

where 𝑎 = 𝜂 + 𝜇 + 𝑑, 𝑏 = 𝑘1 + 𝑑, 𝑐 = 𝑘2 + 𝑘3 + 𝑑, 𝑒 = 𝛼1 + 𝛼2 + 𝛿2 + 𝑑, dan 𝑓 = 𝛿1 + 𝑑. 

The description of the parameters that make up the system are given in the Table 1. 

 

Table 1. Parameters of the HIV/AIDS - SEI1I2ATR epidemic model. 

 

Parameter Description 

  Recruitment rate 

  The human natural death rate 

1  Transmission coefficient of the infection from S to 
1I  

2  Transmission coefficient of the infection from S to 
2I  

3  Transmission coefficient of the infection from E to 
1I  

4  Transmission coefficient of the infection from E to 
2I  
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  Education rate 

d  The human natural death rate 

1k  Progression rate from 
1I to T  

2k  Progression rate from 
2I to A  

3k  Progression rate from 
2I to T  

1  Proportion of successful treatment 

2  Proportion of treatment failure 

1  the disease-related death rate 

2  the disease-related death rate of being treated 

  
A. Equilibrium points 

  The equilibrium points of system (1) are obtained when 
𝑑𝑆

𝑑𝑡
= 0, 

𝑑𝐸

𝑑𝑡
= 0,  

𝑑𝐼1

𝑑𝑡
= 0, 

𝑑𝐼2

𝑑𝑡
= 0, 

𝑑𝑇

𝑑𝑡
= 0, 

𝑑𝐴

𝑑𝑡
= 0, and 

𝑑𝑅

𝑑𝑡
= 0. 

The system (1) has two equilibrium points, called disease-free (
0

2K ) and endemic (
*

2K ) equilibrium points. Disease-free 

equilibrium point (
0

2K )  is obtained when 
1 2, 0I I  , such that we have 

0 0 0 0 0 0 0 0

2 1 2( , , , , , , )K S E I I T A R  

 , ,0,0,0,0,
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. 

The endemic equilibrium point (
*

2K ) is obtained when 
1 2, 0I I  , such that we get 
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B. Reproduction number  

In the epidemic model, there is a unique number, namely the basic reproduction number (
0R ) which determines as a 

threshold of disease transmission whether an outbreak of an infectious disease occurs or not [12]. To determine the value of 

the basic reproduction number (
0R ), we apply the next generation matrix method by following the steps in [13]. We get the 

basic reproduction number   

2 4

0

d
R

acd

    
 . 

C. Stability analysis  

The stability of the disease-free equilibrium point (
0

2K ) is obtained by determining the eigenvalues of the Jacobian matrix 

system (1). The equilibrium point 
0

2K  is locally asymptotically stable if all of the real parts of the eigenvalues are negative. 

The Jacobian matrix at 
0

2K  is  

1 2

1
1

0

2
2

1 3

2 2

0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

a

d

b

J K

c

k k e

k f

d

 

 
















  
   
 

 
 
 
 

  
 
 
 
 

 
  

. 

According to the calculation of  0

1 0J K rI  , we obtain 2

1 2 3 4 5, , , ,r d r f r d r a r c
a
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Then the value 𝑟6𝑟7 = −𝑔𝑒 − 𝛼1𝑘1 > 0 dan 𝑟6 + 𝑟7 = −(𝑒 − 𝑔) < 0, so that we get 𝑟6,7 < 0. Now, we get all of eigen values 

are negative if 𝑅0 < 1  and the disease-free equilibrium point (𝐾2
0) is locally asymptotically stable if 𝑅0 < 1.  

Next, we analyze the stability of endemic equilibrium point (
*

2K ) where is obtained by determining the eigenvalues of the 

Jacobian matrix system (1) at 
*

2K . The Jacobian matrix at 
*

2K  is  
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We define 
1 1 1 2 2H I I a    , 

2 4 2H I d   , 
3 1H S b  and 

4 2 4H S E c    . The characteristic equation of 

matrix 
*

2( )J K  is obtained by solving  *

2 0J K rI  , such that we have 
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where 
1 2, ,r d r f     and 

3 4 5 6 7, , , ,r r r r r  . The characteristic equation of matrix 
*

2( )J K  is  

5 4 3 2

1 2 3 4 5 0,r b r b r b r b r b       (2) 

where 

1 1 2 3 4 ,b e H H H H      
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3 1 2 3 4 2 3 1 1 1 2 2 2 2 2 4 1 2b H H H e H H H e I SeH S I eH H H H e               
4 1 3 4 1 1 1 3 2 1 2 2 1 3H H H e eH I S H S I e H H H       , 

4 1 1 4 2 1 2 2 3 1 1 1 1 2 2 2 2 2b S I S I k I SeH S I eH               
1 3 4 4 1 1 1 3 2 2 2 1 2 3 4eH H H H I Se H S I e H H H H                  

       
4 1 1 1 2 3 2 2 2 2 1 3 2 1 2 4H I SH H I SH eH H H eH H H      2 3 4eH H H  , 

5 1 1 2 2 2 3 1 1 4 4 2 1 2 3 4b SH I k SH I H H H H e          2 4 1 1 1 3 2 2 2 2H eH I S H S I H e    . 

Stability of the endemic equilibrium point (
*

2K ) is obtained by using the Routh-Hurwitz criteria. Based on equation (2), 

the endemic equilibrium point 
*

2K  is asymptotically stable if only if 
1 0b   and 

1. 
1 2 3 0,b b b   

2. 2 2

1 2 3 3 1 4 0,b b b b b b    

3. 2 2 2 2 2

1 2 3 4 1 4 5 2 3 5 1 4 1 2 5 3 4 52 0b b b b b b b b b b b b b b b b b b       , 

4. 
5 0b  . 

We will show this stability using numerical simulation in next section. 

III. NUMERICAL SIMULATION 
In this section, we conduct the numerical simulation of HIV/AIDS model. We will show that by using parameters in 

Table 2, the HIV/AIDS model will converge to the disease-free and endemic equilibrium points when the condition in the 

analytical results is satisfied.   

Table 2. Parameter values for numerical simulation. 

Symbol value 

  0.55 

  0.03 

1  0.0023 

2  0.0033 

4  0.0019 

  0.3 

d  0.0196 

1k  0.0498 

2k  0.008 

3k  0.05 

1  0.02 

2  0.05 

1  0.0909 

2  0.0667 
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The first simulation is we use parameters in Table 2 and get 
0 0.5032 1R   . Using initial values 

(30,10,25,35,20,16,50)NA  , 

we have the solution of HIV/AIDS model as in Figure 2.  

The results of this simulation show that with some initial values given, the solution leads to the disease-free equilibrium 

point (
0

2K ), which means that after quite a long time, no infected individual. The numerical simulation results support the 

results of the analysis in Section 2 that said  disease-free equilibrium (
0

2K ) point is locally asymptotically stable when 
0 1R  .  
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Fig. 2 The numerical solution of system (1) when 
0 1R  . 

 

The second simulation is simulation of HIV/AIDS model with initial values,  

(30,10,25,35,20,16,50)NA  , 

and  
0 239.9441 1R   . The solution of HIV/AIDS model is presented in Figure 3.  

The results of this simulation show that with some initial values given, the solution leads to endemicequilibrium point (
*

2K ), which means HIV/AIDS exist and spread in the populations. The numerical simulation results obtained support the 

analysis results in Section 2, so the endemic equilibrium point (
*

2K ) is asymptotically stable if it meets the Routh-Hurwitz 

criteria. 
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Fig 3. The numerical solution of system (1) when 
0 1R  . 

 

IV. CONCLUSIONS 
The dynamical analysis of HIV/AIDS model with  multi-interaction between educated (E), uneducated (S) and infected (I1 

and I2) subpopulations have been studied. The system has two equilibrium points, the disease-free and endemic equilibrium 

points. The stability analysis of HIV/AIDS model is determined according to the basic reproduction number. The disease-free 

equilibrium is locally asymptotically stable when 
0 1R   and unstable when 

0 1R  . The endemic equilibrium is locally 

asymtotically stable when it meets the Routh-Hurwitz criteria. Numerical simulation are performed using values of selected 

parameters to support the analysis results. 
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