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I. Introduction

In this research article, we adopt the fundamental concepts of Nevanlinna Theory. We also use standard

notations of Value Distribution Theory such as m(r, f), N(r, f), T (r, f) and N(r, f) and so on (see [1], [2],

[3]). The logarithmic density of the set E is defined by

lim
r→∞

1

log r

∫
[1,r]∩E

dt

t
.

Denote by S(r, f) a quantity of o{T (r, f)} as r → ∞ outside a possible exceptional set E of logarithmic

density 0. Let k be a non-negative integer or infinity and a ∈ C ∪ {∞}. Set E(a, f) = {z : f(z) − a = 0},

where a zero with multiplicity k is counted k times. If the zeros are counted only once, then we denote

the set by E(a, f). Let f and g be two non-constant meromorphic functions. If E(a, f) = E(a, g), then we

say that f and g share the value a CM (counting multiplicities). If E(a, f) = E(a, g), then we say that f

and g share the value a IM (ignoring multiplicity). We denote by Ek)(a, f) the set of all a-points of f with

multiplicities not exceeding k, where an a-point is counted according to its multiplicity. Also, we denote by

Ek)(a, f) the set of distinct a-points of f with multiplicities not exceedding k. Denote the quantity,

(1) Lc(f) =

s∏
j=1

f(z + cj)
vj

where cj (j = 1, 2, . . . , s) are constants and σ = v1 + v2 + . . .+ vs are integers.

In 2013, Zhang [5] proved the following result.
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2 UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . .

Theorem 1. (see [5]) Let f and g be transcendental entire functions of zero order and let n, m, d be

positive integers. If n ≥ m + 5d then fn(fm − 1)

d∏
i=1

f(qiz) and gn(gm − 1)

d∏
i=1

g(qiz) share 1 CM, then

f ≡ tg, tn+d = tm = 1.

In 2015, Zhao and Zhang [6] proved the following result.

Theorem 2. (see [6]) Let f and g be transcendental zero-order entire functions, and let k be a positive

integer. If n ≥ 2k + 6 and (fnf(qz + c))(k) and (gng(qz + c))(k) share 1 CM, then f ≡ tg, where tn+1 = 1.

In 2020, Jian Li and Kai Liu [4] improved the conditions in Theorems 1 and 2 and obtained the following

results.

Theorem 3. (see [4]) Let f and g be two transcendental zero-order entire functions, and let m be a positive

integer. If n ≥ m + d + 3 and fn(fm − 1)

d∏
i=1

f(qiz + ci) and gn(gm − 1)

d∏
i=1

g(qiz + ci) where ci and

qi 6= 0, (i = 1, 2, . . . d) are constants and d is a positive integer share 1 CM, then f ≡ c1g, cn+d1 = cm1 = 1.

Theorem 4. (see [4]) Let f and g be transcendental zero-order meromorphic functions, and let k be a

positive integer. If n ≥ 6 and (fnf(qz+ c))(k) and (gng(qz+ c))(k) share 1 and ∞ CM, then f ≡ c2g, where

cn+1
2 = 1.

Question 1. What happens if we replace 1 CM by weakly weighted and relaxed weighted sharing in Theorem

3 ?

Question 2. What happens if we replace the function (fnf(qz+ c))(k) by
[
fn(fm− 1)Lc(f)

](k)
in Theorem

4 ?

For the above two questions we have answered affirmatively and we obtained three results which extends

the Theorem 3 and Theorem 4 respectively.

II. Main Results

Theorem 5. Let f and g be two transcendental entire functions of finite order, and α(z)( 6≡ 0,∞) be a

small function of both f and g with finitely many zeros. Let Lc(f) be defined in equation (1) such that

n ≥ 2k + m + σ + 5 where k (≥ 0). If
[
fn(z)(fm(z) − 1)Lc(f)

](k)
and

[
gn(z)(gm(z) − 1)Lc(g)

](k)
share

“(α(z), 2)” then f ≡ tg where tm+σ = 1.

Theorem 6. Let f and g be two transcendental entire functions of finite order, and α(z)( 6≡ 0,∞) be a

small function of both f and g with finitely many zeros. Let Lc(f) be defined in equation (1) such that

n ≥ 3k + 2m+ 2σ + 6 where k (≥ 0). If
[
fn(z)(fm(z)− 1)Lc(f)

](k)
and

[
gn(z)(gm(z)− 1)Lc(g)

](k)
share

(α(z), 2)∗ then f ≡ tg where tm+σ = 1.
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UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . . 3

Theorem 7. Let f and g be transcendental zero-order meromorphic functions, and let k be a positive integer.

If n ≥ 3σ + 3 and (fn(fm − 1)Lc(f))(k) and (gn(gm − 1)Lc(g))(k) share 1 and ∞ CM, then f ≡ c2g, where

cn+σ2 = 1.

III. Auxiliary Definitions

In this section we state some definitions which are used to prove our main results.

Definition 1. (see [7]) Let a ∈ C ∪ {∞}. We denote by N(r, a; f | = 1) the counting function of simple

a-points of f . For a positive integer k we denote by N(r, a; f | ≤ k) the counting function of those a-points

of f (counted with proper multiplicities) whose multiplicities are not greater than k. By N(r, a; f | ≤ k)

we denote the corresponding reduced counting function. Analogously, we can define N(r, a; f | ≥ k) and

N(r, a; f | ≥ k).

Definition 2. (see [8]) Let k be positive integer or infinity. We denote by Nk(r, a; f) the counting function

of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a : f) +N(r, a; f | ≥ 2) + . . .+N(r, a; f | ≥ k).

Its is clear that N1(r, a; f) = N(r, a; f).

Definition 3. (see [9]) Let a ∈ C ∪ {∞}. We denote by NE(r, a; f, g)(NE(r, a; f, g)) by the counting

function (reduced counting function) of all common zeros of f − a and g − a with the same multiplicities

and by N0(r, a; f, g)(N0(r, a; f, g)) the counting function (reduced counting function) of all common zeros of

f − a and g − a IM. If

N(r, a; f) +N(r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g)

then we say that f and g share the value a CM. If

N(r, a; f) +N(r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g)

then we say that f and g share the value a IM.

Definition 4. (see [10]) Let f and g share the value a IM and k be a positive integer or infinity. Then

N
E

k)(r, a; f, g) denotes the reduced counting function of those a-points of f whose multiplicities are equal to

the corresponding a-points of g, and both of their multiplicities are not greater than k. N
0

(k(r, a; f, g) denotes

the reduced counting function of those a- points of f which are a-points of g, and both of their multiplicities

are not less than k.
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4 UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . .

In 2006, authors S. H Lin and W. C Lin [10] introduced the following definitions of weakly weighted sharing

which is a scaling between sharing IM and CM.

Definition 5. (see [10]) Let a ∈ C ∪ {∞} and k be a positive integer or infinity. If

N(r, a; f | ≤ k)−NE

k)(r, a; f, g) = S(r, f).

N(r, a; g| ≤ k)−NE

k)(r, a; f, g) = S(r, g).

N(r, a; f | ≥ k + 1)−N0

(k+1(r, a; f, g) = S(r, f).

N(r, a; g| ≥ k + 1)−N0

(k+1(r, a; f, g) = S(r, g).

or if k = 0 and

N(r, a; f)−N0(r, a; f, g) = S(r, f).

N(r, a; g)−N0(r, a; f, g) = S(r, g).

then we say that f and g share the value a weakly with weight k and we write f and g share “(a, k)”.

In 2007, A. Banerjee and S. Mukherjee [11] introduced a new type of sharing known as relaxed weighted

sharing, weaker than weakly weighted sharing and is defined as follows.

Definition 6. (see [11]) We denote by N(r, a; f | = p; g| = q) the reduced counting function of com-

mon a-points of f and g with multiplicities p and q respectively.

Definition 7. (see [11]) Let a ∈ C ∪ {∞} and k be a positive integer or infinity. Suppose that f and

g share the value a IM. If for p 6= q, ∑
p,q≤k

N(r, a; f | = p; g| = q) = S(r),

then we say that f and g share the value a with weight k in a relaxed manner and in that case we write f

and g share (a, k)∗.

IV. Some Lemmas

The following sequence of Lemmas will be helpful to prove our main results.

We denote H by the following function.

H =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1
.

Lemma 1. (see [15]) Let f be a meromorphic function and let c be a non-zero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).
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UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . . 5

Lemma 2. (see [11]) Let F and G be two non-constant meromorphic functions that share “(1, 2)” and

H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)−
∞∑
p=3

N
(
r, 0;

G

G′

∣∣∣ ≥ p)+ S(r, F ) + S(r,G).

and the same inequality holds for T (r,G) also.

Lemma 3. (see [11]) Let F and G be two non-constant meromorphic functions that share (1, 2)∗ and H 6≡ 0.

Then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +N(r, 0;F ) +N(r,∞;F )

−m(r, 1;G) + S(r, F ) + S(r,G).

and the same inequality holds for T (r,G) also.

Lemma 4. (see [12]) Let H be defined as above. If H ≡ 0 and

lim
r→∞

N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G)

T (r)
< 1, r ∈ I.

where T (r) = max{T (r, F ), T (r,G)} and I is a set with linear measure, Then F ≡ G or FG ≡ 1.

Lemma 5. (see [13]) Let f be a non-constant meromorphic function, and let p, k be two positive integers.

Then

(2) Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f).

(3) Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f).

Clearly, N
(
r, 1
f(k)

)
= N1

(
r, 1
f(k)

)
.

Lemma 6. Let f be an entire function of finite order and F = fn(fm − 1)Lc(f), then

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Proof. Set F = fn(fm − 1)Lc(f). By standard Valiron-Mohonko’s Theorem and using Lemma 1

(n+m+ σ)T (r, f) = T (r, fn+σ(fm − 1)) + S(r, f)

= m(r, fn+σ(fm − 1)) + S(r, f)

≤ m

(
r,

fn+σ(fm − 1)

fn(fm − 1)Lc(f)

)
+m(r, F ) + S(r, f)

≤ m
(
r,

fσ

Lc(f)

)
+m(r, F ) + S(r, F )

≤ T (r, F ) + S(r, F ).

(4)
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6 UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . .

On the other hand,

T (r, F ) ≤ T (r, fn(fm − 1)) + T (r, Lc(f)) + S(r, f)

≤ (n+m+ σ)T (r, f) + S(r, f).
(5)

Combining the inequalities (4) and (5) we get,

T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

�

Lemma 7. (see [14]) Let f be a meromorphic function of finite order and c be a non-zero complex constant.

Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 8. Let f and g be entire functions, n ≥ 1, m ≥ 1, k ≥ 0 be three integers and let us define

F =
[
fn(fm − 1)Lc(f)

](k)
and G =

[
gn(gm − 1)Lc(g)

](k)
, where Lc(f) is defined in equation (1) If there

exists non-zero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ) then

n ≤ 2k +m+ σ + 2.

Proof. Put F1 = fn(fm−1)Lc(f) andG1 = gn(gm−1)Lc(g). By Nevanlinna’s Second main theorem we have,

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ).
(6)

Using the inequalities (2), (3), (6) and Lemma 7 and Lemma 6 we obtain

(n+m+ σ)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (k + 1){N(r, 0; f) +N(r, 0; g)}+N(r, 1; fm) +N(r, 1; gm) +N(r, 0;Lc(f))

+N(r, 0;Lc(g)) + S(r, f) + S(r, g)

≤ (k +m+ σ + 1)T (r, f) + T (r, g) + S(r, f) + S(r, g).

Therefore,

(7) (n+m+ σ)T (r, f) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

On the similar lines, we can get,

(8) (n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

ssrg 5
Text Box
117

ssrg 5
Text Box
                                                  Savita Karaguppi  et al. / IJMTT, 67(8), 112-124, 2021



UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . . 7

Adding the inequalities (7) and (8) we get,

(n+m+ σ − 2k − 2m− 2σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

which gives n ≤ 2k +m+ σ + 2. Hence the proof of the Lemma. �

Lemma 9. Let f and g be a meromorphic function of finite order. If n ≥ m+σ+5, where n, m are positive

integers and σ = v1 + v2 + . . .+ vs and

(9) fn(fm − 1)Lc(f) = gn(gm − 1)Lc(g)

then f = tg, where tm+σ = 1.

Proof. Let h = f
g . If hm+nLc(h) 6= 1 then from (9) we have

gnhn(gmhm − 1)Lc(h)Lc(g) = gn(gm − 1)Lc(g).

hn(gmhm − 1)Lc(h) = gm − 1.

hm+nLc(h)gm − hnLc(h)− gm + 1 = 0.

gm(hm+nLc(h)− 1) = hnLc(h)− 1.

or

(10) gm =
hnLc(h)− 1

hm+nLc(h)− 1
.

If 1 is a Picard exceptional value of hm+nLc(h), applying Nevanlinna second main theorem with Lemma 7,

we get

T (r, hn+mLc(h)) ≤ N(r, hn+mLc(h)) +N
(
r,

1

N(r, hn+mLc(h))

)
+N

(
r,

1

N(r, hn+mLc(h))− 1

)
+ S(r, h)

≤ 2T (r, h) + 2σT (r, h) + S(r, h)

≤ 2(1 + σ)T (r, h) + S(r, h).

(11)

On the other hand, combining with the standard Valiron-Mohon’ko theorem with (11) and Lemma 7, we get

(n+m)T (r, h) = T (r, hn+m)

≤ T (r, hm+nLc(h)) + T (r, Lc(h)) + S(r, h)

≤ (4 + σ)T (r, h) + S(r, h)

(12)

or

(13) (n+m+ σ − 4)T (r, h) ≤ S(r, h)
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8 UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . .

which contradicts the hypothesis that n ≥ m + σ + 5. Therefore 1 is not a picard exceptional value of

hn+mLc(h). Thus there exists z0 such that h(z0)m+nLc(h) = 1 then by (10), we have h(z0)nLc(h) = 1.

Hence h(z0)m = 1 and

(14) N

(
r,

1

hm+nLc(h)− 1

)
≤ N

(
r,

1

hm − 1

)
≤ mT (r, h) +O(1).

Denote

(15) H(z) = hm+nLc(h)

We have T (r,H) ≤ (n+m+ σ)T (r, h) + S(r, h). Applying second main theorem to H and using Lemma 7

and (14), we get

T (r,H) ≤ N(r,H) +N(r, 0;H) +N(r, 1;H) + S(r,H)

≤ N(r,H) +N(r, 0;H) +mT (r,H) + S(r, h)

≤ (m+ σ + 3)T (r, h) + S(r, h)

Therefore, we have

(16) T (r,H) ≤ (m+ σ + 3)T (r, h) + S(r, h)

On the other hand using (15) and (16) we get

(n+m)T (r, h) ≤ T (r, hn+m) + S(r, h)

≤ T (r,H) + T (r, Lc(h)) + S(r, h)

≤ (m+ σ + 4)T (r, h) + S(r, h)

or

(n− σ − 4)T (r, h) ≤ S(r, h)

which contradicts with the hypothesis that n ≥ m + σ + 5. Therefore, hm+nLc(h) ≡ 1 and hnLc(h) ≡ 1.

Thus hm = 1. Hence, we get f = tg where tm+σ = 1. �

V. Proof of Main Results

Proof of Theorem 5.

Proof. Keeping F =
F

(k)
1

α(z) and G =
G

(k)
1

α(z) where F1 = fn(fm − 1)Lc(f) and G1 = gn(gm − 1)Lc(g). Then

F and G are transcendental meromorphic functions that share “(1, 2)” except the zeros and poles of α(z).

From Lemma 6, we see that

(17) T (r, F1) = (n+m+ σ)T (r, f) + S(r, f).

(18) T (r,G1) = (n+m+ σ)T (r, g) + S(r, g).
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UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . . 9

If possible, assume that H 6≡ 0. Using the inequality (2), (17) and Lemma 6 we get,

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 )

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

which gives

(19) (n+m+ σ)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f).

Also, by (3) we obtain,

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f).
(20)

Similarly,

(21) N2(r, 0;G) ≤ Nk+2(r, 0;G1) + S(r, g).

By using the inequalities (20) and (21) and Lemma 7 and Lemma 2 we get,

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k + 2){N(r, 0;F1) +N(r, 0;G1)}+N(r, 1; fm) +N(r, 1; gm) +N(r, 0;Lc(f))

+N(r, 0;Lc(g)) + S(r, f) + S(r, g)

≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore,

(22) (n+m+ σ)T (r, f) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ +S(r, f) + S(r, g).

Similarly,

(23) (n+m+ σ)T (r, g) ≤ (k +m+ σ + 2){T (r, f) + T (r, g)}+ +S(r, f) + S(r, g).

Adding the inequalities (22) and (23), we get,

(n+m+ σ − 2k − 2m− 2σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

which is obviously a contradiction as n ≥ 2k+m+ σ+ 5. Therefore H ≡ 0. Consider the case when H ≡ 0.

i.e.,

H =
F ′′

F ′
− 2F ′

F − 1
− G′′

G′
+

2G′

G− 1
≡ 0
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10 UNIQUENESS RESULTS RELATED TO VALUE DISTRIBUTION . . .

Integrating the above equation, we get,

(24)
1

F − 1
=

P

G− 1
+Q

where P 6= 0 and Q are integrating constants. From the equation (24) it is clear that F and G share 1

CM and hence they share “(1, 2)”. Therefore n ≥ 2k +m+ σ + 5. Upon considering the some of the cases

separately, we obtain as follows.

Case 1. Suppose Q 6= 0 and P = Q then from equation (24), we get,

(25)
1

F − 1
=

QG

G− 1
.

If Q = −1 then from equation (25), we get, FG ≡ 1.

i.e.,

[
fn(f − 1)(fm−1 + . . .+ 1)

s∏
j=1

f(z + cj)

](k)[
gn(f − 1)(gm−1 + . . .+ 1)

s∏
j=1

g(z + cj)

](k)
≡ α2.

It can be easily verified from above that, N(r, 0; f) = S(r, f) and N(r, 1; f) = S(r, f). Thus

δ(0, f) + δ(1, f) + δ(∞, f) = 3.

which is not possible.

If Q = −1 from equation (25), we have, 1
F = QG

(1+Q)G−1 and so N
(
r, 1

1+Q ;G
)

= N(r, 0;F ). Using the

equations (2), (3) and (18) and Second main theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0;G) +N
(
r,

1

1 +Q
;G
)

+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)− (n+m+ σ)T (r, g) + S(r, g).

Therefore,

(26) (n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, g).

Likewise, we also get,

(27) (n+m+ σ)T (r, f) ≤ (k +m+ σ + 1){T (r, f) + T (r, g)}+ S(r, f).

From the inequalities (26) and (27) we obtain a contradiction as n ≥ 2k +m+ σ + 5.

Case 2. Let Q 6= 0 and P 6= Q, then from equation (24) we get,

F =
(Q+ 1)G− (Q− P + 1)

QG+ (P −Q)

and so N
(
r, Q−P+1

Q+1 ;G
)

= N(r, 0;F ). By providing the same argument as in case 1, we obviously get a

contradiction.
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Case 3. If Q = 0 and P 6= 0 then from equation (24) we get F = G+P−1
P and G = PF − (P − 1). If P 6= 1,

it follows that N
(
r, P−1P ;F

)
= N(r, 0;G) and N(r, 1 − P ;G) = N(r, 0;F ). Now by using Lemma 8, it can

be shown that n ≤ 2k +m+ σ + 2, a contradiction. Thus P = 1 and then F ≡ G i.e.,[
fn(fm − 1)Lc(f)

](k)
≡

[
gn(gm − 1)Lc(g)

](k)
.

Anti-Differentiate the above equation, we get,[
fn(fm − 1)Lc(f)

](k−1)
≡

[
gn(gm − 1)Lc(f)

](k−1)
+ Ek−1.

where Ek−1 is a constant. If Ek−1 6= 0, using Lemma 9 it follows that n ≤ 2k+m+σ, which is a contradiction.

Hence Ek−1 = 0. Repeating the above process k times we get[
fn(fm − 1)Lc(f)

]
≡

[
gn(gm − 1)Lc(g)

]

which by Lemma 9 gives f = tg, where t is a constant satisfying tm+σ = 1. This completes the proof of

Theorem 5.

�

Proof of Theorem 6.

Proof. Let F , G, F1 and G1 be defined as in the proof of Theorem 5. Then F and G are transcendental

meromorphic functions that share (1, 2)∗ except the zeros and poles of α(z). Let H 6≡ 0. Then by using

Lemma 3, Lemma 5 and Lemma 8 we get,

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)

+N(r, 0;F ) +N(r,∞;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) +Nk+1(r, 0;F1) + S(r, f) + S(r, g)

≤ (2k + 2m+ 2σ + 3)T (r, f) + (k +m+ σ + 2)T (r, g) + S(r, f) + S(r, g).

Therefore,

(n+m+ σ)T (r, f) ≤ (2k + 2m+ 2σ + 3)T (r, f) + (k +m+ σ + 2)T (r, g) + S(r, f) + S(r, g).(28)

Likewise,

(n+m+ σ)T (r, g) ≤ (2k + 2m+ 2σ + 3)T (r, g) + (k +m+ σ + 2)T (r, f) + S(r, f) + S(r, g).(29)

Adding the inequalities (28) and (29) we get,

(n+m+ σ){T (r, f) + T (r, g)} ≤ (3k + 3m+ 3σ + 5){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).
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which is a contradiction as n ≥ 3k + 2m+ 2σ + 6. Thus H ≡ 0. Proceeding similarly as done in Theorem 5

we get the proof of Theorem 6. �

Proof of Theorem 7.

Proof. Let F = fn(fm−1)Lc(f) and G = gn(gm−1)Lc(g). From the condition in Theorem 7 we know that

F (k) and G(k) share 1 and ∞ CM, so

F (k) − 1

G(k) − 1
= C,

where C is non-zero constant, that is,

(30) F (k) = CG(k) − C + 1

Integrating both sides of (30) we get

(31) F = CG+
1− C
k!

zk + p1(z)

where p1(z) is a polynomial of degree atmost k − 1. Denote 1−C
k! z

k + p1(z) by p(z). If p(z) 6≡ 0, then by

second fundamental theorem of Nevanlinna and from Lemma 7 and 31 we get

T (r, F ) ≤ N(r, F ) +N(r, 0;F ) +N
(
r,

1

F − p

)
+ S(r, f)

≤ N(r, f) +N(r, 0; f) +N(r, 0;G) +N1(r) +N0(r) + S(r, f)

≤ (1 + σ)T (r, f) + (1 + σ)T (r, g) + S(r, f) + S(r, g)

(32)

where N0(r) denotes the counting function ignoring multiplicities of the common zeros of F (z) and Lc(f)

and N1(r) denotes the counting function ignoring multiplicities of the common poles of F (z) and Lc(f). On

the other hand

(33) nm(r, f) = m(r, fn) ≤ m(r, F ) +m
(
r,

1

Lc(f)

)
nN(r, f) = N(r, fn) +N

(
r,
F (z)

Lc(f)

)
≤ N(r, F ) +N

(
r,

1

Lc(f)

)
−N1(r)−N0(r)

(34)

From (33), (34) and Lemma 7 we have

(35) (n− σ) ≤ T (r, F )−N1(r)−N0(r) +O(1).

Substituting (32) in to (35) we obtain that

(36) (n− 2σ − 1)T (r, f) ≤ (1 + σ)T (r, g) + S(r, f) + S(r, g).

Similarly

(37) (n− 2σ − 1)T (r, g) ≤ (1 + σ)T (r, f) + S(r, f) + S(r, g).
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Combining the inequalities (36) and (37) we get,

(38) (n− 3σ − 2){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g).

which is a contradiction to n > 3σ + 3, an thus p(z) ≡ 0. Since the degree of p1(z) is atmost k − 1, we have

C = 1 and p(z) ≡ 0. From (31) we get

fn(fm − 1)Lc(f) = gn(gm − 1)Lc(g).

Assume that h = f
g . Then Lc(h)hn = 1, that is hn = 1

Lc(h)
and from Lemma 7 we have

(n+ σ)T (r, h) = T (r, Lc(h)) ≤ T (r, h) + S(r, h),

which is a contradiction to n > 3σ + 3, so h(z) is non-zero constant, say c2, so f ≡ c2g and cn+σ2 = 1. This

completes the proof of Theorem 7. �
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