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Abstract - In this research, we modeled the interaction between blood glucose and insulin, with epinephrine as treatment of 

diabetes. Diabetes is a syndrome of disordered metabolism, due to the combination of hereditary and environmental causes, 

resulting in abnormally high blood sugar levels. Different hormones in human body such as insulin, growth hormone, and 

glucagon control blood glucose concentration levels, epinephrine best known as adrenaline, glucocorticoids and thyroxin. The 

two most common forms of diabetes are due to either a diminished production of insulin (Type 1 diabetes), or diminished 
response by the body to insulin (Type 2 and gestational diabetes). Both lead to hyperglycemia, which largely causes the acute 

signs of diabetes: excessive urine production, resulting compensatory thirst and increased fluid intake, blurred vision, 

unexplained weight loss, lethargy, and changes in energy metabolism. The problem was modeled, solved and can be used to 

explain the dynamics of hormone, insulin is activation and how it affects glucose levels in blood. The results obtained are in 

line with those proposed by Hussian and Zadeng (2014), however, the previous researcher never considered constant supply 

of an epinephrine and other treatment, which give rise to the proposed models. The proposed models are in homogenous 

ordinary differential equations form, with the initial condition. In order to study the effect of insulin and epinephrine on the 

glucose concentration, we differentiated blood glucose concentration equation and substitute the insulin and epinephrine 

equations into the resulting equation from the glucose differentiation and simplified. The reduced nonlinear differential 

equation was solved using the method of variation of parameters where we obtained the particular solution. The numerical 

simulation was done using Mathematica, version 10 and the basic entry parameters were varied to study their effect on blood 

glucose concentration. 
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I. INTRODUCTION 

Mathematical modeling is defined as the translation of real life problems into mathematical problems, formulating 

mathematical models necessary for solving a problem and interpretation of the results (Berry and Nyman, 2002; Bukova-

Guzel, 2011). It involves solving the mathematical problems and interpreting these solutions in the language of the real world, 

validating the conclusions by comparing them with the situation, and then either improving the model or, if it is acceptable, and 

applying the model to similar situations for evaluation and refinement. 

Diabetes affects the levels in insulin and glucose in the bloodstream, hence it’s very important to investigate. This numerical 

analysis of the model by Hussain and Zadeng (2014) allows medical professionals and mathematicians alike to better 
understand the interaction and regulation of insulin and glucose in the bloodstream. By using different methods to analyze, the 

model relationship can be further demonstrated and behaviors can be better predicted. 

Ali and Tahir (2019) investigated the interaction of insulin and glucose regulation in Type 1 diabetes mellitus based on Lokta-

Volterra model. The results of the research indicated that insulin-glucose regulating system has many dynamics in different 

situations. Joseph (2016) formulated models to study type 1 diabetes in mice at the University of British Columbia. He deduced 

that diabetes mellitus results from the loss of β-cells, an auto - immune disease, the case where insulin production is severely 

reduced. American Diabetes Association, (2005) Type 2 diabetes is the most common form of diabetes accounting for around 

90% of all diabetics. Approximately 18.2 million people in the United States have diabetes, or about 6.3% of the population. 

An exact number is not available due to many people that are undiagnosed and living with type 2 diabetes. Approximately 13 

million people are diagnosed with diabetes and approximately 5.2 million people are undiagnosed. 

Cooke et al, (2008) said Type 1 diabetes, is an autoimmune disease, and represents only 10% of all cases of diabetes. They 
further stated that Type1 diabetes is a hereditary disease, which occurs in about 4-20 per 100,000 people with peak occurrence 

around 14 years of age. 

Tai (1994) developed a mathematical model for the determination of total areas under glucose tolerance and other metabolic 
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curves. The model allows flexibility in experimental conditions, which means, in the case of the glucose-response curve, 

samples can be taken with differing time intervals and total area under the curve can still be determined with precision. 

De Gaetano and Arino (2000) proposed an aggregated delay differential model called the dynamic model which solves the 

problems found in the minimal model. The dynamic model was also observed to have positive, bounded solutions and to be 

globally asymptotically stable around the pre-injection equilibrium blood glucose and insulin concentrations.  
Mukhopadhyay et al. (2004) concluded that dynamical model has been shown to allow simultaneous estimation of both insulin 

secretion and glucose uptake parameters. They proposed an extension by introducing a generic weight function in the delay 

integral kernel for the pancreatic response to glucose. Boutayeb et al. (2004) used ordinary differential equations and numerical 

approximations to monitor the size of populations of diabetes with and without complications. Li et al. (2006) proposed a 

mathematical model to study the glucose-insulin regulatory system with two explicit time delays applying the mass 

conservation law. They suspected that one of the possible many causes of ultrafine insulin secretion oscillations is the time 

delay of the insulin secretion simulated by the elevated glucose concentration. 

Adewal et al. (2007) presented a new generalized mathematical model for the study of diabetes mellitus. The model accounted 

for all glucose intake and insulin injected (administered) as a function of the molecular weight of carbohydrate and protein 

intake, respectively. They used the model to monitor the blood plasma glucose level in non-diabetic and suspected diabetic 

subjects. 

De Gaetano et al. (2008) formulated a model of the pancreatic islet compensation, presented its physiological assumptions, 
established some fundamental qualitative characteristics of its solutions, extensively discussed the numerical values assigned to 

its parameters, simulated its performance over the span of a lifetime under various conditions, including worsening insulin 

resistance and primary replication defects. Singh et al. (2014) formulated a mathematical model to describe the performance of 

Blood Glucose Regulating System (BRGS) during Glucose Tolerance Test (GTT). And they concluded that a value of less than 

four hours for at the initial time frame, the corresponding period to the natural frequency of the system indicated normalcy 

while appreciably more than four hours implied mild diabetes.  Aliukonis et al. (2009) proposed a mathematical model to study 

the impact of physical exercises on glycemic regulation. They performed linear, nonlinear and numerical analysis of glycemic 

regulation and they also applied the simulating modeling program for modeling. On introducing two external periodical 

functions defining diet and physical exercise in normal and diabetic cases, their numerical analysis showed that their model 

reflects glycemia and insulin dynamics of a healthy person and a diabetic person rather exactly. 

Li and Zheng (2010) proposed a general model following the dynamic model which includes single delay model and one of the 
models in Li et al. (2001) as a special case. Their model admits globally stable equilibrium under certain conditions of the 

parameter. Their model is shown to admit oscillating behavior due to the existence of Hopf-bifurcation. However, Sadhya and 

Kumar (2011) proposed a new mathematical model for the study of diabetes which takes into account plasma glucose 

concentration, generalized insulin and plasma insulin concentration. Their model showed the difference of glucose-insulin 

regulatory system between a normal person and a diabetic person. They found that the glucose concentration of diabetic patient 

does not come down after a certain time which showed the evidence that the person suffer from diabetes. Bunonyo et al. (2020) 

investigated blood flow through a channel with treatment and magnetic field. 

Many researchers have modeled the interaction of insulin and glucose in the bloodstream of those afflicted with diabetes. For 

instance, Gaetano and Arino (2000) presented a dynamic system, simple delay differential model which was created based on a 

minimal model from the early 1980s that was largely used in physiological research. According to their investigation, the 

model is both desirable and practical in that it appropriately demonstrates the body’s physiological interactions with glucose 

and insulin. However, the general model presented by Hussain and Zadeng was based on not only this model by Gaetano and 
Arino earlier research. In view of the aforementioned literatures we’ve reviewed so far, and the recent model by Hussain and 

Zadeng (2014), we present our proposed models to study the interaction between glucose concentration, insulin in the blood 

stream and epinephrine as treatment in the system. 

 

II. MATHEMATICAL FORMULATION 

 

In formulating mathematical models to study the interaction between glucose and insulin, and the consideration of epinephrine 

as the treatment for Type 1 and Type 2, diabetes, we shall first consider the previous models that investigated the glucose 

concentration; we consider research by Hussain and Zadeng (2014). 

 

A. Previous Models 
According to Hussain and Zadeng (2014), the glucose concentration and insulin relationship in bloodstream is: 

1 2 3

dx

dt
a x a y a x   

 

                   (3.1) 
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1 2

dy

dt
b x b y 

 

         (3.2) 

0, 0x y 

  

B. Modified Models 

Following Hussain and Zadeng (2014), we introduced the epinephrine treatment effect on equation (3.1)–(3.2), and present the 

modified system as follows: 

 

1 2 3 4

dx

dt
a x a y a x a w    

 

       (3.3) 

 

1 2 3

dy

dt
b x b y b w  

 

        (3.4)

 

 

0 3 5 4

dw

dt
b w a x b y   

 

       (3.5) 

III. MATHEMATICAL ANALYSIS 

 

Recalling the modified system in our mathematical analysis, we have them written as: 

 

1 2 3 4

dx

dt
a x a y a x a w    

 

       (3.3) 

 

1 2 3

dy

dt
b x b y b w  

 

        (3.4)

 

 

0 3 5 4

dw

dt
b w a x b y   

 

       (3.5) 

To solve equation (3.3)-(3.5), we first differentiate equation (3.3), which we have as: 

 

2

1 2 3 42

d x

dt

dx dy dx dw
a a a a

dt dt dt dt
    

 

     (3.6) 

Substituting equation (3.4) to (3.5) into equation (3.6), we have the following: 

       
2

3 1 2 1 4 5 2 2 4 4 4 3 2 3 0 42

d x

dt

dx
a a a b a a x a b a b y a b a b w a

dt
        

  

(3.7) 

Assuming  0 0y  , then equation (3.3) is reduced to: 

 1 3

4 4

1 dx

dt

a a
w x

a a


 

 

        (3.8) 

Substitute equation (3.8) into equation (3.7), we have: 

     
 2

1 3

3 1 2 1 4 5 4 3 2 3 0 42

4 4

1d x dx

dt dt

a adx
a a a b a a x a b a b x a

dt a a


 
       

    

(3.9) 

Simplifying equation (3.9), we have: 

 
    

 
2

4 3 2 3 3 1 4 3 2 3

1 3 2 1 4 5 0 42

4 4

d x

dt

a b a b a a a b a bdx
a a a b a a x a

a dt a


     
          
     

(3.10) 

Let  
    

 4 3 2 3 3 1 4 3 2 32

1 3 0 2 1 4 5

4 4

2  and 
a b a b a a a b a b

a a a b a a
a a

 
     

        
   

, so that equation (3.10) is 

reduced to: 
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2
2

0 0 42
2

d x

dt

dx
x a

dt
    

         

(3.11) 

Solving equation (3.11), we let
tx e , so that the homogenous equation (3.11) can be written as: 

2 2

02 0    

                     

(3.12) 

The solution to equation (3.12) is obtained as: 

2 2 2 2

0 0

1 2

2 4 4 2 4 4
  and  

2 2

     
 

     
 

     

(3.13) 

The roots of equation (3.13) can be rewritten as: 

   2 2 2 2

1 0 2 0  and                  

     

(3.14) 

Let  2 2 2

0    , so that the roots are reduced to: 

1 2  and  i i          

        

(3.15) 

So, the homogenous solution of equation (3.11) is: 

 1 1 1 1

t t t

cx e Acos t B sin t Ae cos t B e sin t                (3.16) 

where 

1 2,t tx e cos t x e sin t              (3.17) 

We apply the method of variation of parameters to obtain the particular solution of equation (3.11), which is: 

     1 1

t t

px t A t e cos t B t e sin t            (3.18) 

So that  

 
 

 
 

 
 

1 0 4 1 0 4

1 2 1 2

  and  
, ,

t te sin t e cos t
A t a B t a

W x x W x x

 

 
  

         (3.19) 

The Wronskian is calculated as follows” 

 1 2,
t t

t t t t

e cos t e sin t
W x x

e cos t e sin t e cos t e sin t

 

   

 

       

 

   

  

    (3.20) 

Simplifying equation (3.20), we have: 

  2

1 2, tW x x e             (3.21) 

Substituting the result in equation (3.21) into equation (3.19), we have: 

       0 4 0 4
1 1  and  t ta a

A t e sin t dt B t e cos t dt  
 

 
        (3.22) 

By applying integration by part on equation (3.22), we have: 

   
   

   
   

0 4 0 4
1 2 2

0 4 0 4
1 2 2

  
t

t

t
t

cos t sin ta a e
A t e sin t dt

cos t sin ta a e
B t e cos t dt







 

 

   


   

   


   

 
   

 

 
    

 





    (3.23) 

Now, we substitute equation (3.23) into equation (3.18), we have the particular solution as: 

 
       0 4 0 4

2 2 2 2p

cos t sin t cos t sin ta a
x t cos t sin t

        
 

     

       
                   

(3.24) 

The solution to equation (3.11) is the sum of equation (3.16) and equation (3.24), which is: 
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 

   

   

0 4
1 1 2 2

0 4

2 2

t t
cos t sin ta

A e cos t B e sin t cos t

x t
cos t sin ta

sin t

  



   
  

  

   


  

 
   

        
  

   
       

  (3.25) 

To solve for the constant coefficient, we considered the initial glucose concentration at 0t     00x x and the concentration 

at t T which is   Tx T x so that  

 

   

   

0 4
1 1 2 2

0 4

2 2

t t
cos t sin ta

A e cos t B e sin t cos t

x t
cos t sin ta

sin t

  



   
  

  

   


  

 
   

        
  

   
       

  (3.26) 

 

where 0 4
1 0 2 2

a
A x



 

  
   

  
 

   

   

0 4

2 2

1

0 0 4 0 4

2 2 2 2

cos sin

sin

cos sin1
cos

sin sin sin

tt

T

T

T Ta ex e

T
B

T Tx a a e
T

T T T





   

   

    


       

   
        

  
     

              

 

 

 

IV. RESULTS AND DISCUSSION 

We formulated the interaction between blood glucose concentration and insulin level, with epinephrine model. The system of 

equation was solved and simulation carried out using Mathematica, and the data used are obtained from Hussain and Zadeng 

(2014). The results are presented as Figure 1 to Figure 4, the graphical results are as follows: 

 

 
 

       Figure 1    Effect of 4a on blood glucose concentration ( )x t  
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      Figure 2    Effect of  1a on blood glucose concentration ( )x t  

     Figure 3    Effect of Tx on blood glucose concentration ( )x t  
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IV. DISCUSSION OF RESULTS 

We have formulated our model to investigate the impact of epinephrine treatment on the glucose level by solving the dynamics 

system of equation for the glucose concentration interaction with insulin and treatment through the use of epinephrine, an 

adrenaline related medication, and we found the following observations: 

i. Figure 1 shows that the glucose concentration increases, as the pancreatic beta cell cause an increase in insulin level. 

ii. The increase in the insulin independent disappearance rate causes a decrease in blood glucose concentration level, as 

illustrated in Figure 2 

iii. Figure 3 depicts a scenario where blood glucose concentration increases for the different concentration level at time

t T increase, that is, as Tx increases.  

iv. Figure 4 clearly shows an increase in blood glucose concentration, for the increase in constant supply of epinephrine

0 . 

In conclusion, we have been able to formulate the interaction between blood glucose and insulin, considering constant supply 

of epinephrine in addition to the epinephrine model which was not considered by Hussain and Zadeng (2014). The system was 

solved comprehensively using the method of variation of parameter (VPM), and obtained the exact the solution. And our result 

oscillatory behaviors strongly agrees with Li and Zheng (2010). 
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Definition of parameters 

dx

dt
 The rate change of glucose concentration over time 

dy

dt
 The rate of change of insulin concentration over time 

dw

dt
 The rate of change of epinephrine concentration over time 

0  Constant supply of epinephrine into the bloodstream  

  Pancreatic 4a cells increase, results to an increase in   

1a  The rate constant which represents insulin-independent glucose disappearance rate 

2a  The rate constant which represents insulin-dependent glucose disappearance rate 

3a  Is the glucose infusion rate 

4a  The rate of pancreatic cell increase insulin after glucose injection 

5a  The threshold value of glucose above which the pancreatic  cell increase insulin 

1b  The rate constant which represent insulin production due to glucose stimulation  

2b  The rate constant which represent insulin degradation  

3b  Insulin concentration increase per mg/dl increase in concentration of glucose 

4b  The constant amount of insulin dependent glucose disappearance rate  

0x  The initial amount of blood glucose concentration at 0t   

Tx  The amount of glucose concentration at 100sect T   


