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Abstract - Metallic Ratios are class of numbers which are irrationals. The well known Golden Ratio and Silver Ratio are 

special cases of sequences of Metallic Ratios. In this paper, after introducing Metallic Ratios formally, I have proved some 

interesting inequalities for powers of metallic ratios whose lower and upper bounds will be connected to Ramanujan 

Summation method leading to very interesting and new results. In this paper, I had extended the concept of Ramanujan 

Summation technique to the bounds of powers of metallic ratios. In Ramanujan Summation Method, Ramanujan showed that 

Ramanujan Sum of all even powers of positive integers is always zero. Similar to this, I had proved that Ramanaujan 

Summation of all even powers of lower bounds of Metallic ratios of order k is always 
1

2
 .  The result regarding computation 

of upper bounds of Metallic ratios through two previous lower bounds has been established. This result enables us to compute 

the Ramanujan Summation of Upper bounds of Metallic Ratios in terms of the corresponding Lower bounds. Further, I had 

shown that the Ramanujan Summation of Upper bounds of Metallic ratios of order 2r + 1 are equal to Upper bounds of 

Metallic ratios of order 2r + 2. In the final section, the computation of Ramanujan Summation values of lower and upper 

bounds for first eight powers of metallic powers were carried out. These values verify the theorems proved in this paper. The 

whole idea of assigning Ramanujan Summation to bounds of Metallic Ratios is very new and so the results obtained in this 

paper provide great insights and opens great scope towards understanding the behavior of metallic ratios.  

 

Keywords - Recurrence Relation, Powers of Metallic Ratios, Lower and Upper Bounds, Mathematical Induction, Ramanujan 

Summation.   

I. Introduction 

The sequence of metallic ratios occurs as irrational real numbers through a specified recurrence relation. In this paper, using the 

closed expression for kth term of the sequence of metallic ratios, I have obtained lower and upper bounds for rth powers of 

metallic ratios. Interestingly, such bounds have direct relationship with entries of Pascal’s triangle and Fibonacci numbers. 

After defining Ramanujan Summation method through a definite integral, I had proved new results connecting the bounds of 

powers of metallic ratios with that of Ramanujan Summation method.  

II. Definitions And Notations 

2.1 The kth term of sequence of metallic ratios denoted by kM  is defined as the positive root of the equation

2 1 0 (2.1)x kx   . Thus 

2 4
(2.2)

2
k

k k
M

 
  and 

21 4
(2.3)

2k

k k

M

 
  .   

2.2 The lower and upper bounds for rth powers of metallic ratios 
r

kM   are denoted by ( )rL k and ( )rU k respectively. In this 

paper, I will determine the bounds ( )rL k and ( )rU k  such that ( ) ( ) (2.4)r

r k rL k M U k  .   

To know more about metallic ratios and their properties see [4 – 10].  

 

III. Bounds for Powers of Metallic Ratios 

https://www.ijmttjournal.org/archive/ijmtt-v67i8p515
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3.1 Theorem 1  

For any natural number k, if 
kM  is the kth Metallic Ratio, then we have  

0

1

2 2 2

3 3 3 2

4 2 4 4 3 2

5 3 5 5 4 3 2

6 4 2 6 6 5 4 3 2

7 5 3

1 1 (3.1)

1 (3.2)

1 1 (3.3)

2 2 1 (3.4)

3 1 3 2 1 (3.5)

4 3 4 3 3 1 (3.6)

5 6 1 5 4 6 3 1 (3.7)
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k k k M k k k k k k
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  

    

     

       

        

          

    7 7 6 5 4 3 2

8 6 4 2 8 8 7 6 5 4 3 2

6 5 10 6 4 1 (3.8)

7 15 10 1 7 6 15 10 10 4 1 (3.9)

k

k

k k k k k k k

k k k k M k k k k k k k k

       

             

 

Proof:  By (2.2), since kM  is non-zero, it follows that 
0 1kM  and so (3.1) is satisfied.  

Now, for any natural number k, from (2.2), 

2 4

2 2
k

k k k k
M k

  
    and  

2 24 4 4 ( 2)
1

2 2 2
k

k k k k k k k
M k

      
     .  

Thus, 
1 1kk M k   . This proves (3.2).  

From (2.2),  
2

2 2 2 21 4
4 2 4 1 1

4 2
k k

k k
M k k k k k kM

  
         

 
 

 

Thus, 
2 1 (3.10)k kM kM  .   

For any non-negative integer r let us assume that  

1

1 1

( ) ( ) (3.11)

( ) ( ) (3.12)

r

r k r

r

r k r

L k M U k

L k M U k

 

 

 
 

Then using (3.10) we get  2 2 11 (3.13)r r r r r

k k k k k k kM M M M kM kM M         

Now from (3.11) and (3.12), we get 
1

1 1( ) ( ) ( ) ( ) (3.14)r r

r r k k r rkL k L k kM M kU k U k

       

Thus from (3.13) and (3.14), we get 
2

1 1( ) ( ) ( ) ( )r

r r k r rkL k L k M kU k U k

      
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Hence, we get 
2

2 2( ) ( )r

r k rL k M U k

    where  

2 1 2 1( ) ( ) ( ), ( ) ( ) ( ) (3.15)r r r r r rL k kL k L k U k kU k U k       .  

Now using (3.11), (3.12) and (3.15) we can easily prove the inequalities from (3.3) to (3.9).  

In particular, if r = 0 then from (3.1) and (3.2) we have 

0 1 0 1( ) 1, ( ) , ( ) 1, ( ) 1L k L k k U k U k k     . Now from (3.15), we get  

2

2 1 0( ) ( ) ( ) 1L k kL k L k k     and 
2

2 1 0( ) ( ) ( ) 1U k kU k U k k k     .  

Thus from 
2

2 2( ) ( )kL k M U k  we obtain
2 2 21 1kk M k k     . This proves (3.3).  

Similarly if r = 1, from (3.15), we see that  

3

3 2 1( ) ( ) ( ) 2L k kL k L k k k     and 
3 2

3 2 1( ) ( ) ( ) 2 1U k kU k U k k k k      .   

Thus from 
3

3 3( ) ( )kL k M U k  we obtain
3 3 3 22 2 1kk k M k k k      . This proves (3.4).  

In similar fashion, using (3.15) recursively, we can obtain equations (3.5) to (3.9).  

This completes the proof.  

IV. Ramanujan Summation 

The great Indian mathematician Srinivasa Ramanujan introduced a novel way of assigning a sum to divergent series like 

Cesaro Summation method. Today such results provided by Ramanujan were known as Ramanujan Summation Method.  

I present two Ramanujan Summation identities. For details of these results, see [1 – 3].  

For any positive integer r, we have  

2 2 2 2

1

2 1 2 1 2 1 2 1 2

1

( ) 1 2 3 0 (4.1)

( ) 1 2 3 (4.2)
2

r r r r

k

r r r r r

k
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RS k

r




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   



     

      




 

where rB is the rth Bernoulli number and 0 1B  . The prefix RS mentioned before equations (4.1) and (4.2) indicate the term 

‘Ramanujan Summation’.  

In [1] by the corresponding author, it has been shown that  

0

1 11

( ) (4.3)
n

r r

k k

RS k k dn


 

 
  

 
   
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In (4.3) the term 
1

r

k

k




  denotes the sum of rth powers of positive integers. Thus according to (4.1) and (4.2), we notice that 

the Ramanujan summation of even powers of positive integers is zero and that of odd powers of positive integers is connected 

to the Bernoulli Numbers. In this paper, I will determine Ramanujan Summation for the bounds of powers of metallic ratios.  

V. Ramanujan Summation and Bounds of Powers of Metallic Ratios 

Using the lower and upper bounds namely ( ), ( )r rL k U k  for rth powers of metallic ratios 
r

kM  obtained in theorem 1, we can 

obtain the Ramanujan Summation for them and see if we could get some pattern.   

5.1 Definitions  

In view of (4.3), the Ramanujan Summation for the lower and upper bounds ( ), ( )r rL k U k  is defined through the following 

expressions.  

0

1 11

( ) ( ) ( ) (5.1)
n

r r
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RS L k L k dn


 

 
  

 
   
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( ) ( ) ( ) (5.2)
n
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RS U k U k dn

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 
  

 
   

5.2 Theorem 2  

0 0

1 1

1
( ) ( ) ( ) ( ) (5.3)

2k k

RS L k RS U k
 

 

     

Proof: From (3.1), we know that 0 0( ) ( ) 1L k U k  . Hence, by definitions (5.1) and (5.2) we have

0 0

0 0

1 1 11 1

1
( ) ( ) ( ) ( ) (1)

2

n

k k k

RS L k RS U k dn ndn
 

   

 
     

 
    .  

This completes the proof.  

5.3 Theorem 3  

For any positive integer r, we have  

2

1

1
( ) ( ) (5.4)

2
r

k

RS L k




   

Proof: First, we observe that  



Dr. R. Sivaraman / IJMTT, 67(8), 133-141, 2021 

 

137 

2 2 2 2 4 2 0
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Using (4.1), (4.3) and (5.3) we have   
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This completes the proof.  

5.4 Theorem 4 

If v is any positive integer and if ( ), ( )v vL k U k are lower and upper bounds of 
v

kM  then  

1( ) ( ) ( ) (5.5)v v vU k L k L k   

Proof:  We will prove (5.5) by Mathematical Induction. For v = 1, from (3.1) and (3.2), we have 1( ) 1U k k   and 

1 0( ) ( ) 1L k L k k   . Hence the result is true for v = 1.  

Now by Induction Hypothesis, assume that (5.5) is true for all values of v up to r + 1, i.e. for all 1,2,3,..., 1, , 1v r r r   . 

We will prove for v = r + 2.  

Using (3.15), and the Induction Hypothesis, we get  
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   

   
2 1 1 1

1 1 2 1
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( ) ( ) ( ) ( ) ( ) ( )
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r r r r r r
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   

   

     

     
 

Hence (5.5) remain true for v = r + 2 also. Thus by Principle of Mathematical Induction, (5.5) is true for all positive integers v. 

This completes the proof.  

5.5 Theorem 5 

If r is any non-negative integer, then  

2 1 2 1

1 1

2 2 2 1
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2 1 2 2
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1
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1
( ) ( ) ( ) ( ) (5.7)
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Proof: Using (5.1), (5.4), (5.5) and additive property of integrals, we have  

   
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This proves (5.6). Similarly, we have  

 
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 
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This proves (5.7). Identity (5.8) follows directly upon comparing (5.6) and (5.7).  

This completes the proof.  

VI. Computation 
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Using the theorems established in section 5, we can calculate the Ramanujan Summation of lower and upper bounds of rth 

power of metallic ratios. First, let us compute the Ramanujan Summation of sum of
1( )L k k . Using (5.1), we have  

0 0

1

1 11 1

( 1) 1
( ) ( ) (6.1)

2 12

n

k k

n n
RS L k k dn dn



  

   
     
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    

Now using (5.6), we get 1 1

1 1

1 1 1 7
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From (5.4), we see that 2

1

1
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
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Using (5.7), we get 2 1
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Again using (5.1), we get 
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From (5.6), we have 3 3
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1 1 1 139
( ) ( ) ( 4 3 ) (6.9)

252 30 4 630

n

k k

RS L k k k k dn


 

 
         

 
   

From (5.6), we have 5 5

1 1

1 139 1 227
( ) ( ) ( ) ( ) (6.10)

2 630 2 315k k

RS U k RS L k
 

 

         

From (5.4), we see that 6

1

1
( ) ( ) (6.11)

2k

RS L k




  
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Using (5.7), we get 6 5

1 1

1 139 1 227
( ) ( ) ( ) ( ) (6.12)

2 630 2 315k k

RS U k RS L k
 

 

         

0

7 5 3

7

1 11

1 1 1 1 151
( ) ( ) ( 6 10 4 ) (6.13)

240 42 12 3 560

n

k k

RS L k k k k k dn


 

 
          

 
   

From (5.6), we have 7 7

1 1

1 151 1 431
( ) ( ) ( ) ( ) (6.14)

2 560 2 560k k

RS U k RS L k
 

 

         

From (5.4), we see that 8

1

1
( ) ( ) (6.15)

2k

RS L k




   

Using (5.7), we get 8 7

1 1

1 151 1 431
( ) ( ) ( ) ( ) (6.16)

2 560 2 560k k

RS U k RS L k
 

 

         

VII. Conclusion 

This paper mainly focus about determining Ramanujan Summation values for lower and upper bounds for powers of metallic 

ratios. Ramanujan devised a novel method of assigning a real number to the divergent series, which today is named after him 

as Ramanujan Summation. As mentioned in (4.1), (4.2), Ramanujan proved that the Ramanujan Summation of even powers of 

natural numbers is 0 and that of odd powers is connected to the Bernoulli Numbers. In this paper, I had extended the concept of 

Ramanujan Summation technique to the bounds of powers of metallic ratios obtained in Theorem 1 from equations (3.1) to 

(3.9).  

In performing such modification, I had shown that the Ramanujan Summation of all lower bounds of even powers of metallic 

ratios namely 2 ( )rL k  is  
1

2
  through equation (5.4) of theorem 3. This result resembles the constant value of 0 obtained by 

Ramanujan for sum of even powers of natural numbers in equation (4.1). In theorem 5, equations (5.6) and (5.7) provide the 

way of computing the Ramanujan Summation of upper bounds of odd and even order respectively knowing the Ramanujan 

Summation of lower bound. These two results will subsequently prove that the Ramanujan Summation of upper bounds of 

consecutive orders namely 2 1 2 2( ), ( )r rU k U k  of powers of metallic ratios are equal as shown in equation (5.8).  

In section 6, through equations (6.1) to (6.16), I had computed the Ramanujan Summation values for the first eight lower and 

upper bounds using the results established in theorems 3 and 5. These values resemble the Ramanujan Summation method for 

sum of powers of natural numbers though we get different values in this case. It is well known in Analytic Number Theory that 

Ramanujan Summation method presented in equations (4.1) and (4.2) is connected to the values of Riemann Zeta Function 

through analytic continuation. In similar way, the concept of Ramanujan Summation of bounds of powers of metallic ratios 

discussed in this paper can be thought of analytic continuation of powers of metallic ratios in to extended complex plane. In 

this sense, the results proved in this paper, paves more scope for further investigations.  

Finally, we see that the lower and upper bounds for powers of metallic ratios evaluated at k = 1 provides consecutive Fibonacci 

numbers. For example, from ( ) ( )r

r k rL k M U k  we notice through equations (3.1) to (3.9) of theorem 1 that 

1 2(1) , (1)r r r rL F U F   where 1 2,r rF F   are (r+1)th, (r+2)th Fibonacci numbers respectively. This paper thus contains 
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plenty of new results as well as provides scope for further extension regarding the connection of powers of metallic ratios with 

Ramanujan Summation method.   
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