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Abstract - Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a connected simple graph. A subset 𝑆 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑢 ∈
 𝑉(𝐺) ∖  𝑆, there exists 𝑣 ∈  𝑆 such that 𝑢𝑣 ∈  𝐸(𝐺). A dominating set 𝑆 is called a secure dominating set if for each 𝑢 ∈
 𝑉(𝐺) ∖  𝑆 there exists 𝑣 ∈  𝑆 such that 𝑢 is adjacent to 𝑣 and (𝑆 ∖ {𝑣}) ∪ {𝑢} is a dominating set. A secure dominating set 𝑆 is 

called a perfect secure dominating set of 𝐺 if each 𝑢 ∈  𝑉(𝐺) ∖  𝑆 is dominated by exactly one element of 𝑆. Further, if 𝐷 is a 

minimum perfect secure dominating set of 𝐺, then a perfect secure dominating set 𝑆 ⊆  𝑉(𝐺) ∖  𝐷 is called an inverse perfect 

secure dominating set of 𝐺 with respect to 𝐷. In this paper, we investigate the concept and give some important results. 
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I. INTRODUCTION  

Suppose that 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is a simple graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). In simple graph, we mean, finite 

and undirected graph with neither loops nor multiple edges. For the general graph theoretic terminology, the readers may refer 

to [1]. 

 

A vertex 𝑣 is said to dominate a vertex 𝑢 if 𝑢𝑣 is an edge of 𝐺  or 𝑣 = 𝑢. A set of vertices 𝑆 ⊆  𝑉(𝐺) is called a 

dominating set of 𝐺 if every vertex not in 𝑆 is dominated by at least one member of 𝑆. The size of a set of least cardinality 

among all dominating sets for 𝐺 is called the domination number of 𝐺 and is denoted by 𝛾(𝐺). A dominating set of cardinality 

𝛾(𝐺) is called 𝛾-𝑠𝑒𝑡 of 𝐺. Domination in a graph has been a huge area of research in graph theory. It was introduced by Claude 

Berge in 1958 and Oystein Ore in 1962 [2]. Domination in graphs has been studied in [3-7]. 

 

A dominating set 𝑆 is called a secure dominating set of 𝐺 if for each 𝑢 ∈  𝑉(𝐺) ∖  𝑆 there exists 𝑣 ∈  𝑆 such that 𝑢 is 

adjacent to 𝑣 and (𝑆 \{𝑣}) ∪ \{𝑢} is a dominating set. The secure domination number of 𝐺, is the minimum cardinality of a 

secure dominating set of 𝐺 and is denoted by 𝛾𝑠  (𝐺).  A secure dominating set of cardinality 𝛾𝑠(𝐺) is called 𝛾𝑠-𝑠𝑒𝑡 of 𝐺. Secure 

domination has been studied in [8-17]. 
 

A secure dominating set 𝑆 is called a perfect secure dominating set of 𝐺 if each 𝑢 ∈  𝑉(𝐺) ∖  𝑆 is dominated by 

exactly one element of 𝑆. The perfect secure domination number of 𝐺, is the minimum cardinality of a perfect secure 

dominating set of 𝐺 and is denoted by 𝛾𝑝𝑠(𝐺).  A perfect secure dominating set of cardinality 𝛾𝑝𝑠(𝐺) is called 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝐺. 

Perfect secure domination has been studied in [18]. Variants of perfect domination in graphs are studied in [19-21].  

 

Motivated by [18] and the inverse domination in graphs [22-28], we initiate the study of an inverse perfect secure 

dominating set. Let 𝐷 be a minimum perfect secure dominating set of 𝐺. A perfect secure dominating set 𝑆 ⊆  𝑉(𝐺) ∖ 𝐷 is 

called an inverse perfect secure dominating set of 𝐺 with respect to 𝐷.The inverse perfect secure domination number of 𝐺, is 

the minimum cardinality of an inverse perfect secure dominating set of 𝐺 and is denoted by 𝛾𝑝𝑠
−1(𝐺).  An inverse perfect secure 

dominating set of cardinality 𝛾𝑝𝑠
−1(𝐺) is called 𝛾𝑝𝑠

−1-𝑠𝑒𝑡 of 𝐺.  

 

In this paper, we investigate the concept and give some important results. We further give the characterization of an 
inverse perfect secure dominating set in the join and corona of two graphs.   

 

II. RESULTS 

Remark 2.1 The set 𝑆 = 𝑉(𝐺) is a secure dominating set and a perfect dominating set. 

 

Proof:  If 𝑆 = 𝑉(𝐺), then every vertex in 𝑉(𝐺) ∖  𝑆 = ∅ vacuously satisfies the definitions of a secure dominating set and a 

perfect dominating set. ∎ 

 

Remark 2.2 Every graph 𝐺 has a secure dominating set and a perfect dominating set. 

https://www.ijmttjournal.org/archive/ijmtt-v67i8p517
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Proof: By Remark 2.1, 𝑆 = 𝑉(𝐺) is a secure dominating set and a perfect dominating set. ∎ 

 

From the definitions of inverse perfect secure dominating set and Remark 2.2 the following is immediate. 

 

Remark 2.3 Let 𝐺 be a nontrivial graph. Then 1 ≤ 𝛾𝑝(𝐺) ≤ 𝛾𝑝𝑠
−1(𝐺) ≤  𝑛. 

 

For a nontrivial connected graph 𝐺, the following result says that 𝛾𝑝𝑠
−1(𝐺) ranges over all integers from 1 to 

𝑛

2
. 

 

Theorem 2.4 Given positive integers 𝑘, 𝑚 and 𝑛 such that 1 ≤  𝑘 ≤  𝑚 ≤ 
𝑛

2
, where 𝑛 ≥  2 there exists a connected graph 𝐺 

with |𝑉 (𝐺)|  =  𝑛, 𝛾𝑝(𝐺) = 𝑘, and 𝛾𝑝𝑠
−1(𝐺) = 𝑚. 

  

Proof: Consider the following cases. 

 

Case 1. Suppose that 1 = 𝑘 = 𝑚 ≤ 
𝑛

2
. 

 

Let 𝐺 = 𝐾𝑛 (see Figure 1). Then the set 𝐷 = {𝑣1} is a 𝛾𝑝-𝑠𝑒𝑡 of 𝐺, the set 𝑆 = {𝑣2} is a 𝛾𝑝𝑠
−1-𝑠𝑒𝑡 of 𝐺. Thus 𝛾𝑝(𝐺) = 1 = 𝑘, 

𝛾𝑝𝑠
−1(𝐺) = 1 = 𝑚 and |𝑉(𝐺)| = |𝑉(𝐾𝑛)| = 𝑛.  

 

 

Case 2. Suppose that 1 = 𝑘 ≤  𝑚 <
𝑛

2
. 

 

Let 𝐺 = 𝐾1 + 〈⋃ AI
𝑚
𝑖=1 〉 where 𝐴𝑖 = 𝐾𝑟 for all 𝑖 ∈  {1,2, . . . ,𝑚} and an integer 𝑟 ≥  2 and let 𝑛 = 1 +𝑚𝑟 (see Figure 2). 

 
The 𝑠𝑒𝑡 𝑉(𝐾1) = {𝑥} is a 𝛾𝑝-𝑠𝑒𝑡 of 𝐺 is clear. Let 𝑢 ∈  𝑉(𝐾𝑟). Since 𝑟 ≥  2, 𝑉(𝐾𝑟) \{𝑢} = ∅. Let 𝑣 ∈  𝑉(𝐾𝑟) {𝑢}. The set 𝐷 =

⋃ 𝐷𝑖
𝑚
𝑖=1  where 𝐷𝑖 = {𝑣} ⊂ 𝑉(𝐴𝑖) for all 𝑖 ∈ {1,2, . . . ,𝑚} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝐺 and the set 𝑆 = ⋃ 𝑆𝑖

𝑚
𝑖=1 where 𝑆𝑖 = {𝑢} ⊂  𝑉(𝐴𝑖) for 

all 𝑖 ∈  {1,2, . . . ,𝑚} is a 𝛾𝑝𝑠
−1-𝑠𝑒𝑡 of 𝐺. Thus, 𝛾𝑝(𝐺) = 1 = 𝑘, 𝛾𝑝𝑠

−1(𝐺) = |𝑆| = |⋃ 𝑆𝑖
𝑚
𝑖=1 | = 𝑚 ⋅  1 = 𝑚, and 

|𝑉(𝐺)| = |𝑉(𝐾1 + 〈⋃𝐴𝑖

𝑚

𝑖=1

〉 | 
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                                                                                            = |𝑉(𝐾1)| + |𝑉(⟨⋃ 𝐴𝑖
𝑚
𝑖=1 ⟩)| 

                                                                                            = 1+ |⋃ 𝐴𝑖
𝑚
𝑖=1 | = 1 + 𝑚𝑟 = 𝑛.    

 

Case 3. Suppose that 1 < 𝑘 =  𝑚 <
𝑛

2
. 

Let 𝐺 = 𝑃𝑘 ∘  𝐾𝑟 where 𝑘 ≥  2 and 𝑟 ≥  2 (see Figure 3). 

 

 
Let 𝑛 = 𝑘(𝑟 + 1). The set 𝑉(𝑃𝑘) is a 𝛾𝑝 − 𝑠𝑒𝑡 of 𝐺, the set 𝐷 = ⋃ 𝑆𝑥𝑥∈𝑉(𝑃𝑘)

 where 𝑆𝑥 = {𝑣1} for all 𝑥 ∈  𝑉(𝑃𝑘) is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 

𝐺, and  the set 𝑆 = ⋃ 𝑆𝑦 {𝑦∈ 𝑉(𝑃𝑘)}
 where 𝑆𝑦 = {𝑣2} for all 𝑦 ∈  𝑉(𝑃𝑘) is a 𝛾𝑝𝑠

−1-𝑠𝑒𝑡 of 𝐺 with respect to 𝐷. Thus, 𝛾𝑝(𝐺) =

|𝑉(𝑃𝑘)| = 𝑘, 𝛾𝑝𝑠
−1(𝐺) = |𝑆| = |⋃ 𝑆𝑦𝑥∈𝑉(𝑃𝑘)

| = 𝑘 ⋅  1 = 𝑘 = 𝑚, and |𝑉(𝐺)| = |𝑉(𝑃𝑘 ∘  𝐾𝑟)| = 𝑘 + 𝑘𝑟 = 𝑘(1 + 𝑟) = 𝑛. 

Case 4. Suppose that 1 < 𝑘 < 𝑚 =
𝑛

2
. 

Let 𝐺 = 𝑃2□  𝑃𝑚 where 𝑚 ≥  3 and 𝑚 ≡  1( 𝑚𝑜𝑑 4) (see Figure 4). 
 

 

 
 

Let 𝑘 =
2(𝑚+1)

4
 and let 𝑛 = 2𝑚. The set 𝐴 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,

𝑚+3

4
} ∪ {𝑢4𝑖−1: 𝑖 = 1,2, . . . ,

𝑚+1

4
} is a 𝛾𝑝 − 𝑠𝑒𝑡 of 𝐺, 

the set 𝐷 = {𝑢𝑖: 𝑖 = 1,2, . . . ,𝑚} is a 𝛾𝑝𝑠 − 𝑠𝑒𝑡 of 𝐺, and the set 𝑆 = {𝑣𝑖: 𝑖 = 1,2, . . . , 𝑚} is a 𝛾𝑝𝑠
−1-𝑠𝑒𝑡 of 𝐺. Hence, 𝛾𝑝(𝐺) =

|𝐴| =
𝑚+3

4
+

𝑚−1

4
=

2(𝑚+1)

4
= 𝑘,  𝛾𝑝𝑠

−1(𝐺) = |𝑆| = 𝑚, and |𝑉(𝐺)| = |𝑉(𝑃2□𝑃𝑚)| = 2𝑚 = 𝑛. ∎ 

 

Corollary 2.5 The difference between 𝛾𝑝𝑠
−1(𝐺) − 𝛾𝑝(𝐺) can be made arbitrarily large. 

Proof: By Theorem 2.5, there exists a connected graph 𝐺 such that 𝛾𝑝(𝐺) = 1 and 𝛾𝑝𝑠
−1(𝐺) = 𝑛 + 1. Then 𝛾𝑝𝑠

−1(𝐺)-𝛾𝑝(𝐺) =

(𝑛 + 1) − 1 = 𝑛. Hence, the difference between 𝛾𝑝𝑠
−1(𝐺)-𝛾𝑝(𝐺) can be made arbitrarily large.∎ 

Let 𝑃𝑛 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] such that 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and 𝐸(𝑃𝑛) = {𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑛−1𝑣𝑛}. The next result 

shows the inverse perfect secure domination number of a path graph 𝑃𝑛. 
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Theorem 2.6 Let 𝑛 ≥  3. If 𝑛 is an odd integer, then 𝛾𝑝𝑠(𝑃𝑛) =
𝑛+1

2
.  

Proof:  Case 1: Suppose that 𝑛 ≡  1(𝑚𝑜𝑑 4). Consider the graph 𝑃𝑛  where 𝑛 ≥  5 (see Figure 5). 

 

 

The set 𝐷 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,
𝑛+3

4
} ∪ {𝑣4𝑖: 𝑖 = 1,2, . . . ,

𝑛−1

4
} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝑃𝑛. Thus, 𝛾𝑝𝑠(𝑃𝑛) = |𝐷| =

𝑛+3

4
+

𝑛−1

4
=

𝑛+1

4
.  

 

Case 2: Suppose that 𝑛 ≡  3(𝑚𝑜𝑑 4). Consider the graph 𝑃𝑛  where 𝑛 ≥  3 (see Figure 6). 

 

 

The set 𝐷 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,
𝑛+1

4
} ∪ {𝑣4𝑖−2: 𝑖 = 1,2, . . . ,

𝑛+1

4
} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝑃𝑛. Thus, 𝛾𝑝𝑠(𝑃𝑛) = |𝐷| =

𝑛+1

4
+

𝑛+1

4
=

𝑛+1

2
. ∎ 

 

Consider a path graph 𝑃𝑛 (see Figure 6). The set 𝑆 = 𝑉(𝑃𝑛) ∖  𝐷 is an inverse dominating set of 𝑃𝑛. However, 

 

|𝑆| = |𝑉(𝑃𝑛) ∖  𝐷| = |𝑉(𝑃𝑛)| − |𝐷| = 𝑛 − (
𝑛 + 1

2
) =

𝑛 − 1

2
<
𝑛 + 1

2
= 𝛾𝑝𝑠(𝑃𝑛), 

 

contrary to the definition of an inverse dominating set. Thus, |𝑆| is not an inverse perfect secure dominating set of 𝑃𝑛  

whenever 𝑛 is an odd integer greater than or equal to 3.  

 

However, if 𝑛 is an even integer, the following result shows the inverse perfect secure domination number of 𝑃𝑛.  

 

Theorem 2.8 Let 𝑛 ≥  2. If 𝑛 is an even integer, then 𝛾𝑝𝑠
−1(𝑃𝑛) =

𝑛

2
. 

Proof: Case 1: Suppose that 𝑛 ≡  0(𝑚𝑜𝑑 4). Consider the graph 𝑃𝑛 where 𝑛 ≥  5 (see Figure 7).  

 

 

 

The set 𝐷 = {𝑣4𝑖−2: 𝑖 = 1,2, . . . ,
𝑛

4
} ∪ {𝑣4𝑖−1: 𝑖 = 1,2, . . . ,

𝑛

4
} is a 𝛾𝑝𝑠 − 𝑠𝑒𝑡 of 𝑃𝑛, the set 𝑆 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,

𝑛

4
} ∪

 {𝑣4𝑖: 𝑖 = 1,2, . . . ,
𝑛

4
} is a 𝛾𝑝𝑠

−1-𝑠𝑒𝑡 of 𝑃𝑛 with respect to 𝐷.  Thus, 𝛾𝑝𝑠
−1(𝑃𝑛) = |𝑆| =

𝑛

4
+

𝑛

4
=

𝑛

2
. 

 

 

 

 

Case 2: Suppose that 𝑛 ≡  2(𝑚𝑜𝑑 4). Consider the graph 𝑃𝑛 where 𝑛 ≥  3 (see Figure 8). 
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The set 𝐷 = {𝑣4𝑖−2: 𝑖 = 1,2,… ,
𝑛+2

4
} ∪ {𝑣4𝑖−1: 𝑖 = 1,2,… ,

𝑛−2

4
} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝑃𝑛, the set 𝑆 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,

𝑛+2

4
} ∪

 {𝑣4𝑖: 𝑖 = 1,2, . . . ,
𝑛−2

4
} is a 𝛾𝑝𝑠

−1-𝑠𝑒𝑡 of 𝑃𝑛 with respect to 𝐷. Thus, 𝛾𝑝𝑠
−1(𝑃𝑛) = |𝑆| =

𝑛+2

4
+

𝑛−2

4
=

𝑛

4
. ∎ 

 

Let 𝐶𝑛 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] such that 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and 𝐸(𝐶𝑛) = {𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1}. The next result shows 

the super inverse domination number of a cycle graph 𝐶𝑛. 

 

Theorem 2.9 Let 𝑛 ≥  3. If 𝑛 is an odd integer, then 

𝛾𝑝𝑠(𝐶𝑛) =

{
 
 

 
 
𝑛 + 1

4
,      𝑖𝑓 𝑛 ≡ 1(  𝑚𝑜𝑑 4)              

𝑛 + 3

2
,     𝑖𝑓 𝑛 ≡ 3(  𝑚𝑜𝑑 4), 𝑛 ≠ 3

1                𝑖𝑓 𝑛 = 3.                             

 

 

Proof: Case 1: Suppose that 𝑛 ≡  1( 𝑚𝑜𝑑 4). Consider the graph 𝐶𝑛 where 𝑛 ≥  5 (see Figure 9). 

 

 

The set 𝐷 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,
𝑛−1

4
} ∪ {𝑣4𝑖−2: 𝑖 = 1,2, . . . ,

𝑛−1

4
} ∪ {𝑣𝑛} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝑃𝑛. Thus, 𝛾𝑝𝑠(𝐶𝑛) = |𝐷| =

𝑛−1

4
+

𝑛−1

4
+

1 =
𝑛+1

2
.  

 

Case 2: Suppose that 𝑛 ≡  3( 𝑚𝑜𝑑 4), 𝑛 ≠ 3. Consider the graph 𝐶𝑛 where 𝑛 > 3 (see Figure 10). 

 

 

The set 𝐷 = {𝑣4𝑖−1: 𝑖 = 1,2, . . . ,
𝑛+1

4
} ∪ {𝑣4𝑖−2: 𝑖 = 1,2, . . . ,

𝑛+1

4
} ∪ {𝑣𝑛} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝐶𝑛. Thus, 𝛾𝑝𝑠(𝐶𝑛) = |𝐷| =

𝑛+1

4
+

𝑛+1

4
+

1 =
𝑛+3

2
.  

  

Case 3: Suppose that 𝑛 = 3. Clearly, 𝛾𝑝𝑠(𝐶3) = 1.∎ 

 

Now, consider a cycle graph 𝐶𝑛 (see Figure 9). The set 𝑆 = 𝑉(𝐶𝑛) ∖  𝐷 is an inverse dominating set of 𝐶𝑛. However, 

 

|𝑆| = |𝑉(𝐶𝑛) ∖  𝐷| = |𝑉(𝐶𝑛)| − | 𝐷| = 𝑛 − (
𝑛 + 1

2
) =

𝑛 − 1

2
<
𝑛 + 1

2
= 𝛾𝑝𝑠(𝐶𝑛), 

 

contrary to the definition of an inverse dominating set. Thus, |𝑆| is not an inverse perfect secure dominating set of 𝐶𝑛 whenever 

𝑛 is an odd integer greater than or equal to 3. Similarly, if 𝑛 ≡  2( 𝑚𝑜𝑑 4), then |𝑆| is not an inverse perfect secure dominating 

set of 𝐶𝑛. 
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However, if 𝑛 ≡  0( 𝑚𝑜𝑑 4), the following result shows the inverse perfect secure domination number of 𝐶𝑛. 

  

Theorem 2.10 If 𝑛 ≡  0( 𝑚𝑜𝑑 4), then 𝛾𝑝𝑠
−1(𝐶𝑛) =

𝑛

2
. 

 

Proof: Consider the graph 𝐶𝑛 where 𝑛 ≡  0( 𝑚𝑜𝑑 4) (see Figure 11). 

 

 
 

The set 𝐷 = {𝑣4𝑖−1: 𝑖 = 1,2,… ,
𝑛

4
} ∪ {𝑣4𝑖: 𝑖 = 1,2,… ,

𝑛

4
} is a 𝛾𝑝𝑠-𝑠𝑒𝑡 of 𝐶𝑛, the set 𝑆 = {𝑣4𝑖−3: 𝑖 = 1,2, . . . ,

𝑛

4
} ∪ {𝑣4𝑖−2: 𝑖 =

1,2, . . . ,
𝑛

4
} is a 𝛾𝑝𝑠

−1-𝑠𝑒𝑡 of 𝐶𝑛with respect to 𝐷. Thus, 𝛾𝑝𝑠
−1 (𝐶𝑛) = |𝑆| =

𝑛

4
+

𝑛

4
=

𝑛

2
. ∎ 

 

A complete graph on 𝑛 vertices, denoted by 𝐾𝑛, is a simple graph that contains exactly one edge between each pair of distinct 

vertices 

 

Theorem 2.11 Let 𝐺 be a nontrivial connected graph. The 𝛾𝑝𝑠
−1(𝐺) = 1 if and only if 𝐺 = 𝐾𝑛. 

 

Proof: Suppose that  𝛾𝑝𝑠
−1(𝐺) = 1. Let 𝐷 = {𝑥} be a perfect secure dominating set of 𝐺. Since 𝐺 in nontrivial, 𝑉(𝐺) ∖  𝐷 ≠ ∅. 

Let 𝑢 ∈  𝑉(𝐺) ∖  𝐷. Suppose that 𝐺 ≠ 𝐾𝑛. Then there exists 𝑣 ∈  𝑉(𝐺) ∖  𝐷 distinct from 𝑢 such that 𝑢𝑣 ∉  𝐸(𝐺). Thus, 𝐷 is a 

dominating set but (𝐷 \{𝑥}) ∪ {𝑣} = {𝑣} is not a dominating set of 𝐺 contrary to our assumption that 𝐷 is a secure dominating 

set of 𝐺. Thus, 𝐺 must be equal to 𝐾𝑛. 

 

For the converse, suppose that 𝐺 = 𝐾𝑛. Let 𝐷 = {𝑥}. Then 𝐷 is a dominating set of 𝐺. Since 𝑉(𝐺) ∖ 𝐷 ≠ ∅, let 𝑢 ∈  𝑉(𝐺) ∖
 𝐷. Since 𝐷 is a dominating set and (𝐷 \{𝑥}) ∪ {𝑢} = {𝑢}, a dominating set of 𝐺, it follows that 𝐷 is a secure dominating set 

of 𝐺. Clearly, every 𝑢 ∈  𝑉(𝐺) ∖  𝐷 is dominated by only 𝑥 ∈  𝐷. Thus 𝐷 is a perfect secure dominating set of 𝐺, that is, 𝛾𝑝𝑠-

𝑠𝑒𝑡 of 𝐺. Let 𝑆 = {𝑣} with 𝑣 ≠ 𝑢. Since 𝐺 is complete, 𝑆 is a dominating set of 𝐺 Similarly, 𝑆 is a perfect secure dominating 

set of 𝐺, that is, a 𝛾𝑝𝑠
−1-𝑠𝑒𝑡 of 𝐺. Hence, 𝛾𝑝𝑠

−1(𝐺) = |𝑆| = 1.∎ 

 

III. CONCLUSIONS 

 

In this paper, we introduced the concept of inverse perfect secure domination in graphs and prove that given positive integers 

𝑘, 𝑚 and 𝑛 such that 1 ≤  𝑘 ≤  𝑚 ≤ 
𝑛

2
, where 𝑛 ≥  2 there exists a connected graph 𝐺 with |𝑉 (𝐺)|  =  𝑛, 𝛾𝑝(𝐺) = 𝑘, and 

𝛾𝑝𝑠
−1(𝐺)  = 𝑚. Further, we prove the inverse perfect secure domination number of a path graph 𝑃𝑛 and a cycle 𝐶𝑛  graph. Prove 

the characterization of the inverse perfect secure domination number of a complete graph. Some related problems on inverse 

perfect secure domination in graphs are still open for research. 

 

1. Characterize the inverse perfect secure dominating sets of the join, corona, Cartesian product, and lexicographic 

product of two graphs. 

 

2. Find the inverse perfect secure domination number of the join, corona, Cartesian product, and lexicographic 

product of two graphs.   
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