On the Problem of Tangency of Hyperbolic Curve

Natdanai Chailangka ${ }^{1}$, Apisit Pakapongpun ${ }^{* 2}$
1,2 Department of Mathematics, Faculty of Science,
Burapha University, 169 Muang, Chonburi, Thailand

Abstract-Associated to a given hyperbolic curve and a given point in the exterior region, there are always two tangents from the given point to the hyperbolic curve by yielded Critical Equation and discussing discriminant.

Keywords: Hyperbola, Tangents, Exterior region.

I. INTRODUCTION

In 2002, David R. Duncan and Bonnie H. Litwiller have studied concerning the numbers of tangent to parabola $y=k x^{2}$ wth $k>0$ throught the given point in the exterior region by discussing discriminant and Critical Equation see more detail in [1].

In 2017, Apisit Pakapongpun has generalized analogous problem for the tangent of the given parabola $A x^{2}+B x+D$ to the given point in the exterior region, where A, B and D are constants and $A \neq 0$ see more detail in [2].

In 2018, Apisit Pakapongpun and Saowaros Srisuk have studied analogous problem for ellipse curve. Given an ellipse curve and given a point in the exterior region, there are always two tangents from the given point to the given curve see more detail in [3].

In this article we continue our study of the tangents which through a given curve and a given point. Thus we consider a given hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, through the given point, where a and b are constants such that $a b \neq 0$.

The set of exterior points is represented by $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}<1$, the set of interior points is represented by $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}>1$, and the set of points on the hyperbola is represented by $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

II. MAIN RESULTS

Let $P(c, d)$ be a point not on hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $Q(e, f)$ be a point on the hyperbola, the line $P Q$ is the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at Q see Fig.1.

Fig 1: The tangent line PQ
The slope of the line $P Q$ is $\frac{d-f}{c-e}$ and by calculus, the slope of the line through Q and tangent to the hyperbola is the derivative of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. We will evaluate at the point $Q(e, f)$.
Since $y^{\prime}=\frac{b^{2} x}{a^{2} y}$, the slope is $\frac{b^{2} e}{a^{2} f}$. This gives us

$$
\begin{equation*}
\frac{d-f}{c-e}=\frac{b^{2} e}{a^{2} f} \tag{1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
b^{2} e^{2}-a^{2} f^{2}=b^{2} c e-a^{2} d f \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain

$$
a^{2} b^{2}-b^{2} c e=-d a^{2} f
$$

Square both sides, we have

$$
\begin{equation*}
a^{4} b^{4}-2 a^{2} b^{4} c e+b^{4} c^{2} e^{2}=a^{4} d^{2} f^{2} \tag{3}
\end{equation*}
$$

Since $Q(e, f)$ is lied on the hyperbola, the equation $\frac{e^{2}}{a^{2}}-\frac{f^{2}}{b^{2}}=1$ is held. Hence,

$$
b^{2} e^{2}-a^{2} f^{2}=a^{2} b^{2}
$$

rewriting

$$
\begin{equation*}
f^{2}=\frac{b^{2}}{a^{2}}\left(e^{2}-a^{2}\right) \tag{4}
\end{equation*}
$$

and substituting f^{2} into (3), we obtain the Critical Equation

$$
\left(b^{4} c^{2}-a^{2} b^{2} d^{2}\right) e^{2}-2 a^{2} b^{4} c e+\left(a^{4} b^{4}+a^{4} b^{2} d^{2}\right)=0 .
$$

Thus, we get the solutions

$$
\begin{equation*}
e=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=b^{4} c^{2}-a^{2} b^{2} d^{2} \\
& B=-2 a^{2} b^{4} c \\
& C=a^{4} b^{4}+a^{4} b^{2} d^{2} \text { and } c \neq \pm \frac{a d}{b}
\end{aligned}
$$

To find this quadratic equation has solutions for e, regard its discriminant as follows

$$
\begin{aligned}
D & =B^{2}-4 A C \\
& =\left(-2 a^{2} b^{4} c\right)^{2}-4\left(b^{4} c^{2}-a^{2} b^{2} d^{2}\right)\left(a^{4} b^{4}+a^{4} b^{2} d^{2}\right) \\
& =4 a^{4} b^{4} d^{2}\left(a^{2} b^{2}+a^{2} d^{2}-b^{2} c^{2}\right)
\end{aligned}
$$

Hence, two cases arise:
Case I: If $P(c, d)$ is in the interior region of hyperbola, then $\frac{c^{2}}{a^{2}}-\frac{d^{2}}{b^{2}}>1$ thus, $a^{2} b^{2}+a^{2} d^{2}-b^{2} c^{2}<0$ implies that $D \leq 0$. Then, there are no real solutions to the critical equation. Therefore, no tangents to the hyperbola pass through interior point $P(c, d)$.

Case II: If $P(c, d)$ is in the exterior region of hyperbola, then $\frac{c^{2}}{a^{2}}-\frac{d^{2}}{b^{2}}<1$ thus, $a^{2} b^{2}+a^{2} d^{2}-b^{2} c^{2}>0$ implies that $D \geq 0$. Therefore, there are two tangents to the hyperbola pass through the point $P(c, d)$.

This conclusion follows from the fact that a given point $P(c, d)$ which is not on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If $c \neq \pm \frac{a d}{b}$ then there are two tangents to the hyperbola pass through the point $P(c, d)$. Furthermore, on the hyperbola $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, we can obtain a similar result as the following.

Remark 2.1: Let $P(c, d)$ be a point not on the hyperbola $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$, if $c \neq \pm \frac{a d}{b}$ then there are two tangents to the hyperbola pass through the point $P(c, d)$ established by

$$
e=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}
$$

and

$$
f^{2}=\frac{a^{2}}{b^{2}}\left(b^{2}+e^{2}\right),
$$

where

$$
\begin{aligned}
& A=a^{4} c^{2}-a^{2} b^{2} d^{2} \\
& B=-2 a^{4} b^{2} c \\
& C=a^{4} b^{4}+a^{2} b^{4} d^{2} .
\end{aligned}
$$

III. Numerical Example

Example 3.1 Find a points of the tangents from the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ through the point $P(1,0)$.

Soltion: the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ we know that $a=2, b=1, c=1$ and $d=0$, we obtain

$$
\begin{aligned}
& A=b^{4} c^{2}-a^{2} b^{2} d^{2}=1 \\
& B=-2 a^{2} b^{4} c=-8 \\
& C=a^{4} b^{4}+a^{4} b^{2} d^{2}=16
\end{aligned}
$$

Evaluating the solutions,

$$
\begin{aligned}
e & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{8 \pm \sqrt{64-4(1)(16)}}{2(1)}=4 .
\end{aligned}
$$

So, we find f from equation (4)

$$
\begin{gathered}
f^{2}=\frac{b^{2}}{a^{2}}\left(e^{2}-a^{2}\right) \\
f= \pm \sqrt{3} .
\end{gathered}
$$

Therefore, $Q_{1}(4, \sqrt{3})$ and $Q_{2}(4,-\sqrt{3})$ are two points of the tangents to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ through the point $P(1,0)$ see Fig.2.

Fig. 2: Picture of example 3.1
Example 3.2 Find a points of the tangents from the parabola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ through the point $P(0,2)$.
Soltion: the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ we know that $a=2, b=1, c=0$ and $d=2$, we obtain

$$
\begin{aligned}
& A=b^{4} c^{2}-a^{2} b^{2} d^{2}=-16 \\
& B=-2 a^{2} b^{4} c=0 \\
& C=a^{4} b^{4}+a^{4} b^{2} d^{2}=80
\end{aligned}
$$

Evaluating the solutions,

$$
e=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}= \pm \sqrt{5}
$$

So, we find f from equation (4)

$$
\begin{gathered}
f^{2}=\frac{b^{2}}{a^{2}}\left(e^{2}-a^{2}\right) \\
f= \pm \frac{1}{2}
\end{gathered}
$$

Thus, we obtain four points $Q_{1}\left(\sqrt{5},-\frac{1}{2}\right), Q_{2}\left(-\sqrt{5},-\frac{1}{2}\right), Q_{3}\left(\sqrt{5}, \frac{1}{2}\right)$ and $Q_{4}\left(-\sqrt{5}, \frac{1}{2}\right)$. But if we check from the equation (1), then $Q_{3}\left(\sqrt{5}, \frac{1}{2}\right)$ and $Q_{4}\left(-\sqrt{5}, \frac{1}{2}\right)$ are not true. Therefore, only $Q_{1}\left(\sqrt{5},-\frac{1}{2}\right)$ and $Q_{2}\left(-\sqrt{5},-\frac{1}{2}\right)$ are points for the tangents to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ through the point $P(0,2)$ see Fig.3.

Fig. 3: Picture of example 3.2
Example 3.3 Find a points of the tangents from the parabola $\frac{y^{2}}{4}-\frac{x^{2}}{1}=1$ through the point $P(0,1)$.
Soltion: the hyperbola $\frac{y^{2}}{4}-\frac{x^{2}}{1}=1$ we know that $a=2, b=1, c=0$ and $d=1$, we obtain

$$
\begin{aligned}
& A=a^{4} c^{2}-a^{2} b^{2} d^{2}=-4, \\
& B=-2 a^{4} b^{2} c=0, \\
& C=a^{4} b^{4}+a^{2} b^{4} d^{2}=12 .
\end{aligned}
$$

Evaluating the solutions,

$$
e=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}= \pm \sqrt{5} .
$$

So, we find f from equation (4)

$$
\begin{gathered}
f^{2}=\frac{a^{2}}{b^{2}}\left(b^{2}+e^{2}\right) \\
f= \pm 4 .
\end{gathered}
$$

Thus, we obtain four points $Q_{1}(\sqrt{3}, 4), Q_{2}(-\sqrt{3}, 4), Q_{3}(\sqrt{3},-4)$ and $Q_{4}(-\sqrt{3},-4)$. But if we check from the equation (1), then $Q_{3}(\sqrt{3},-4)$ and $Q_{4}(-\sqrt{3},-4)$ are not true. Therefore, only $Q_{1}(\sqrt{3}, 4)$ and $Q_{2}(-\sqrt{3}, 4)$ are points for the tangents to the hyperbola $\frac{y^{2}}{4}-\frac{x^{2}}{1}=1$ through the point $P(0,1)$ see Fig.4.

Fig. 4: Picture of example 3.3

ACKNOWLEDGMENT

This work is supported by Faculty of Science, Burapha University, Thailand.

REFERENCES

[1] D. R. Duncan, and B. H. Litwiller, Parabolic Tangents: An Algebraic Analysis, Alabama Journal of Mathematics. 18(2) (2002) 31-34.
[2] A. Pakapongpun, The formula form of the points of Parabolic tangents, International Journal of Mathematics Trends and Technology. 52(5) (2017) 288290.
[3] A. Pakapongpun, and S. Srisuk, On the Problem of Tangency of Ellipse Curve, Asian Journal of Applied Sciences. 6(6) (2018) 542-546.

