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ABSTRACT. In this paper, we study to solve the Hyers-Ulam-Rassias stability of the
isometric additive mappings in quasi-Banach spaces, associated to additive functional
equation with 2k-variables. First are investigated results the Hyers-Ulam-Rassias sta-
bility of of the isometric in quasi-Banach spaces, and last are investigated isometric in
p-Banach spaces. Then I will show that the solutions of equation are additive mapping.
These are the main results of this paper.
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1. INTRODUCTION

Let X and Y be a normed spaces on the same field K, and f : X — Y be a mapping.

We use the notationH . (” . HY ) for corresponding the norms on X and Y. In this

lx
paper, we investigate the stability of isometric when X is a quasi-normed vector space

with quasi-norm H . Hx and that Y is a quasi-Banach space with quasi-norm H . HY

or when X is a quasi-normed vector space with quasi-norm H . ”x and that Y is a p-Banach

space with quasi-norm H . HY

In fact, when X is a quasi-normed vector space with quasi-norm H . || x and that Y is a
quasi-Banach space with quasi-norm H . HY
when X is a quasi-normed vector space with quasi-norm H . Hx and that Y is a p-Banach

space with quasi-norm H . HY

we solve and prove the Hyers-Ulam-Rassias type stability of the isomoetric in quasi-
Banach spaces, associated to the Cauchy type additive functional equation and Jensen
type additive functional equation

f(Z%‘JF%ZkaH):Zf<ﬂfj>+2f<%> (1.1)

k k k k

The study of the functional equation stability originated from a question of S.M. Ulam
[22], concerning the stability of group homomorphisms. Let <G, *> be a group and let
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(G’, o, d> be a metric group with metric d(-, > Geven € > 0, does there exist a 6 > 0
such that if f: G — G’ satisfies

d(f@*y),f(x) of@) <

for all z,y € G then there is a homomorphism h : G — G’ with

d<f(x>,h(x>> <o
for all x € G 7, if the answer, is affimartive, we would say that equation of homomophism

h(w * y) = h(y) o h(y) is stable. The concept of stability for a functional equation arises

when we replace functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how do the solutions
of the inequality differ from those of the given function equation? Hyers[11] gave a first
affirmative answes the questionor of Ulam as follows:

(D. H. Hyers) Let X,and Y be Banach space. Assume that f: X — Y satisfies

(e +) -5~ 1(5)| =

for all x,y € X and some ¢ > 0. Then there exists a unique additive mapping 7': X — Y,
such that
Hf(a:) — T(:}:) H <e Ve e X.

Next Th. M. Rassias [18] provided a generalization of Hyers’ Theorem which allows the
Cauchy difference to be unbounded:
(Th. M. Rassias.) Consider X and Y to be two Banach spaces, and let f: X — Y be

a mapping such that f (tx) is continous in ¢ for each fixed x. Assume that there exist
6 > 0 and p € [0, 1] such that
<]

Fe+) =1(e) = 1(0)

then there exists a unique linear L : X — Y satifies

() -16)] <,

<
—2-2r
Beginning around the year 1980 the topic of approximate homomorphisms, or the sta-
bility of the equation of homomorphism, was studied by a number of mathematicians.
Gavruta following Th.M. Rassias approach for the stability of the linear mapping be-
tween Banach spaces obtained a generalization of Th.M. Rassias Theorem. The stability
problems of several functional equations have been extensively investigated by a number
of authors and there are many interesting results concerning this problem (see [2,...,11]).
More special in 2008 Chun-Gil Park™ and Themistocles M.Rassia [10] have established
the and investigated the Hyers-Ulam-Rassias stability of the isomoetric in quasi-Banach
spaces concerning to the following Cauchy functional equation and Jensen functional

equation f<x + y) =/ (“‘) +/ (y>

al

p),‘v’m,yGX.

|,z € X.
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2 (55) = () + £ (v)

Recently, in [2-11] the authors studied the on Hyers-Ulam-Rassias type stability
the isometric in quasi-Banach spaces, associated to the Cauchy type following additive
functional equation and Jensen type additive functional equation.

k k k k
(G o) - 2o(e) (%)

and
1k 1 k k Zhsg
2hf | o Do+ g Do wes | = D F () + 201 T
j=1 j=1 j=1 j=1

ie the functional equation with 2k-variables. Under suitable assumptions on spaces X
and Y, we will prove that the mappings satisfying the functional (??) and (??). Thus,
the results in this paper are generalization of those in | 2-11] for functional equation with
2k-variables.

The paper is organized as followns:

In section preliminarie we remind some basic notations in [12-17] such as Banach space,
quasi-Banach space, p-Banach spaces, generalized quasi-normed space, generalized quasi-
Banach space, normed linear space, isometry, preserves distance for the mapping fand
solutions of the Cauchy function equation.

Section 3 is devoted to prove the Hyers-Ulam-Rassias type stability of the isometric in
quasi-Banach space of the additive functional equations when X is a quasi-normed vector

space with quasi-norm H . and that Y is a quasi-Banach space with quasi-norm || .

Ix Iy

Section 4 is devoted to prove the Hyers-Ulam-Rassias type stability of the isometri
in quasi-Banach spacess of the additive functional equations when X is a quasi-normed
vector space with quasi-norm H . ”x and that Y is a p-Banach space with quasi-norm with

quasi-norm H : HY

2. PRELIMINARIES

2.1. Banach spaces.

Definition 2.1. Let {xn} be a sequence in a normed space X.

o0

(1) A sequence {xn}

o
xn} converges to zero.
n=1

in a space X is a Cauchy sequence iff the sequence {xnﬂ —
n=1

[e.9]

(2) The sequence {xn} is said to be convergent if, for any ¢ > 0, there are a
n=1

positive integer N and x € X such that

for all n,m > N. Then the point x€ X is called the limit of sequence x, and
denote lim,,_, T, = .

T, — :1:” <eVn >N,

33
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(3) If every sequence Cauchy in X converger, then the normed spaceX is called a
Bnanch space.

Definition 2.2. Let X be a real linear space. A quasi-norm is a real-valued function on
X satisfying the following :

(1) HxH > 0 for all z € X and Hx“ = 0 if and only if x = 0.

(2) [Pral| = [[Jo]| for all A € R and all & € X,
(3) There is a constant K > 1 such that

ool <2<l + o

),‘v’x,yeX.

) .

The smallest possible K is called the modulus of concavity of H : H

is a quasi-norm on X.

The pair (X, . ‘) is called a quasi-normed space if

A quasi-Banach space is a complete quasi-normed space.
is called a p-norm <0 <p< 1) if

A quasi-norm H .

p p
+ Hy Vr,y € X.

e

Haz +y
In this case, a quasi-Banach space is called is called a p-Banach space

Definition 2.3. Let X be a real linear space. A generalized quasi-normed space is a
real-valued function on X satisfying the following :

(1) H:UH > 0 for all z € X and Hx“ = 0 if and only if x = 0.

(2) H)\xH = ‘)\H‘xH for all A € R and all z € X.
(3) There is a constant K > 1 such that

HZ:UJ SKZ‘%'] ,Va:l,wg,...EX.
j=1 j=1
The pair | X, H . H is called a generalized quasi-normed space if H . ” is a generalized

quasi-norm on X. The smallest possible K is called the modulus of concavity of

A generalized quasi-Banach space is a complete generalized quasi-normed space.
is called a p-norm <0 <p< 1) if

A generalized quasi-norm H .

|

In this case, a generalized quasi-Banach space is called is called a generalized
p-Banach space

p
Vr,y € X.

o

<

Tr+y

Definition 2.4. Let X, Y be metric space. A mapping f : X — Y is called an isometry
if f satisfies

dy(f(a:),f(y)> = dx<x,y>,‘v’x,y € X.

Where dx (-, ) ,dy <-, -), denote the metrics in the space X, Y, respecttively.
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Definition 2.5. For r be a fixed positive number, suppose that f preserves distance r,
ie, for all z,y € X with dx (x,y) = r, we have (f(x),f(y)) = r. Then r is called a

preserves distance for the mapping f.

Definition 2.6. Let (X,

. H> and (Y, H . H)be normed space. A mapping H : X =Y

is called an isometry if

[ (z) = H(y)|| = ||z —y]|, Yo,y € X.

2.2. Solutions of the inequalities. The functional equation

f(er)=1(z) +1(0)

is called the Cauchuy equation. In particular, every solution of the cauchuy equation is
said to be an additive mapping.

3. STABILITY OF EQUATION

Now, we first study the solutions of (1.1) and (1.2). Note that for this equations when
X is a quasi-normed vector space with quasi-norm H . || x and that Y is a quasi-Banach
space with quasi-norm H . HY Under this setting, we can show that the mapping satisfying

(7?) and (77?) is additive. These results are give in the following.

Theorem 3.1. Let v > 1 and 6 be positive real numbers,and f : X — Y be a mapping
such that

f(Zn:xj +%ixnﬂ-> - if(%’) - if(%)
j=1 j=1 j=1 j=1 Y
SQ(Z;’ ;+Z;“xk+j

L

X) (3.1)

< (n + nTH)HHx

(3.2)

T
X

I, -,

forall x,z;, xj1n € X for all j =1 — n. Then there exists a unique isometric Cauchy
type additive mapping H : X — Y such that

(n + n’"“) - K6

o-nal, =L

r

X,‘v’x e X. (3.3)

IN

Proof. Letting z; = x, x,+; = nz for all j =1 — n by the hypothesis (??), we have

| f(onr) ~201(:)|

(3.4)

< (n + n”l)GHx

r
X.

for all z € X. So

35


ssrg 5
Text Box
35


ssrg 5
Text Box
LY VAN AN/ IJMTT, 67(9), 31-49, 2021



LY VAN AN/ IJMTT, 67(9), 31-49, 2021

(n + n”l) 0

)]y

r

X'

e)5(y) - e ()

for all nonnegative integers m and 1 with m > [ and Vz € X. It follows from (??) that

r

<K Em: (Qn)jé

— |z
j'f’
Y j=l+1 <2n>

- (39)

h
the sequence { <2n> f (%) } is a cauchy sequence for all z € X. Since Y is complete
(=)

h
space, the sequence {<2n> f (%)} coverges.

2n

So one can define the mapping H : X — Y by

H(w) = Jim (20) 7 ( <£>h)

for all z € X. By (77)

(S i) S -S|

JL%O(Q”)hf(@@W%;W)f <<) K

if<(2;)hx?j>

h
9(271) n n -
< hm Z’ ill'j X—i_Zka+‘j -
2n 1 j=1

Y

for all z;, xj4, € X forall j =1— n. So

H(En:iﬂj‘f‘%zn:l’n-l—j):zn:]‘f(l’j)‘F Y (w”Jr])
j=1 j=1 j=1 j=1

for all = € X. Moreover, letting [ = 0 and passing the limit m — oo in (?77?), we get (?7).
Now we prove the uniqueness of H. Assume that H; : X — Y is an additive mapping
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satisfying (??). Then we have

H(z) - Hy () Y
-] H(@i)”) +H1<(2;)”) Y

- <2”>hK(H<(2;)”> N ((Q;y‘”)

2<2n>h K20

() )

as which tends to zero as h — oo for all z € X. So we can conclude that

H(z) = Hi(z)

This proves the uniqueness of H. It follows from (??) that
1

e (@i)’”"’) el ((2;)’156) ()
oy 2 >) .

+
Y

f (@i)”) ”1((2;)”)

T

X

Y ‘ X

S n +n
<2n

which tends to zero as h — oo for all x € X. So

h
a(s)| = @) ) | <
X
Y <2n> Y
for all x € X. Since H is additive,

|1 (=) =), =7 (=), = =]

For all x,y € X, as desired. O

hr

= lim
h—o00

Theorem 3.2. Let r < 1 and 6 be positive real numbers,and f : X — Y be a mapping
such that

(S i) o) -2 o(22)
§9<§nj]

zl| | < (n+nr+1>9 x
X

Y

n
T
> H”fkﬂ
X 4
Jj=1

ZLj

X) (3.7)

(3.8)

1),
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for all x;, xj1, € X for all j =1 — n. Then there exists a unique isometric additive
mapping H : X — Y such that

r

<n i n?”+1> e X,w: e X. (3.9)

o-nta, =S

Proof. Letting z; = z, x,+; = nz for all j =1 — n by the hypothesis (??), we have

f<2nx> —onf <x> )

< oo o i

for all z € X. So

(n + n”l) 0
2n Hm

T

<

X.

for all z € X. So

) gplerd s

for all nonnegative integers m and 1 with m > [ and Vx € X. It follows from (?77)

T

. (3.11)

X

T

h
that the sequence { L— <<2n> :1:) } is a cauchy sequence for all z € X. Since X is
()
h
complete space, the sequence L f <2n> x coverges.

(=)

So one can define the mapping H : X — Y by

(o) = i (20) o)

(2n)

for all x € X. The restof the proof is similar to the proof of theorem 3.1.
OJ

Theorem 3.3. Let r < 1 and 6 be positive real numbers,and f : X — Y be a mapping
with f (O) = 0 satisfying

j=1 Jj=1 j=1 j=1 ¥
oSl Slell) o

(3.13)

Lj

and

< (@ )]

r
X

I, 1,
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for all x;, vj4n € X for all j =1 — n. Then there exists a unique isometric Jensen
additive mapping H : X — Y such that

. _ ((3% 1)n7'+1+2n) - K%
|76 - @) |
Y~ 33

;,vx e X. (3.14)

(3.15)

Proof. Letting z; = —x, x,4; = nx for all j =1 — n by the hypothesis (?7), we have
‘ < (TL—{—TLT—H)@HLL' )
X

'_nf(_x>_nf(x) Y

for all z € X. So Letting z,,; = 3nz and replacing x; by —x for all j = 1 — n in the
hypothesis (??7), we have

2nf(x>—nf(—1:) —nf(?)x) < (n—l—n(i’m)r)@Hx ;. (3.16)
Y

for all z € X. So

3nf(x> —nf(Sx) §K<(3T+1)nr+1+2n>9Hx ;. (3.17)
Y

for all x € X. So
Hf(:c) = %f(?)x) Y < I;—; ((3T + 1) Qn)QHx R (3.18)

for all x € X. So

So

%f <3l:c> - 3imf (3”%) . < I;—nz ((37" +1)n 4 2n> 7:2:;1 3;.0 ‘x ) (3.19)

for all nonnegative integers m and 1 with m > [ and Vz €x. It follows from (??7) that

the sequence {3% f <3hx> } is a cauchy sequence for all z € X. Since Y is complete space,

the sequence ¢ i f (3%) coverges.

So one can define the mapping H : X — Y by

H(m) = lim if(th>

h—o0 3h
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for all z € X. By (?7)
SNTES SIS S S T B oY
2n 4 2n= 4 , . n
7=1 j=1 j=1 7j=1
1 n 1 n n
onf <3h <% Soehy ) S ()
=1 j=1 j=1

j=

Y

o L
~ i 3h

n Zlfn_t,_j
()

Y

) 3h7" n r n r
< g0 (e, + 35 e
7j=1 7=1
= ()7

for all z;, xj1, € X forall j =1 — n. So

1 n 1 n B n n Tt

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (?7), we get (?7).
Now we prove the uniqueness of H. Assume that H; : X — Y is an additive mapping
satisfying (??). Then we have

HH(J:) 240

H(3") + H, (3")

]_
3h
Y

< SihK<HH(3hx) s
((3T + 1)+t + Qn) - K20
2

(3 - 37") 3h

.as which tends to zero as h — oo for all x € X. So we can conclude that

H(z) = Hi(z)

This proves the uniqueness of H. It follows from (??) that

+
Y

f(s%) v H, (3%)

)

T

<

I

(0] -l -5l )] |
Y Y X
< <(3r+1)nr+1+2n)9?£ x X (3.20)

which tends to zero as h — oo for all x € X. So

40
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=,

===+,

for all x € X. Since H is additive ,

Jr1(«) = ()], = [} (=)

For all z,y € X, as desired.

Y

O

Theorem 3.4. Let r > 1 and 6 be positive real numbers,and f : X — Y be a mapping
with f(O) = 0 satifsfying

< 9(2 ‘ TX + 2 kaﬂ‘ ;) (3:21)
j=1 j=

‘Hf H ( (37 + 1)n™+! —i—2n> (3.22)

for all z;, vj4n, € X for all j =1 — n. Then there exists a unique isometric Jensen
additive mapping H : X — Y such that

Lj

and

((3T +1)n 4 2n> - K20
Hf(:”)_mx)” = 3 —3

Y

|| Ve e x. (3.23)

Proof. Letting x; = —x,2,+; = nx for all j =1 — n by the hypothesis (3.13), we have

—nf(—a:) —nf(:c) ) < (n+n’"+l)e .

for all x € X. So Letting x,4; = 3nz and replacing z; by —x for all j = 1 — n in the
hypothesis (3.13), we have

(3.24)

2nf<x)—nf<—x> —nf(?)x) < (n+n<3n>r)9 x (3.25)
for all z € X. So i
3nf (ZB) —nf <3SB) < K((BT + 1)+ 2n>9 T (3.26)
for all z € X. So '
Hf(a:) _ 3f<§> | <= ((?f +1)nrt 4 2n>9 2 (3.27)
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for all z € X. So

So
m—1 5
1 1 370
l m

< K* ((BT + 1)71”'1 + 2n> Z
~— 3n 3ri

J=l

T

T

(3.28)

for all nonnegative integers m and 1 with m > [ and Vo € X. It follows from (3.20)
that the sequence {3h f (%x)} is a cauchy sequence for all x € X. Since Y is complete

space, the sequence {3’"” f 3%@ } coverges.
So one can define the mapping H : X — Y by
1
— Ty 2h
H(w) = Jim 3 (7<)

for all z € X. The rest of the proof is similar to the proof of theorem 3.3 0J

4. STABILITY OF THE ISOMETRIC ADDITIVE MAPPING IN GENERALIZED P-BANACH
SPACE

Now, we first study the solutions of (1.1) and (1.2). Note that for this equations when

X is a quasi-normed vector space with quasi-norm || . Hx and that Y is a p-Banach space

with quasi-norm H : HY Under this setting, we can show that the mapping satisfying (77)
and (?7?) is additive. These results are give in the following.

Theorem 4.1. Let v > 1 and 6 be positive real numbers,and f : X — Y be a mapping
such that

<o

Y

T+n‘

Lj Tntj

X) (4.1)

< (n + n’““)&“x (4.2)

r
X

)], -,

for all x,z;, xpy; € X for all j =1 — n. then there exists a unique isometric Cauchy
type additive H : X — Y such that

r

Vo e X (4.3)
X

X

)’f($)_H<x))) - (n—i—nT >9

(@) @)

Proof. Letting z; = z, x,+; = nz for all j =1 — n by the hypothesis (??), we have

f<2nx> —onf <:1:> Y

3 =

< <n+nr+1>9HxH; (4.4)

for all z € X. So
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Hf(x) — 2nf<%> 'Y < <n n nT“) <2n>

for all x € X. Sence Y is a p-Banach space,

e)5(y) - e ()

(4.5)

for all x € X. Sence Y is a p-Banach spaces
for all nonnegative integers m and 1 with m > [ and Vx € X. Tt follows from (?7) that

h
the sequence {(2n) f <ﬁ)} is a cauchy sequence for all € X. Since Y is complete,
2n

the sequence { <2n) " f (ﬁ) } coverges.

2n

So one can define the mapping H : X — Y by

H(w) = Jim (20) 7 ( (zi)h)

for all x € X. It follows from (??) that
n 1 n n n T
(S0 iEm) - E)- L)
= j=

~ im <2n)hn f[(QiL)h(ixj—i—%ian)] —if( L x)

Zf((21)>
< Jim eéig) (Z |

=0,

Y

Zj

n
T
X .
J=1

y

for all z;, x,4; € X for all j =1 — n. So

j=1 j=1 j=1 j=1
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for all # € X. Moreover, letting [ = 0 and passing the limit m — oo in (?77?), we get (?7).

Now we prove the uniqueness of H. Assume that H; : X — Y is an additive mapping
satisfing (??). Then we have

. which tends to zero as n — oo for all x € X. So we can conclude that H(x) = H; (x)
for all x € X. This proves the uniqueness of H.
It follows from (?7) that

‘ <2”>hf<<zi>”>

-y

f&iyﬁ X

1
Y <2n>

(4.6)

which tends to zero as h — oo for all x € X. So

@JVQ;y>YWX

= lim
h—o0

()
for all x € X. Since H is additive,

1) =1 ()l = e (= =)l = =l

For all x,y € X, as desired. 0]
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Theorem 4.2. Let r < 1 and 6 be positive real numbers,and f : X — Y be a mapping
such that

(Srrae) e 2()
(%

Y

n
T
X5 —I—g ‘x :
]X . n+j
J=1

X) (4.7)

< (n+nr+1>9Hx (4.8)

r
X

)], -,

for all x,x;, xpy; € X for all j =1 — n. then there exists a unique isometric Cauchy
type additive H : X — Y such that

(n - n”l) 0

(@) -e))

The rest of the proof is similar to the proof of theorem 3.2.

IN

X

|#(2) ~ H ()

" vreX (4.9)
X

3 =

Theorem 4.3. Let r < 1 and 6 be positive real numbers,and f : X — Y be a mapping
with f <O) = 0 satisfying

n

< e(z\ - > (. ;) (4.10)
j=1 j=

(4.11)

Lj

and

r
X

)], I,

for all z;, vj4n, € X for all j =1 — n. Then there exists a unique isometric Jensen
additive mapping H : X — Y such that

< ((3’“ + 10+ 2n) 0«

((37" +1)n™t + Qn) - K20

|£() - H(=), < : o], ve e x. (4.12)
Proof. Letting z; = —x,2,+; = nx for all j =1 — n by the hypothesis (??), we have
'—nf(—x) —nf(a:) ‘ < <n+nr+1>9Hx T. (4.13)
X
Y
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for all x € X. So Letting ,; = 3nz and replacing z; by —x for all j = 1 — n in the
hypothesis (??), we have

g (2)ns(—2) —ns(3)| < (m(gny)eux L
for all z € X. So )
3nf(x> — nf<3x> < K((BT +1)n™ + 2n>9Hx TX. (4.15)
for all z € X. So )
Hf(x) - %f(?)a:) . < % ((3r +1)n" T + 2n>«9Hx ;. (4.16)
for all z € X. So
So
P m—1 i :
%f (3%) — 3imf<3%> ) < g ((ST + 1)+ 2n) ; 3;9 ‘m " (4.17)

for all nonnegative integers m and 1 with m > [ and Vz €x. It follows from (?7) that

the sequence {3% f <3hx> } is a cauchy sequence for all z € X. Since Y is complete space,

the sequence {3% f <3hx) } coverges.

So one can define the mapping H : X — Y by
1
H(m) = lim —f(?)hx)

h—o0 3h
for all z € X. By (?7)

1 n 1 n n n oy
2nH(%;xj+@;xn+j) —;H<xj) _;H< nf)

2nf <3h (% ij + % ilxmj) - Zf(i)’hxj)

J=1 J=1
T
X

Y

) 1
= lim o

— i f <3h :L‘n-‘,-j)
j=1 "
. 3hr n
< Jim o 2]
]:

=0,

and so for all z;, xj;, € Xforall j =1 — n.

Y

Lj

n
T
D
X -
Jj=1

1 n 1 n B n n T
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for all # € X. Moreover, letting [ = 0 and passing the limit m — oo in (?77?), we get (?7).

Now we prove the uniqueness of H. Assume that H; : X — Y is an additive mapping
satisfying (??7). Then we have

HH(:C) ~ ()

H(3") + H, (3"z)

1
~ 3k

Y

S%K<W4y@_f@%)
Y

((37‘ + 1)nmtt + 2n> K20

(3-3)3"

.as which tends to zero as h — oo for all x € X. So we can conclude that

H(x) — (x)

This proves the uniqueness of H. It follows from (?7) that

+ ‘ f(3%) +H, (3%)

)

<2

I

X

1 L 1 h T
51 (@9)| =l -] - |
Y Y X
" 3hr r
< (3 + 1) +2n el (4.18)
which tends to zero as h — oo for all z € X. So
1(2)| = | ) -],
Y Y
for all x € X. Since H is additive ,
(=) =1 ()], =} (=), = ==+
Y Y X
For all x,y € X, as desired.
O

Theorem 4.4. Let r > 1 and 6 be positive real numbers,and f : X — Y be a mapping
with f (O) = 0 satisfying

2nf<%2n:xj + Q—:ﬂzn:%ﬂ') - if(xj) - if(%)
j=1 i=1 j=1 j=1 ¥
< €<i’ TX—l—iHmH ;) (4.19)

Ly
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(4.20)

r
X

I, - e = (et}

for all zj, 1, € X for all j =1 — n. Then there exists a unique isometric Jensen
additive mapping H : X — Y such that

(3" + 1)n"t +2n | - K26

|#@) -1 (@), < v |

" WreX. (4.21)
X

The rest of the proof is similar to the proofs of theorems 3.1 and 4.5.

1]
2]
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