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Abstract - The present paper discusses the fingering phenomenon in the vertical direction via heterogeneous porous media. 

Governing equation of this phenomenon is a nonlinear second order partial differential equation. It is analysed with suitable 

initial condition by Reduced differential transform method (RDTM). The obtained solutions are represented numerically as 

well as graphically.  
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I. INTRODUCTION 

Since last few decades, flow displacement in a porous material has been an important topic of research. Instead of regular 

displacement of the whole front, when a fluid contained in a porous medium is displaced by another of lesser viscosity, 

protuberances may occur which shoot through the porous medium at relatively great speed, is called fingering phenomenon [8]. 

Many researchers and mathematician worked on this phenomenon with and without capillary pressure in homogeneous as well 

as heterogeneous porous medium [1,3,15].   Different mathematical techniques are used to solve this phenomenon. 

Phenomenon of instability occurring in inclined porous media is solved using Optimal Homotopy analysis method [9]. This 

phenomenon through fracture porous media with inclination and gravitational effect by is also analysed by applying Adomian 
Decomposition Method [10]. The phenomenon of instability also has been discussed and obtained solutions using Crank-

Nicolson Scheme [17] and using Variational iteration method [16]. Similarity solution obtained for instabilities in double-phase 

flow through porous media [4]. 

 

Very less work is done on this phenomenon in downward direction. Recently, this model is analysed using Generalized 

separable method [6] as well as by Variational iteration method [7]. The governing equation of this model is a nonlinear second 

order partial differential equation that is solved by using Reduce differential transform method [5,12-14,19,21-23] with 

appropriate initial condition. 

 

Our primary objective in this investigation is to ascertain the saturation level of injecting water in well-developed fingers as 

a result of water injection, which assists in pushing oil toward the oil production well. We apply RDTM method to obtain the 
approximate analytical solutions for this model. Numerical and graphical results are also discussed. The method explained in 

this paper are expected to be used for more non-linear models. This phenomenon takes place in secondary oil recovery process. 

 

 

II. MATHEMATICAL MODEL FORMULATION 

For the ease of mathematical study, we assume the oil-saturated heterogeneous porous matrix as vertical pipe shaped part 

whose surface is impermeable except its two ends, one is the uppermost part that is the common interface (𝑧 =  0) and the 

other is lowest part which is linked with oil production well. When water is injected at the common interface (𝑧 =  0), due to 

force of injecting water and gravitational effect, small protuberance occurs instead of regular displacement of the whole front 

and then fluid (water) flows vertically downward via interconnected capillaries to push native fluid (oil) towards the end of the 
pipe shaped part of porous matrix and the irregular fingers are formed with irregular size and shapes as shown in fig. 1 [7]. For 

the propose work, schematic fingers of rectangular size as shown in fig. 2 [1] are considered in place of irregular fingers. It is 

hard to obtain saturation of the injected water for any given 𝑡 >  0 at any 𝑧. Therefore, average cross section region of all 

rectangular fingers of average length have been considered. (z, t)iS  determines the saturation in the 𝑧-direction with injection 

time 𝑡.  

https://www.ijmttjournal.org/archive/ijmtt-v67i9p514
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure- 1: Formation of fingers in pipe shaped porous matrix [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure-2: Schematic view of fingers [7] 

The Darcy’s law is used to determine velocities of the injected water (wetting fluid) (
i

V ) and native oil (non-wetting 

fluid) ( nV ) for low Reynolds numbers [7]. It is assumed that the porous medium is heterogeneous. As a result, porosity (𝑃) and 

permeability (𝐾) are chosen in the variable form. As water and oil flow vertically downward, gravitational forces play a 

significant role in increasing the velocity of water and oil by an additional term g  in Darcy's law [11]. Let the lowest point 

of the vertical pipe-shaped part of the heterogeneous porous matrix be at 𝑧 =  𝐿, and the top point of the vertical pipe-shaped 

part be at 𝑧 =  0.  

Applying the law of Darcy, the seepage velocity of water 
i

V  and oil 
n

V  can be written as [11]: 
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The continuity equations for these two fluids are given by, 

0i i
S V

P
t z

 
 

 

 
 
 

                                                                                                                       (3)  

0n n
S V

P
t z

 
 

 

 
 
 

                                                                                                                      (4)  

 

Using result for phase saturation [1], 

1
i n

S S  .                (5) 

 

Further capillary pressure plays an important role for the instability phenomenon. Due to the pressure difference in native oil 

and injected water, the wetting fluid can flow via interconnected capillaries. Therefore, 
c

P  described as [2], 

( )
c i n i

P S P P  .               (6) 

 

The capillary pressure is in the opposite direction. Also it is a linear function of displacing fluid saturation [6]. so, 

c i
P S  .                (7) 

 

The relation between the phase saturation and relative permeability defined as [1]: 

i i
K S  , 1

n i
K S  .               (8) 

 

We choose 1  , 

1
n i n

K S S       ( 1i nS S  ) 

 

For heterogeneous porous medium, according to the variation law, the relation between ( )P z  and ( )K z  is described as [3], 

1
( )P z

a bz



 

1( ) (1 )nK z K a z  .                          (9)  

 

As ( )P z  cannot exceed beyond unity, we consider that 1a bz  . 

 

 For simplicity, K P  [24] 

 

Therefore, cK K P .            (10) 

 

From equations (1) to (4), we get 

i i i i
i

i i

S K P K
P K K g

t z z z


 

      
     

        
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n n n n
n

n n

S K P K
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t z z z

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Using iP  from (6) into (11), we have 

i i n c i
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From equation (5), 

0i nS S

t t

 
 

 
. 

 

Thus,  

i nS S

t t

 
 

 
. 

 

Using the above result in (12) and compare with (11), 

i n n i c i n
i n

i n i i n
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 
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Integrating equation (14), 
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By simplifying the above equation (15), 

( )i c i n
i n

i i nn

i n

i n

K P K K C t
K g

z KP

z K K

 
  

 

 
   

  
  

 
 

.             (16) 

 

Substituting the values of n
P

z




 from equation (16) into (13), 
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Pressure ( )nP  can be defined as [1], 

1

2 2 2

n i n i
n c

P P P P
P P P

 
    .              (18) 

 
By differentiating the above equation (18) with respect to z , 

1

2

n cP P

z z

 
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 
.                   (19) 

 
Using (19) into (16), we get 
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Now, from equation (17) we get the result, 
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1
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Using standard results (7), (8) and (10) in equation (21), 
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(Neglecting second and higher power of z ) 

 

Equation (22) represents governing equation of this model. 

For the simplicity, we use dimensionless variables 

z
Z

L
  ,  

22

c

i

K t
T

L




  ,  0 1Z   , 0 1T   

 

in equation (22) and it can be reduced as below 

i i i i
i i i

S S S S
S BS A ABS

T z z z z
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Where 
2 iL g

A



  , 

b
B L

a
  and ( , ) ( , )i iS z t S Z T . 

With initial condition 0( ,0) ( )i iS Z S Z  , where 0Z  . 

 

III.    BASICS OF REDUCED DIFFERENTIAL TRANSFORM METHOD 

This section contains some basic definition and properties. 

 

Definition: If function ( , )   is analytic and differentiated continuously with respect to time   and space   in the domain 

of interest, then let 

0

1
( ) ( , )
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k kk
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   



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where the  -dimensional spectrum function ( )k  is the transformed function [22]. 

The differential inverse transform of ( )k  is defined as follows: 

0

( , ) ( ) k

k

k

    




              (25) 

Hence from equations (24) and (25), we write 

0 0

1
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k
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k
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



 
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 
          (26) 

Therefore, we  can  say that the concept of the reduced differential transform is derived from the power series expansion. 
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Table I: Reduced differential transformation [14] 

 

Functional Form Transformed Form 

( , )    

0

1
( , )

!

k

kk


  




 
 
 

 

( , ) ( , ) ( , )           ( ) ( ) ( )k k k      

( , ) ( , )       ( ) ( )k k       (  is a constant) 

( , ) m n      
1; 0

( ) ( ), ( )
0; 0

m

k

k
k n k

k
   


    


 

( , ) ( , )m n         ( ) ( )m

k k n      

( , ) ( , ) ( , )          

0 0

( ) ( ) ( ) ( ) ( )
k k

k r k r r k r

r r

     

 

         

( , ) ( , )
r

r
     







 1

( )!
( ) ( 1)...( ) ( ) ( )

!
k k k r

k r
k k r

k
   


        

( , ) ( , )     






 ( ) ( )k k 



  


 

 

 

IV. SOLUTION PROCEDURE 

Implementing the aforesaid method to (23) and from Table 1, the transformed form written as [5,12-14,19,21-23] 

 
2

1 2
0 0

0

( 1) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

k k

r rk k r k r
r r

k
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B S Z T S Z T A S Z T AB S Z T
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



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   
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 



          (27)  

 
Using the initial condition [6], 

0 ( ,0) Z

iS Z e                    (28) 

Now, substituting (28) into (27), we obtain the following ( )kS Z values successively, 

    2

1 2 1Z Z

iS B e A B e T       

2 3 2 2 2 2

2

1 1
(3 15 18) (3 10 8) ( 1)

2 2

Z Z Z

iS B B e A B B e A B e T   
        
 

 

3 2 4 3 2 3

3

3 2 2 3 3

1 1
( ( 16 140 392 352) (18 117 243 162)
6 6

(7 32 48 24) ( 1) )

Z Z

i

z Z

S B B B e A B B B e

A B B B e A B e T

 

 

        

     

           (29) 

… and so on. 
 

From (29), the approximate solution in a series form is given by 
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z Z
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  
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 

 

     

 
        
 

        

      

         (30) 

 

Equation (30) is the approximate analytic solution of equation (23). 

 

V. RESULTS AND DISCUSSION 
In Table II, the different values of saturation produced using RDTM are displayed for different time and distance values. Table 

II shows that saturation of injected water goes up with respect to T and goes down with respect to Z. Also it determines that, 

due to time increment, the fingers will arise and oil move to production well through oil formed area during the secondary oil 
recovery process.  

 

Table II: Numerical values of ( , )iS Z T by RDTM  

 

T   
 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Z      ( , )iS Z T  

0.1 0.911712 0.919084 0.927011 0.93555 0.944758 0.954692 0.96541 0.976968 0.989423 1.002832 

0.05 0.869184 0.875825 0.882946 0.890595 0.898819 0.907665 0.917183 0.927418 0.93842 0.950235 

0.15 0.828657 0.834638 0.841035 0.847887 0.855235 0.863117 0.871573 0.880644 0.890369 0.900788 

0.2 0.790034 0.79542 0.801167 0.807306 0.813872 0.820897 0.828415 0.836459 0.845063 0.854258 

0.25 0.753224 0.758074 0.763236 0.768737 0.774606 0.78087 0.787557 0.794695 0.802311 0.810433 

0.3 0.718141 0.722507 0.727143 0.732073 0.73732 0.742907 0.748857 0.755194 0.76194 0.769119 

0.35 0.684702 0.688632 0.692796 0.697214 0.701906 0.70689 0.712187 0.717815 0.723794 0.730144 

0.4 0.652831 0.656367 0.660106 0.664065 0.66826 0.672708 0.677424 0.682425 0.687727 0.693347 

0.45 0.622452 0.625632 0.628989 0.632537 0.636288 0.640257 0.644458 0.648904 0.653608 0.658584 

0.5 0.593495 0.596354 0.599367 0.602545 0.6059 0.609443 0.613185 0.617138 0.621313 0.625722 

0.55 0.565892 0.568462 0.571165 0.574012 0.577012 0.580174 0.583508 0.587024 0.590731 0.594638 

0.6 0.539579 0.541888 0.544313 0.546863 0.549545 0.552367 0.555338 0.558466 0.561757 0.565222 

0.65 0.514496 0.516569 0.518744 0.521027 0.523424 0.525943 0.52859 0.531373 0.534297 0.537369 

0.7 0.490584 0.492445 0.494394 0.496437 0.49858 0.500828 0.503187 0.505662 0.508259 0.510985 

0.75 0.467789 0.469458 0.471204 0.473032 0.474946 0.476952 0.479053 0.481255 0.483563 0.485981 

0.8 0.446057 0.447553 0.449117 0.450751 0.452461 0.45425 0.456122 0.458081 0.460131 0.462276 

0.85 0.425339 0.426679 0.428078 0.429539 0.431066 0.432661 0.434328 0.43607 0.437891 0.439795 

0.9 0.405587 0.406787 0.408038 0.409343 0.410704 0.412126 0.41361 0.41516 0.416777 0.418466 

0.95 0.386755 0.387828 0.388946 0.390111 0.391326 0.392592 0.393913 0.39529 0.396726 0.398224 

1.0 0.368801 0.36976 0.370758 0.371797 0.372879 0.374007 0.375182 0.376406 0.377681 0.379009 
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Figure-3: Saturation ( , )iS Z T  verses Z 

 

 

Figure- 4: Saturation ( , )iS Z T  verses  T for fixed  Z = 0.1 

 

 



Pratiksha A. More & Priti V. Tandel / IJMTT, 67(9), 118-129, 2021 

 

126 

 

 

Figure- 5: Saturation ( , )iS Z T  verses T for fixed Z = 0.3 

 

Table II: Comparison of ( , )iS Z T  by RDTM and VIM [7] 

 T → 0.02 0.04 0.06 0.08 0.1 

 Z ↓ ( , )iS Z T  

RDTM 0.1 0.9191 0.9357 0.9558 0.9810 1.0142 

VIM  0.9210 0.9369 0.9525 0.9678 0.9827 

RDTM 0.2 0.8302 0.8434 0.8590 0.8779 0.9021 

VIM  0.8320 0.8450 0.8578 0.8703 0.8825 

RDTM 0.3 0.7500 0.7605 0.7726 0.7871 0.8049 

VIM  0.7517 0.7623 0.7728 0.7830 0.7930 

RDTM 0.4 0.6777 0.6860 0.6955 0.7066 0.7199 

VIM  0.6792 0.6879 0.6965 0.7049 0.7131 

RDTM 0.5 0.6124 0.6190 0.6265 0.6351 0.6451 

VIM  0.6138 0.6210 0.6280 0.6348 0.6415 

RDTM 0.6 0.5535 0.5588 0.5646 0.5713 0.5789 

VIM  0.5548 0.5606 0.5664 0.5720 0.5775 

RDTM 0.7 0.5004 0.5045 0.5091 0.5143 0.5201 

VIM  0.5015 0.5063 0.5109 0.5155 0.5201 

RDTM 0.8 0.4523 0.4556 0.4592 0.4632 0.4677 

VIM  0.4533 0.4572 0.4611 0.4649 0.4685 

RDTM 0.9 0.4090 0.4115 0.4144 0.4175 0.4210 

VIM  0.4098 0.4131 0.4162 0.4193 0.4223 

RDTM 1.0 0.3698 0.3718 0.3740 0.3764 0.3791 

VIM  0.3706 0.3732 0.3758 0.3783 0.3808 
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Figure-6: Saturation ( , )iS Z T  by RDTM and VIM 

 

Table IV: Error between RDTM and VIM 

 

ERROR Z/T 0.02 0.04 0.06 0.08 0.1 

0.1 0.001907 0.001169 0.003267 0.013153 0.031509 

0.2 0.001809 0.001615 0.001151 0.007642 0.019551 

0.3 0.001677 0.001805 0.000159 0.004102 0.01187 

0.4 0.001496 0.001881 0.000973 0.001721 0.006793 

0.5 0.001355 0.001953 0.001496 0.000264 0.003583 

0.6 0.001259 0.001822 0.001765 0.000733 0.001391 

0.7 0.001142 0.001791 0.00179 0.001238 2.91E-07 

0.8 0.000969 0.001586 0.001872 0.001663 0.000775 

0.9 0.00085 0.001558 0.001823 0.001802 0.001342 

1.0 0.00084 0.001401 0.001781 0.001853 0.001682 

 

Figure-3 shows graphical representation of the saturation of the injected fluid decreases with respect to Z. The obtained results 

are physically consistent. In Table III, the saturation level of water is compared to the values obtained using Variational 

iteration method (VIM) [5] in the literature. Figures  4 and 5 illustrate that for fixed depth, saturation of injected water 

increases with respect to time T. This is consistent with the underlying physical phenomenon. 
 

VI. CONCLUSION 

In this paper, proposed model is studied with the appropriate initial condition. For the validation of the method, the obtained 

results are compared with VIM. From table IV, we can observe that the errors between RDTM with VIM are negligible.  Also 

figure- 6 displays applicability of the present method. Hence we conclude that the assumptions which are considered for the 

study as well as the proposed method is very effective. 
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NOMENCLATURE 
 

iV  Velocity of water 

nV  Velocity of oil 

P  Porosity 

cP  Capillary pressure 

K  Variable permeability 

iK  Relative permeability of water 

nK  Relative permeability of oil 

T  Time 

Z  Depth 

, cK  Proportionality Constant 

i  Kinematic viscosity of water 

n  Kinematic viscosity of oil 

1, ,a b a  Positive constants 

C Arbitrary constant 

i  Density of water 

n  Density of oil 

oP  Pressure of oil 

P Constant mean pressure 

g  Acceleration due to gravity 

L  Length of pipe shaped porous matrix 

iS  Saturation of injected water 

nS Saturation of native oil 
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