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Abstract - In this paper, we studied the effect of rotation on the thermosolutal convection in visco-elastic nanofluid in the 

presence of porous medium using Walters  ̀(model B`). The system of nanofluid layer in which nanoparticle concentration 

on the bottom is lower than that at the top is considered. To solve the conservation equation, we used the normal mode 

technique and Galerkin weighted residual method. For stationary convection, the onset criterion derived analytically and 

experiential that visco-elastic nanofluid behaves as a regular Newtonian nanofluid. The Oscillatory convection does not 

exist. The effect of rotation, thermo-nanofluid Lewis number, thermosolutal Lewis number and solutal Rayleigh number 

analyze analytically and graphically. 
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I. Introduction 

The problem of thermosolutal convection in porous medium has motivated during the last few decades, because it has 

various applications in soil science, oceanography, engineering, astrophysics etc. The thermal instability for Newtonian 

fluid with hydrodynamic and hydromagnetic assumptions was discussed by Chandrasekhar [2]. Kuznetsov and Nield [8] 

investigated theoretically the expression for thermal Rayleigh number, the condition for oscillatory motions derived and 

the instability of nanofluids using conservation equation. The nanofluid was firstly used by Choi [4] in regular fluid with 

nanometer sized particles for the colloidal suspension. The nanoparticles size is less than 100 nm in a base fluid, in 

nanofluids, for instance water, engine oils, ethanol are commonly used as base fluids. The materials of nanoparticles may 

be in use as nitrides (AIN, SiN), metal carbides (SiC), oxide ceramics (Al2O3, Cuo) or metals (Cu, Al). Kuznetsov and 

Nield was studied to the convection in a binary nanofluid layer in porous medium. Gupta et.al. [5] investigated the effects 

of a vertical magnatic field on the thermosolutal nanofluid convection and found that the bottom heavy binary nanofluids 

are more stable than the regular binary fluids, while the top heavy binary nanofluids are  less stable than the regular binary 

fluid.  The thermosolutal and thermal instability problems for Walters` (model B`) with elastico-viscous fluid in a porous 

medium studied by Rana and Sharma [11]. Gupta et al. [6] studied the effect of horizontal magnetic field on nanofluid 

convection. Kumar et.al.[7] studied the thermosolutal instability of couple stress rotation fluid in the presence of magenatic 

field.  Pundir et al. [10] studied on the onset of thermosolutal convection of an elastico-viscous nanofluid in porous 

medium in presence of magnetic field. Sharma and Gupta [12] studied double diffusive nanofluid convection in porous 

medium with rotation using Darcy-Brinkman model. The effect of rotation on nanofluid convection in porous was studied 

by Chand and Rana [3].  We are investigate the effect of rotation on thermosolutal convection of visco-elastic nanofluid 

presence of porous medium using Walters` (model B`). The coriolis force term is added in the momentum equation due to 

the presence of rotation so we introduce a non-dimensional rotation parameter Taylor number. The problem is analized 
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with normal mode technique and Galerkin weighted residual method. The effect of rotation, thermo-nanofluid Lewis 

number, thermosolutal Lewis number and solutal Rayleigh number analyze graphically. 

II. Mathematical Model 

Here we regard a rotating horizontal layer with thickness 𝑑 and angular velocity 𝛀 of Walters` (model B`) elastico-

viscous nanofluid situated between the plates 𝑧 = 0 and 𝑧 = 𝑑. The fluid layer is heated from lower layer and working 

upwards direction with a gravity force 𝒈 = (0,0, −𝑔). Temperature 𝑇𝐷 , concentration 𝐶𝐷 and volumetric fraction  𝜑𝐷  of 

nanoparticle, at the lower boundary and upper boundary are taken to be 𝑇1  and 𝑇0 ,  𝐶1 and 𝐶0,  𝜑1  and  𝜑0  respectively, 

with  𝑇1 > 𝑇0, 𝐶1 > 𝐶0 and  𝜑0 >  𝜑1 . The governing equation for Walters’(model B’) elastico-viscous nanofluid in porous 

medium as given by Yadav et al. [13] and Nield and Kuznetsov [9] are: 

∇𝒒𝐷 = 0              (1) 

𝜌

𝜀

𝜕𝒒𝐷

𝜕𝑡
= −∇𝑝 + ( 𝜑𝐷 𝜌𝑝 + (1 −  𝜑𝐷){𝜌(1 − 𝛽𝑇 (𝑇𝐷 − 𝑇0) − 𝛽𝐶 (𝐶𝐷 − 𝐶0))})𝒈   −

1

𝒌
(𝜇 − 𝜇′ 𝜕

𝜕𝑡
) 𝒒𝐷 + 𝜇∇2𝒒𝐷 +

2𝜌

𝜀
(𝒒𝐷 × Ω)    

               (2) 

where 𝒒𝐷 , 𝑝, 𝜇, 𝜇′, 𝒈, 𝑘, 𝜌, 𝜀,  𝜑𝐷 , 𝛽𝐶 , and 𝛽𝑇  denoted by the Darcy velocity, hydrostatic pressure, viscosity, viscoelasticity, 

acceleration attainable to gravity, medium permeability, density, porosity, volume fraction of nanoparticles, solute 

concentration and coefficient of thermal expansion respectively. 

For the nanofluid, the equation of thermal energy is given as: 

(𝜌𝑐)𝑚
𝜕𝑇𝐷

𝜕𝑡
+ 𝜌𝑐𝒒𝐷 . ∇𝑇𝐷 = 𝑘𝑚∇2𝑇𝐷 + 𝜀(𝜌𝑐)𝑝 [𝐷𝐵∇ 𝜑𝐷 . ∇𝑇𝐷 +

𝐷𝑇

𝑇0
∇𝑇𝐷 . ∇𝑇𝐷] + 𝜌𝑐𝐷𝑇𝐶∇2𝐶𝐷        (3) 

where  𝐷𝑇𝐶 is a Dufour diffusivity, 𝑘𝑚 is thermal conductivity, (𝜌𝑐)𝑝 is the heat capacity of nanoparticles and (𝜌𝑐)𝑚 is heat 

capacity of the fluid in porous medium. 

For the nanoparticles, the continuity equation given by Biongiorno [1] as: 

𝜕 𝜑𝐷

𝜕𝑡
+

𝒒𝐷

𝜀
. ∇ 𝜑𝐷 = 𝐷𝐵∇2 𝜑𝐷 +

𝐷𝑇

𝑇0
∇2𝑇𝐷                (4) 

where 𝐷𝐵 and 𝐷𝑇 are the Brownian diffusion coefficient and the thermoporetic diffusion coefficient, respectively. 

The equation of conservation of solute concentration is given as: 

𝜕𝐶𝐷

𝜕𝑡
+

1

𝜀
𝒒𝐷 . ∇𝐶𝐷      = 𝐷𝑆∇2𝐶𝐷 + 𝐷𝐶𝑇∇2𝑇𝐷              (5) 

where  𝐷𝐶𝑇 and 𝐷𝑆 are Soret type diffusivity and the solute diffusivity of porous medium. 

The boundary conditions are given as: 

𝑞 = 0,    𝑇𝐷 = 𝑇1,       𝜑𝐷 = 𝜑1 ,      𝐶𝐷 = 𝐶1 at 𝑧 = 0        (6) 

𝑞 = 0,    𝑇𝐷 = 𝑇0,       𝜑𝐷 = 𝜑0 ,      𝐶𝐷 = 𝐶0 at 𝑧 = 𝑑        (7) 

We establish nondimensional variables as: 

(𝑥∗ , 𝑦∗, 𝑧∗) =
(𝑥, 𝑦, 𝑧)

𝑑
, 𝒒∗ = 𝒒𝐷

𝑑

𝛼𝑚

,   𝑡∗ =
𝑡𝛼𝑚

𝜎𝑑2
, 𝑝∗ =

𝑝𝑘

𝜇𝛼𝑚

,    𝜙∗ =
 𝜑𝐷 − 𝜑1

𝜑0 − 𝜑1

, 𝑇∗ =
𝑇𝐷 − 𝑇0

𝑇1 − 𝑇0

, 𝐶∗ =
𝐶𝐷 − 𝐶0

𝐶1 − 𝐶0

,      

where 𝛼𝑚 =
𝑘𝑚

𝜌𝑐
,      𝜎 =

(𝜌𝑐)𝑚

𝜌𝑐
. 

Dropping the star (*) for simplification. Equations (1) and equation (5) to (10) reduce in non-dimensional form: 

∇𝒒 = 0                (8) 

0 = −∇𝑝 − (1 − 𝐹
𝜕

𝜕𝑡
) 𝑞 + 𝑃𝑙∇2𝑞 − 𝑅𝑚𝑘̂ − 𝑅𝑛𝜑𝑘̂ + 𝑅𝐷𝑇𝑘̂ +

𝑅𝑠

𝐿𝑠
𝐶𝑘̂ + √𝑇𝑎(𝑞 × 𝑘̂)       (9) 

𝜕𝑇

𝜕𝑡
+ 𝒒. ∇𝑇 = ∇2𝑇 +

𝑁𝐵

𝐿𝑛
∇𝜑. ∇𝑇 +

𝑁𝐷𝑁𝐵

𝐿𝑛
∇𝑇. ∇𝑇 + 𝑆𝑇𝐶∇2𝐶          (10) 
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1

𝜎

𝜕𝜑

𝜕𝑡
+

1

𝜀
𝒒. ∇𝜑 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐷

𝐿𝑛
∇2𝑇              (11) 

1

𝜎

𝜕𝐶

𝜕𝑡
+

1

𝜀
𝒒. ∇𝐶 =

1

𝐿𝑠
∇2𝐶 + 𝑆𝐶𝑇∇2𝑇            (12) 

where the dimensionless parameters are: 

Thermosolutal Lewis number 𝐿𝑠 =
𝛼𝑚

𝐷𝑆
, Thermonanofluid Lewis number 𝐿𝑛 =

𝛼𝑚

𝐷𝐵
, Kinematic viscoelastic parameter 𝐹 =

𝜇′𝛼𝑚

𝜇𝜎𝑑2, Density Rayleigh number 𝑅𝑚 =
𝜌𝑝𝜑1+𝜌(1−𝜑1)𝑔𝑘𝑑

𝜇𝛼𝑚
, Nanoparticle Rayleigh number  𝑅𝑛 =

(𝜌𝑝−𝜌)(𝜑0−𝜑1)𝑔𝑘𝑑

𝜇𝛼𝑚
,   Thermal 

Rayleigh Darcy number 𝑅𝐷 =
𝜌𝛽𝑇(𝑇1−𝑇0)𝑔𝑘𝑑

𝜇𝛼𝑚
,  Solutal Rayleigh number 𝑅𝑠 =

𝜌𝛽𝐶(𝐶1−𝐶0)𝑔𝑘𝑑

𝜇𝐷𝑆
,  Dimensionless medium 

permeability 𝑃𝑙 =
𝑘

𝑑2,  Modified diffusivity ratio 𝑁𝐷 =
𝐷𝑇(𝑇1−𝑇0)

𝐷𝐵𝑇0(𝜑0−𝜑1)
,     Modified particle density increment 𝑁𝐵 =

(𝜌𝑐)𝑝(𝜑1−𝜑01)

𝜌𝑐
,   Soret parameter 𝑆𝐶𝑇 =

𝐷𝐶𝑇(𝑇1−𝑇0)

𝛼𝑚(𝐶1−𝐶0)
   Dufour parameter 𝑆𝑇𝐶 =

𝐷𝑇𝐶(𝐶1−𝐶0)

𝛼𝑚(𝑇1−𝑇0)
, Taylor number 𝑇𝑎 = (

2Ω𝑑2𝜌

𝜀𝜇
)

2

. 

The dimensionless boundary conditions are: 

𝑤 = 0,    𝑇 = 1,      𝜑 = 1,      𝐶 = 0 at 𝑧 = 0         (13) 

𝑤 = 0,    𝑇 = 0,      𝜑 = 0,      𝐶 = 1 at 𝑧 = 1         (14) 

III. A. Basic States and Its Solutions 

The basic state of nanofluid is assumed and does not depend on time and describes as: 

𝒒(𝑢, 𝑣, 𝑤) = 0,   𝑝 = 𝑝(𝑧),    𝑇 = 𝑇𝑖(𝑧),   𝜑 = 𝜑𝑖(𝑧), 𝐶 = 𝐶𝑖(𝑧)     

The basic variable represented by subscript 𝑖. 

The equations (8) to (12) with boundary conditions (13) and (14) gives the solution: 

𝑇𝑖 = 1 − 𝑧,     𝐶𝑖 = 1 − 𝑧  and  𝜑𝑖 = 𝑧.                        (15) 

B. Perturbation Solutions 

We introduced small perturbations on the basic state for the investigate the stability of the system and write 

𝒒∗ = 0 + 𝒒′(𝑢, 𝑣, 𝑤), 𝑇∗ = (1 − 𝑧) + 𝑇′, 𝐶∗ = (1 − 𝑧) + 𝐶′, 𝜑∗ = 𝑧 + 𝜑′,    𝑝∗ = 𝑝𝑖 + 𝑝,                         (16) 

Using equation (16) in equations (8) to (12) and linearise by disuse the multiplication of the prime quantities, and after 

dipping the dash ( ′ ), we get the subsequent equations: 

∇𝒒 = 0              (17) 

0 = −∇𝑝 − (1 − 𝐹
𝜕

𝜕𝑡
) 𝑞 + 𝑃𝑙∇2𝑞 − 𝑅𝑛𝜑𝑘̂ + 𝑅𝐷𝑇𝑘̂ +

𝑅𝑠

𝐿𝑠
𝐶𝑘̂ + √𝑇𝑎(𝑞 × 𝑘̂)    (18) 

𝜕𝑇

𝜕𝑡
− 𝑤 = ∇2𝑇 +

𝑁𝐵

𝐿𝑛
(

∂T

∂z
−

∂φ

∂z
) − 2

𝑁𝐷𝑁𝐵

𝐿𝑛

∂T

∂z
+ 𝑆𝑇𝐶∇2𝐶         (19) 

1

𝜎

𝜕𝜑

𝜕𝑡
+

1

𝜀
𝑤 =

1

𝐿𝑛
∇2𝜑 +

𝑁𝐷

𝐿𝑛
∇2𝑇              (20) 

1

𝜎

𝜕𝐶

𝜕𝑡
−

1

𝜀
𝑤 =

1

𝐿𝑠
∇2𝐶 + 𝑆𝐶𝑇∇2𝑇                         (21) 

and boundary conditions are: 

𝑤 = 0,    𝑇 = 0,      𝜑 = 0,      𝐶 = 0       at   𝑧 = 0  and 𝑧 = 1.      (22) 

𝑅𝑚  is not involved in these because 𝑅𝑚 is presently a estimate of basic static pressure gradient. So by operating equation 

(18) with 𝑘̂. 𝑐𝑢𝑟𝑙. 𝑐𝑢𝑟𝑙, we get: 

[− (1 − 𝐹
𝜕

𝜕𝑡
) + 𝑃𝑙] ∇2𝑤 + 𝑅𝐷∇𝐻

2 𝑇 − 𝑅𝑛∇𝐻
2 𝜑 +

𝑅𝑠

𝐿𝑠
∇𝐻

2 𝐶 + 𝑇𝑎
𝜕2𝑤

𝜕𝑧2 = 0       (23) 

where ∇𝐻
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2    and ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 
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IV. Normal Mode Analysis 

The disturbances analyzing by normal mode analysis as follow: 

[𝑤, 𝑇, 𝐶, 𝜑] = [𝑊(𝑧), Θ(𝑧), Γ(𝑧), ϕ(𝑧)]𝑒𝑥𝑝(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡)          (24) 

where 𝑛 is the growth rate and 𝑘𝑥  and 𝑘𝑦 are the wave number along 𝑥 and 𝑦 directions, respectively. 

Using equation (24) in equations(27) to (29) and equation (23), we get; 

[{−(1 − 𝑛𝐹) + 𝑃𝑙}(𝐷2 − 𝑎2) + 𝑇𝑎𝐷2]𝑊 − 𝑅𝐷𝑎2Θ −
𝑅𝑠

𝐿𝑠
𝑎2Γ + 𝑎2𝑅𝑛𝜙 = 0      (25) 

𝑊 + [(𝐷2 − 𝑎2) − 𝑛 + 𝜀
𝑁𝐵

𝐿𝑛
𝐷 − 2𝜀

𝑁𝐷𝑁𝐵

𝐿𝑛
𝐷] Θ + 𝑆𝑇𝐶 (𝐷2 − 𝑎2)Γ −

𝑁𝐵

𝐿𝑛
𝐷𝜙 = 0     (26) 

𝑊

𝜀
−

𝑁𝐷

𝐿𝑛
(𝐷2 − 𝑎2)Θ + [

𝑛

𝜎
−

𝐷2−𝑎2

𝐿𝑛
] 𝜙 = 0           (27) 

𝑊

𝜀
+ 𝑆𝐶𝑇(𝐷2 − 𝑎2) Θ + (

𝐷2−𝑎2

𝐿𝑠
−

𝑛

𝜎
)  Γ = 0         (28) 

where 𝐷 =
𝑑

𝑑𝑧
 and 𝑎2 = 𝑘𝑥

2 + 𝑘𝑦
2 is the dimensionless ensuing wave number and the boundary conditions in view of normal 

mode are: 

𝑊 = 𝐷2𝑊 = Γ = Θ = 𝜙 = 0  at 𝑧 = 0  and 𝑧 = 1          (29) 

V. Linear Stability Analysis 

The eigen functions 𝑓𝑖(𝑧) corresponding to the eigen values problem (35) to (38) are 𝑓𝑗 = sin(𝜋𝑧). the corresponding 

solutions are: 

𝑊 = 𝑊0 sin(𝜋𝑧) ,    Θ = Θ0 sin(𝜋𝑧) ,      Γ = Γ0 sin(𝜋𝑧) , 𝜙 = 𝜙0 sin(𝜋𝑧)      (30) 

The linear system has a solutions if and only if 

𝑅𝐷 =
1

𝐽2𝜎𝜀+𝑛𝜀𝐿𝑠−𝑆𝑇𝐶𝐽2𝐿𝑠𝜎
[

(−{−(1−𝑛𝐹)+𝑃𝑙}𝐽2+𝜋2𝑇𝑎)𝜀

𝑎2
((𝐽2 + 𝑛)(𝐽2𝜎 + 𝑛𝐿𝑠) − 𝑆𝐶𝑇𝑆𝑇𝐶𝐽4𝐿𝑠𝜎) + 𝑅𝑠𝜎(𝜀𝑆𝐶𝑇𝐽2 − (𝐽2 + 𝑛)) −

𝑅𝑛𝜎

(𝐽2𝜎+𝑛𝐿𝑛)
(((𝐽2 + 𝑛)𝐿𝑛 + 𝐽2𝑁𝐷𝜀)(𝐽2𝜎 + 𝑛𝐿𝑠) + 𝑆𝑇𝐶𝐽4𝐿𝑠𝜎(𝐿𝑛𝑆𝐶𝑇𝜀 + 𝑁𝐷))]         (31) 

where 𝐽2 = 𝜋2 + 𝑎2. 

VI. The Stationary Convection 

The stationary convection will be characterized by 𝑛 = 0 in equation (31), and reduce it to 

𝑅𝐷 =
1

(𝜀−𝑆𝑇𝐶𝐿𝑠)
[

𝐽2(−𝐽2𝑃𝑙+𝜋2𝑇𝑎)𝜀

𝑎2
(1 − 𝑆𝐶𝑇𝑆𝑇𝐶𝐿𝑠) + 𝑅𝑠(𝜀𝑆𝐶𝑇 − 1) − 𝑅𝑛((𝐿𝑛 + 𝑁𝐷𝜀) + 𝑆𝑇𝐶𝐿𝑠(𝐿𝑛𝑆𝐶𝑇 + 𝑁𝐷))]              

             (32) 

the thermal Darcy Rayleigh number reveal by equation (32) which is a function of 𝑎, 𝑆𝐶𝑇 , 𝑆𝑇𝐶 , 𝐿𝑒, 𝑁𝐷 , 𝑅𝑠 , 𝑅𝑛 , 𝐿𝑛. Since  

elastico-viscous parameter 𝐹 vanish with 𝑛, so the Walters`(model B`) elastico-viscous nanofluid react similar to usual 

Newtonian  nanofluid, In the nonappearance of the Dufour and Soret parameters equation (32) reduces to 

𝑅𝐷 = [
(𝜋2+𝑎2)(−(𝜋2+𝑎2)𝑃𝑙+𝜋2𝑇𝑎)

𝑎2 −
𝑅𝑠

𝜀
− 𝑅𝑛 (

𝐿𝑛

𝜀
+ 𝑁𝐷)]       (33) 

       Here, take 𝑥 =
𝑎2

𝜋2, in equation (43), then we get 

𝑅𝐷 = 𝜋2 [
𝑇𝑎(1+𝑥)

𝑥
−

𝑃𝑙(1+𝑥)2

𝑥
] −

𝑅𝑠

𝜀
− 𝑅𝑛 (

𝐿𝑛

𝜀
+ 𝑁𝐷)          (34) 

 

VII. The Oscillatory Convection 
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For oscillatory convection, we put 𝑛 = 𝑖𝜔 in the eigenvalue equation with heat capacity ratio as unity and Lewis 

number approach to infinity with Soret and Dufour parameters are negligible, separate the real and imaginary part of 

eigenvalue equation and we get 

𝜔2 = −
1

𝐹𝐽2 [(𝑃𝑙𝐽2 + 𝐽2 + 𝜋2√𝑇𝑎)𝐽2 + 𝑎2𝑅𝐷 + 𝑎2 𝑅𝑛

𝜀
]       (35) 

𝜔2 is negative when 𝑅𝑛 is positive, this meaning is the oscillatory mode of heat transfer is not possible. 

 

VIII. Results and Discussion 

The equation (34) express for stationary thermal Rayleigh Darcy number compute as a function of solute Rayleigh 

number, nanoparticle Rayleigh number, modified diffusivity ratio, thermo-nanofluid Lewis number, Taylor number, 

medium permeability, porosity, and dimensionless wave number.  

We observe the nature of  
𝜕𝑅𝐷

𝜕𝑇𝑎
,

𝜕𝑅𝐷

𝜕𝑁𝐷
,

𝜕𝑅𝐷

𝜕𝑅𝑛
,

𝜕𝑅𝐷

𝜕𝑅𝑠
,

𝜕𝑅𝐷

𝜕𝑃𝑙
 and 

𝜕𝑅𝐷

𝜕𝐿𝑛
 analytically. Equation (34) gives 

  
𝜕𝑅𝐷

𝜕𝑇𝑎
> 0 and  

𝜕𝑅𝐷

𝜕𝑅𝑠
< 0,  

𝜕𝑅𝐷

𝜕𝑁𝐷
< 0,

𝜕𝑅𝐷

𝜕𝑃𝑙
< 0, 

𝜕𝑅𝐷

𝜕𝑅𝑛
< 0,

𝜕𝑅𝐷

𝜕𝐿𝑛
< 0. 

This implies that for stationary convection, Taylor number have stabilizing effect whenever Solute Rayleigh number, 

thermo-nanofluid Lewis number, modified diffusivity ratio, nanoparticle Rayleigh number and medium permeability have 

destabilizing effect on the system. 

Figure 1 represents the Rayleigh Darcy number increase with Taylor number and for different values of solute Rayleigh 

number 𝑅𝑠 = 100, 200, 300 with the constant values of  𝑁𝐷 = 1, 𝑃𝑙 = 5,  𝑅𝑛 = 1, 𝐿𝑛 = 1000, 𝜀 = 0.6. The Rayleigh 

number 𝑅𝐷 increase with the Taylor number 𝑇𝑎, which implise that on the stationary convection Taylor number has 

stabilizing effect. 

Figure 2 represents the Rayleigh Darcy number decrease with medium permeability and for different values of nanoparticle 

Lewis number 𝐿𝑛 = 1000, 4000, 7000 with the constant values of 𝑁𝐷 = 1, 𝑇𝑎 = 100,  𝑅𝑛 = 1, 𝑅𝑠 = 100, 𝜀 = 0.6. The 

Rayleigh number 𝑅𝐷 decrease with the medium permeability 𝑃𝑙, which implise that on the stationary convection medium 

permeability has destabilizing effect. 

Figure 3 represents the Rayleigh Darcy number decrease with solute Rayleigh number and for different values of Taylor 

number 𝑇𝑎 = 100, 300, 600 with the constant values of 𝑁𝐷 = 1, 𝑃𝑙 = 5,  𝑅𝑛 = 1, 𝐿𝑛 = 1000, 𝜀 = 0.6. The Rayleigh 

number 𝑅𝐷 decrease with the solute Rayleigh 𝑅𝑠, which implise that on the stationary convection solute Rayleigh has 

destabilizing effect. 

Figure 4 represents the Rayleigh Darcy number decrease with nanoparticle Rayleigh number and for different values of 

diffusive ratio 𝑁𝐷 = 1, 5, 10 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100, 𝑃𝑙 = 5, 𝐿𝑛 = 200, 𝜀 = 0.6. The Rayleigh 

number 𝑅𝐷 decrease with the nanoparticle Rayleigh number  𝑅𝑛, which implise that on the stationary convection 

nanoparticle Rayleigh number has destabilizing effect. 

Figure 5 represents the Rayleigh Darcy number decrease with diffusive ratio and for different values of medium 

permeability 𝑃𝑙 = 1, 5, 10 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100,  𝑅𝑛 = 1, 𝐿𝑛 = 200, 𝜀 = 0.6. The Rayleigh 

number 𝑅𝐷 decrease with the diffusive ratio 𝑁𝐷, which implise that on the stationary convection diffusive ratio has 

destabilizing effect. 

Figure 6 represents the Rayleigh Darcy number decrease with nanoparticle Lewis number and for different values of 

nanoparticle Rayleigh number  𝑅𝑛 = 1, 2, 3 with the constant values of 𝑇𝑎 = 100, 𝑅𝑠 = 100, 𝑃𝑙 = 1, 𝑁𝐷 = 1, 𝜀 = 0.6. The 

Rayleigh number 𝑅𝐷 decrease with the nanoparticle Lewis number  𝑅𝑛, which implise that on the stationary convection 

nanoparticle Lewis number has destabilizing effect. 
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Figure: 1 

 

Figure: 2 
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Figure: 3 

 

Figure: 4 

 

Figure: 5 



Mukul Kumar et al. / IJMTT, 67(9), 130-137, 2021 

137 

 

Figure: 6 

IX. Conclusion 

The effect of rotation on thermosolutal convection of visco-elastic nanofluid with porous medium using Walters` 

(Model B`) is investigated by using linear stability analysis. We drawn the main conclusion are following as: 

(i) Due to rotation, Taylor number has stabilizing effect for stationary convection. 

(ii) Solute Rayleigh number, thermo-nanofluid Lewis number, modified diffusivity ratio, nanoparticle Rayleigh 

number and medium permeability have destabilizing effect for stationary convection. 

The Walters` (model B`) elastico-viscous nanofluid react similar to regular Newtonian nanofluid for stationary 

convection. 
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