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Abstract — Based on feedback control and bifurcation theory, a PD controller is proposed to solve the Hopf branch 

problem of XCP network congested power system. Firstly,  is selected as the branching parameter to obtain the critical 

value that keeps the original system and the controlled system stable. When the delay value passes the critical value, the 

system will lose stability at the equilibrium point and Hopf branch will be generated. Then, the addition of PD controller 

increases the critical value of system branch parameters, expands the stability region, and effectively alleviates the 

generation of Hopf branches. Finally, the feasibility of theoretical analysis is verified by numerical simulation with 

mathematical software. 
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I. INTRODUCTION 

In recent years, with the increase of the number and types of wireless network technologies, when the total demand 

for a resource exceeds the available capacity of the resource, and the data received by routers in the network exceeds the 

data they can forward, Internet congestion will occur, and even the whole system may crash due to congestion collapse
 [1-2]

. 

Network congestion control is a very important and challenging problem, which has always been the main subject of 

in-depth research. The nonlinear dynamic characteristics of congestion control systems urge researchers to use existing 

bifurcation control methods to improve the performance of related schemes.Subsequently, many papers have studied 

nonlinear behaviors such as bifurcation and chaos in the network system model 
[3-5]

. Compared with the traditional TCP 

protocol, congestion control of XCP protocol is excellent in fairness, efficiency and flexibility, and can better adapt to the 

network environment. In this paper, Hopf bifurcation of XCP network congested power system is delayed by proportional 

differential controller. 

II. MODEL BUILDING 

According to literature [6], the congestion model of XCP network is presented: 
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where y(t) represents total traffic, q(t) represents average queue length (packets), C represents link capacity, and 

represents round-trip time (seconds).  

First, let the equilibrium point of model (1) be (y0, q0), then it satisfies the following equation: 
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If we solve the above equation, we get: 
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In recent years, many scholars have studied Hopf bifurcation in XCP network congestion model. In literature [7], the 

author studied the Hopf bifurcation problem after adding a hybrid controller to the wireless network congestion model. In 

literature [8], the author studied the XCP network congestion model by adding a state feedback controller. 

Inspired by the above research, this paper adds proportional differential controller (PD) to the XCP network 

congestion model in order to delay the generation of Hopf branch. According to Equation (1), the controlled system added 

to PD controller is obtained as follows: 
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Then the above controlled system can be further rewritten as: 
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III. STABPLPTY AND LOCAL HOPF BIFURCATION ANALYSIS 

According to calculation, the equilibrium point of the controlled system (5) is the same as that of the original system 

(1), which means that the original system structure will not be changed after PD controller is added. 

Let 01
)()( ytyty  , and 02

)()( qtqty  . After linearization of the controlled system (5) at the equilibrium point, 

the linearization equation is: 
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The characteristic equation of linearized equation (6) is: 
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Lemma 1: When c
  and 000:)(

2322231
 baaabaH ，， , the controlled system (5) is locally asymptotically 

stable, otherwise the controlled system (5) is unstable. 

Proof. Using quadratic approximation 
2
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 , the above equation becomes： 
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Routh-Hurwitz stability criterion shows that the closed-loop system is stable if and only if all values are greater than 
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zero, that is, the following coefficient conditions are satisfied: 
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that is 0222  
d

k , 0 
p

k , At this point, the controlled system (5) is stable. The proof is done. 

Lemma 2: If 
c

  is true, then the characteristic equation (7) has a pair of pure imaginary roots )0(
00
  i , and 

we take   as the bifurcation parameter of the characteristic equation (7), where 
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Proof. First we assume that )0(
0

  i is a root of the characteristic equation (7), the following equation is satisfied 

after substituting it into the above characteristic equation: 
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the separation of the real and imaginary parts, it follows: 
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add the left and right sides of equation (10) to get: 
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therefore, we can solve the above equation to get: 
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so equation (10) is also obtained 
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Now we show that 
0

 i  is a simple root of the characteristic equation (7) if c
   is true. First of all define: 
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In this case, substitute 
0

 i  into the equation above to get 0|
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c
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0
 i  is a pair of pure imaginary roots of the characteristic equation (6). The proof is done. 

Lemma 3: If )()()(  iR  is the root of the characteristic equation (7) and the conditions 0)( 
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Proof. By differentiating both sides of equation (7) with regard to
c

 and applying the implicit function theorem, we have : 
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It can be known from Equation (10): 
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Then the transversal condition holds. The proof is done. 

Lemma 4: When c
  , equation (7) has at least one root with a positive real part. 

According to the above lemma and the Hopf branch theorem of delay differential equations in literature [9-10], 

we can get the following conclusions. 

Theorem 1: For the controlled system (5), the following conclusion holds: 

(1) When c
  , the controlled system is asymptotically and uniformly stable near the equilibrium point(y0, q0); 

(2) When c
  , the controlled system generates Hopf branch at the equilibrium point (y0, q0); 

(3) When c
  , the controlled system is unstable at the equilibrium point (y0, q0). 

 

IV. NUMERICAL SIMULATION 

In this section, we will verify the validity of the above theoretical analysis results through numerical simulation 

with mathematical software mathematica. In order to facilitate comparison, we selected the same parameters as 

those in literature [7]: 436.010002.0   ，， C . When 0
pd

kk , system (5) is in the state of no control system, 

and 274.1555.001000
maxmin00


cc

py  ，，，  is obtained through calculation. 
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When 
min

5.0
c

  is taken, the system (5) is asymptotically stable at the equilibrium point, as shown in FIG. 

1. When 
min

555.0
c

  , The controlled system (5) generates a Hopf branch at the equilibrium point, as shown in 

FIG. 2. Next, the control effect is verified. The above parameters are still selected. By selecting an appropriate PD 

control coefficient of 1.0
d

k and 1.0
p

k , when 555.0 , the system finally stabilizes at the equilibrium point, 

as shown in FIG. 3. However, as continues to increase, as in 504.0 , the wireless network congestion model with 

PD controller added still generates Hopf branch, and the system loses stability, generating limit cycle, as shown in 

Figure 4. Therefore, Hopf bifurcation can be advanced by selecting an appropriate PD control coefficient. 

 

 

 
 

 

Fig. 1  State and Phase plot of )( ty and p ( )t with
min

5.0
c

  . 

 
Fig. 2  State and Phase plot of )( ty and p ( )t with 

c
  555.0  . 
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Fig. 3  State and Phase plot of )( ty and p ( )t with 555.0  

 

Fig. 4  State and Phase plot of )( ty and p ( )t with 504.0  

Now take 
c

  2.1 , the controlled system (5) is asymptotically stable at the equilibrium point, as shown in 

FIG. 5. Now take 
max

274.1
c

  , the controlled system (5) generates Hopf branch at the equilibrium point, as shown in 

FIG. 6. Then verify the control effect. The above parameters are still selected. When 274.1 , the system finally 

stabilizes at the equilibrium point, as shown in FIG. 7. However, when   continues to increase, such as 4755.1 , the 

wireless network congestion model with PD controller added still generates Hopf branch, and the system loses stability, as 

shown in FIG. 8. Therefore, choosing an appropriate PD control coefficient can make Hopf branch delay. 
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Fig. 5  State and Phase plot of )( ty and p ( )t with 
max

2.1
c

   

 

 

 
Fig. 6  State and Phase plot of )( ty and p ( )t with 

max
274.1

c
   

 

 
Fig. 7  State and Phase plot of )( ty and p ( )t with 274.1  
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Fig. 8  State and Phase plot of )( ty and p ( )t with 4755.1  

As can be seen from the above figure, the stability range of the controlled system with PD control added is larger 

than that of the non-controlled system. 

V.  CONCLUSIONS 

Based on XCP network congestion power system, this paper studies a congestion model of XCP network with PD 

controller. On the basis of theoretical analysis, we first introduce the Hopf bifurcation behavior of the non-control system 

model. In order to delay this behavior, a PD controller is added. By selecting appropriate control parameters, we obtain the 

critical value to keep the controlled system stable, thus effectively alleviating the generation of Hopf branches. However, 

when the delay is increased to a certain value, the system will still be blocked or even crash. The numerical simulation 

results verify the correctness of the theoretical analysis. Therefore, although the bifurcation behavior is not eliminated 

through PD controller, we can effectively alleviate the generation of Hopf branches, expand the stable interval of wireless 

network, and achieve better service performance of wireless network. 
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