Square Sum Labelling for Lobster and Fan Graph

S.Uma Maheswari ${ }^{1}$, S.Saranyadevi ${ }^{2}$
${ }^{1}$ Associate Professor, Department of Mathematics, CMS College of Science \& Commerce, Coimbatore, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Pioneer College of Arts \& Science, Coimbatore, India.

Abstract

Let $G=(V, E)$ be a (p, q)-graph and let $f: V(G) \rightarrow\{0,1,2, \ldots, p-1\}$ be a bijection. We define $f *$ on $E(G)$ by $\left.f *(u v)=[f(u)]^{2}+f(v)\right]^{2}$. If $f *$ is injective on $E(G)$, then f is called a square sum labelling. The graph G is said to be a square sum graph if G admits a square sum labelling.

Keywords - Square Sum Labelling, Labelling of Graph, the lobster, full n-ary tree, and the amalgamation of a fan and a star graph.

I. INTRODUCTION

Rosa introduced the notion of Graph labelling in 1967 [6]. A graph labelling is a mapping that carries a set of graph elements onto a set of numbers called labels (usually the set of integers). A dynamic survey on graph labelling is regularly updated by Gallian[4]. Germina introduced and proved some results of square sum labelling. Reena Sabastian etc.., all discussed the concepts of square sum labelling in 2014[5].

Next, we demonstrate that routes, the graph $R_{p}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, the lobster, full n -ary tree, and the amalgamation of a fan and a star allow square sum labelling.

II. PRELIMINARIES

Definition 2.1: If the vertices of the graph are assigned values subject to certain conditions then it is known as a graph labelling.

Definition 2.2: A path in a graph G is a sequence of vertices such that from each of its vertex there is an edge to the next vertex in the sequence. The length of a path $P_{n}: v_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}(n>0)$ in G is $n-1$.

Fig 1. Path graphs P_{1}, P_{2}, P_{3}, and P_{4}
Definition 2.3: A path $P_{n}: v_{1} v_{2} \ldots v_{n}$ in graph G is called cycle C_{n} if: $v_{1}=v_{n}$ and $n \geq 3$.

C_{3}

C_{4}

Fig 2. Cycle graphs C_{3}, C_{4}, dan C_{5}
Definition 2.4: A lobster graph, lobster tree, or simply "lobster," is a tree having the property that the removal of leaf nodes leaves a caterpillar graph

Fig 3. Lobster Graph
Definition 2.5 : A fan graph obtained by joining all vertices of $F_{n}, n \geq 2$ is a path P_{n} to a further vertex, called the centre.
Thus F_{n} contains $n+1$ vertices say $\mathrm{C}, v_{1}, v_{2}, v_{3} \ldots v_{n}$ and (2n-l) edges, say $c v_{i}, 1 \leq i \leq n$ and $v_{i} v_{i+1}+1,1 \leq i \leq n-1$.

Fig 4. Fan f_{4}
Definition 2.6: The routing tree of D_{n} is the tree structure obtained from the (minimal) paths followed by a message when it is routed from every node to the identity node

Definition 2.7 : A star S_{n} is the complete bipartite graph $K_{1, n}$ is a tree with one internal node and n leaves.

III. MAIN RESULT

In this section, we investigate which classes of graphs admit square sum labelling.
Theorem 3.1: The route Pn is represented as a square sum graph.
Proof: Suppose $P_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a path. Define a function $f: V\left(P_{n}\right) \rightarrow N$ by $f\left(v_{i}\right)=T_{i}-1$, $1 \leq i \leq n$. Since $T_{i}-1<T_{i}$, for $1 \leq i \leq n-1$, we have $\left.f\left(v_{i}\right)<f\left(v_{i}\right)+1\right)$ and therefore f is one-one. Here we have $1 \leq i \leq n-1$,

$$
\begin{aligned}
& f^{+}\left(v_{i} v_{i+1}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right) \\
& =T_{i-1}+T_{i}=\frac{i(i-1)}{2}+\frac{i(i+1)}{2} \\
& =i^{2} \\
& =R_{i}
\end{aligned}
$$

Thus, $f^{+}\left(E\left(P_{n}\right)\right)=\left\{R_{1}, R_{2}, \ldots, R_{n-1}\right\}$. Hence P_{n} is a square sum graph.
[The path P_{n} is a square sum graph.]
Theorem 3.2: The graph $R_{p}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is a square sum graph.
Proof: Suppose $c_{1}, c_{2}, \ldots, c_{k}$ represents the centers of the k stars, where the star with centre c_{i} has n_{i} pendent edges which are given by
$\left\{c_{i} v_{i} j_{i}\left|N_{i-1}+1 \leq j_{i} \leq N_{i}\right|\right\}$,
Here $1 \leq i \leq k, N_{0}=0, N_{i}=\sum_{j=1}^{i} n_{j}$

Define $f: V(G) \rightarrow N$ by,
$f\left(c_{i}\right)=T_{i-1} \&$
$f\left(v_{i, j_{i}}\right)=R_{k+j_{i}-1}-T_{i-1}$
Here $T_{i-1}<T_{i}$, for $1 \leq i \leq n-1$
then $f\left(c_{i}\right)<f\left(c_{i+1}\right)$
$f\left(v_{i, 1}\right)-f\left(v_{k}\right)=R_{k}-f\left(c_{k}\right)$
$=R_{k}-\left(T_{k-1}\right)>0$
So $f\left(v_{i, 1}\right)>f\left(c_{k}\right)$. And From definition it is clear that ,for all $j<i$ we have $f\left(v_{i, 1}\right)<f\left(v_{i, j_{i}^{\prime}}\right)$,since $R_{k+j_{i-1}}<R_{k+j_{i}^{\prime}-1}$.
Following this we have ,
$f\left(v_{i+1}, N_{i+1}\right)-f\left(v_{i}, N_{i}\right)=S_{k+N_{i}}-T_{i}-S_{k+N_{i}-1}+T_{i-1}=S_{k+N_{i}}-S_{k+N_{i}-1}-\left(T_{i}-T_{i-1}\right) \geq 2 k+2 N_{i}-1-k=k+$ $2 N_{i}-1>0$,
for every value of i with $1 \leq i \leq k-1$.
Theorem 3.3: The lobster T is a square sum graph.
Proof: Consider T be the lobster produced by connecting the centres of k copies of the same star $K_{1, n}$ to a new vertex w. Denote the centre vertex of the $i^{\text {th }}$ star $K_{1, n}$ as $w_{i}, l \leq i \leq k$ and the pendent vertices of the $i^{t h}$ star as $v_{i, j, 1}, 1 \leq i \leq$ $k, 1 \leq j \leq n$.

Note that T contains $(n+1) k$ edges. Define $f: V(T) \rightarrow N$ by
$f(w)=0, f\left(w_{i}\right)=R_{i}, l \leq i \leq k$ and $f\left(v_{i, j}\right)=R_{k+j+m}-f\left(w_{i}\right), 1 \leq i \leq k, 1 \leq j \leq n, m=(i-1) n$.
Since $0<R_{1}<\ldots .<R_{k}$, we have, $f(w)<f\left(w_{1}\right)<\ldots<f\left(w_{k}\right)$.
Also since, $R_{k+j+m}-f\left(w_{i}\right)<R_{k+j+m}-f\left(w_{i}\right)$, for $l \leq i \leq k$ and $l \leq j \leq n$, we have $f\left(v_{i, j}\right)<f\left(v_{i, j+1}\right)$. For, $k \geq l$, we have $f\left(w_{k}\right)=R_{k}$ and $f\left(v_{1,1}\right)=R_{k+1}-1$. Since, $R_{k}<R_{k+1}-1$, we have $f\left(w_{k}\right)<f\left(v_{1,1}\right)$.

Further, we have, by the definition of $f, f\left(v_{i, n}\right)=R_{k+n+(i-1) n}-f\left(w_{i}\right) \& f\left(v_{i+1}, 1\right)=R_{k+l+i n}-f\left(w_{i+1}\right), 1 \leq i \leq$ $k-1$.

Clearly, $R_{k+n+(i-1) n}-f\left(w_{i}\right)<R_{k+l+i n}-f\left(w_{i+1}\right)$, since $k+i(n-1)>0$. Therefore,
$f\left(v_{i, n}\right)<f\left(v_{i+1}, 1\right)$, for $1 \leq i \leq k-1$.
Thus f is one-one.
From the labelling, it follows that $f^{+}(E(T))=\left\{R_{1}, R_{2}, \ldots, R_{(n+1) K}\right\}$.
Hence the lobster T is a square sum graph.
Theorem 3.4: The graph G obtained by the amalgamation of the fan graph F_{n-l} with the centre of $K_{1, m}$ for a suitable m, is a square sum graph.

Proof: Step 1: Consider F_{2}. Let v, v_{1}, v_{2}, be the vertices of F_{2}. Label $v=0$ and $v_{1}=R_{3}$. We shall find b such that $3^{2}+b^{2}=a^{2}$,
for some integer a. The inequality (1) gives
$3^{2}=(a+b)(a-b)$.

Therefore, we let $a+b=3^{2}$ and $a-b=1$. Solving for a and b we get, $a=5$ and $b=4$. Hence, we can label v_{2} as R_{4}. Then the values of the edges $v v_{1}, v_{1} v_{2}$ and $v_{2} v$ are respectively $R_{3}, R_{5} \& R_{4}$.

We now consider a star $K_{1, m}$ where $m \geq 2$. We amalgamate the centre of $K_{1, m}$ with the vertex v to get the graph G. Let the pendent vertices of G be $u_{j}, 1 \leq j \leq m$. We define $f: V(G) \rightarrow N$ with,

$$
\begin{aligned}
& f(v)=0, f\left(v_{1}\right)=R_{3}, f\left(v_{2}\right)=R_{4} \\
& f(u)_{1}=R_{1}, f\left(u_{2}\right)=R_{2} \text { and } f\left(u_{j}\right)=R_{j+3} \text { for } 3 \leq j \leq m .
\end{aligned}
$$

From the definition, it follows that f is one-one.
Then we have $f^{+}(E(T))=\left\{R_{1}, R_{2}, \ldots, R_{m+3}\right\}$ and the graph is a square sum graph.
Step 2: Consider $F_{n-1}, n \geq 4$. Suppose $v, v_{1}, v_{2}, \ldots, v_{n-1}$ be the vertices of F_{n-l}. Label $f(v)=0$ and $f\left(v_{1}\right)=$ $R_{b_{1}}$ where $b_{1} \geq 5$. We shall find integers a_{1} and b_{2} such that
$b_{1}^{2}+b_{2}^{2}=a_{1}^{2}$
Here We have need to consider two scenario:
Case 1: If b_{1} is odd, then we can write
$b_{1}=p_{1}^{2 \alpha 1} p_{2}^{2 \alpha 2} \cdots p_{k}^{2 \alpha k}$,
here $p_{1}<p_{2}<\cdots . .<p_{k}$, are all odd primes and α_{i} 's are positive integers.
Then (2) yields
$\left(a_{1}+b_{2}\right)\left(a_{1}-b_{2}\right)=p_{1}^{2 \alpha 1} p_{2}^{2 \alpha 2}$ \qquad
We consider
$\left(a_{1}+b_{2}\right)=p_{2}^{2 \alpha 2} \ldots . p_{k}^{2 \alpha k}$
$\left(a_{1}-b_{2}\right)=p_{1}^{2 \alpha 1}$
so that
$a_{1}=\frac{p_{2}^{2 \alpha 2} \cdots p_{k}^{2 \alpha k}+p_{1}^{2 \alpha 1}}{2} \& b_{2}=\frac{p_{2}^{2 \alpha 2} \cdots p_{k}^{2 \alpha k}-p_{1}^{2 \alpha 1}}{2}$
Case 2: If b_{1} is even, then we can write
$b_{1}=2^{\alpha 1} p_{2}^{\alpha 2} \ldots p_{r}^{\alpha r}$
Here $2<p_{2}<\cdots .<p_{r}$, are all primes and $\alpha_{i}{ }^{\prime} s$ are + ve integers. Then (2) yields
$\left(a_{1}+b_{2}\right)\left(a_{1}-b_{2}\right)=2^{\alpha 1} p_{2}^{\alpha 2} \ldots p_{r}^{\alpha r}$
We choose
$\left(a_{1}+b_{2}\right)=2^{\alpha 1} p_{2}^{2 \alpha 2} \ldots p_{r}^{2 \alpha r}$
$\left(a_{1}-b_{2}\right)=2^{\alpha 1}$
Then we have,
$a_{1}=\frac{2^{\alpha 1} p_{2}^{2 \alpha 2} \cdots p_{k}^{2 \alpha k}+2^{\alpha 1}}{2} \& b_{2}=\frac{2^{\alpha 1} p_{2}^{2 \alpha 2} \cdots p_{k}^{2 \alpha k}-2^{\alpha 1}}{2}$
Having found b_{2}, we label $f\left(v_{2}\right)=R_{b_{2}}$. Then the value of the edge $f\left(v_{1} v_{2}\right)$ will be a_{1}^{2}. From the construction it follows that $b_{1}<b_{2}$ and hence $R_{b_{1}}<R_{b_{2}}$. Proceeding like this we can label $f\left(v_{k}\right)=R_{b_{k}}, 3 \leq k \leq n-1$. Then from the
construction it follows that the values of the edges will be perfect squares. Suppose the values of the $2 n-3$ edges are $R_{a_{1}}, R_{a_{2}}, \ldots R_{a_{n-2}}, \ldots, R_{b_{1}}, \ldots ., R_{b_{n-1}}$

From the construction it follows that $R_{a_{n-2}}$ is the largest of these squares. Put
$A=\left\{R_{1}, R_{2}, \ldots, R_{a_{n-2}}\right\}$ and $B=\left\{R_{a 1}, R_{a 2}, \ldots ., R_{a n-2}, R_{b 1}, R_{b 2}, \ldots, R_{b n-1}\right\}$.
Now we amalgamate the center of a star $K_{1, m}$ where $m \geq(|A|-|B|)$, with vertex v of F_{n-I} to get the graph G. Label the $|A|-|B|$ pendent vertices of $K_{1, m}$ with the squares from the set $A-B$. Label the remaining $m-(|A|-|B|)$ pendent vertices with the consecutive squares

$$
R_{a_{n-2}}, R_{a_{n-2}}, \ldots, R_{a_{n-2}+m-(|A|-|B|)}
$$

From the construction it follows that $f^{+}(E(G))=\left\{R_{1}, R_{2}, \ldots R_{a+m-(|A|-|B|)}\right\}$ and the graph G is a square sum graph.

IV. CONCLUSION

We have discussed the concept of square sum labelling of graphs in this article. Following that, we show that routes, the graph, the lobster, the complete n-ary tree, and the combination of a fan and a star all enable square sum labelling

REFERENCES

[1] V.Ajitha, S.Arumugam and K.A.Germina, On square sum graphs AKCE J.Graphs, Combin; 6(2006) 1-10.
[2] M. Akram, Middle-East Journal of Scientific Research 11, 1641 (2012)
[3] Frank Harrary, Graph theory, Narosa Publishing House- (2001).
[4] J A Gallian, A dynamic survey of graph labelling, The Electronics Journal of Combinatories, 17(2017) \# DS6.
[5] K.A.Germina on Square sum labelling, International Journal of Advanced Engineering and Global Technology(2309-4893) 2(1) 2014.
[6] A. Rosa On certain valuations of the vertices of a graph, in theory of graphs. International Symposium Rome. 1966; 349-355. Gordon and Breach, New York, NY, USA, (1967).

