
ON WEAK COMPACTNESS IN LΦ(µ,X)
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Abstract. Here we characterize relative weak compact subset of Orlicz-

Bochner space LΦ(µ,X), where X is a reflexive Banach space and Φ is a

Young function, first using ”convex compactness criterion” and then using reg-

ular method of summability. We also prove a convergence theorem in LΦ(µ,X)

which generalization of similar result in L1(µ,X) and Lp(µ,X) of A. Ülger[19]

and S. Diaz [4].

1. Introduction

The problem of characterising relatively weakly compact subset of Orlicz space

space LΦ(µ,X), where Φ is a Young function and X is any Banach space has been

considered by many authers [1], [15] and [17]

In [8], J.Diestel, W. M. Ruess and W. Schachermayer characterize relatively weakly

compact subset of L1(µ,X) using ’convex compactness condition’. In the same pa-

per they also extend this result to characterize relatively weakly compact subset of

Köthe-Bochner space E(X), where E is an ideal of L0 such that L∞ ⊂ E ⊂ L1

and X is a Banach space. Here we first use this criteria to characterize relatively

weakly compact subset of the Orlicz-Bochner space LΦ(µ,X).

In [4], S.Diaz describes the above ’convex compactness condition’ in terms of

regular method of summability in a Banach space X. This provides new char-

acterization of weak compactness as well as weak conditional compactness in

L1(µ,X). In [14], M.Nowak uses regular method of summability to characterize

relative σ(E(X), E(X )̃n) compact and conditional σ(E(X), E(X )̃n) compact sub-

set of E(X) where E(X )̃n is the order continuous dual of E(X). In [2], we use

regular method of summabitility to characterize relatively weakly sequential com-

pactness in P1(µ,X), the space of all X-valued Pettis integrable functions where X

is a seperable Banach space. Here in the section of our main results we use regular

method of summabitility to characterize relativley weakly compact subset of the

Orlicz-Bochner space LΦ(µ,X). We actually generalize [[4], Theorem 1, p.2686],
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2 CHOUDHURY

[[4], Theorem 3, p.2688] and [[14], Theorem 2.3, p.420] to the Orlicz-Bochner space

LΦ(µ,X).

2. Notations, Definitions and Preliminaries

Before we proceed to our main result we first recall some notations and prelim-

inaries of Orlicz-Bochner space. Reader is referred to [7], [9] and [18] for further

details.

Throughout the whole paper (Ω,Σ, µ) is a complete, positive and finite measure

space and X is a reflexive Banach space with dual X∗. Φ is a Young function with

Φ∗ as its complementary function.

By a Young function here we mean a mapping Φ : [0,∞) → [0,∞) that is con-

vex, monotone non-decreasing, vanishing only at zero and lim
t→0

Φ(t)/t = 0 and

lim
t→∞

Φ(t)/t =∞.
For a Young function Φ, Φ∗ denotes the complementary function to Φ in the sense

of Young, i.e. Φ∗(u) = sup{ut − Φ(t); t ≥ 0} for all u ≥ 0. It is to be mentioned

here that Φ∗ is also a Young function and Φ∗∗ = Φ. Also Φ and Φ∗ satisfy Young

inequality [20] i.e. for any u ≥ 0, v ≥ 0

uv ≤ Φ(u) + Φ∗(v).

The Orlicz space LΦ generated by the Young function Φ is an ideal of L0 and is

defined by

LΦ = {u ∈ L0 :

∫
Ω

Φ(λ|u(ω)|)dµ <∞ for some λ > 0},

where L0 is the equivalence classes of all measurable functions f : Ω → R. The

Orlicz norm and the Luxemberg norm or Gauge Norm [18] can be defined on LΦ

respectively by

Equation 2.0.1. ‖u‖Φ = sup{|
∫

Ω
u(ω)v(ω)dµ| : v ∈ LΦ∗ ,

∫
Ω

Φ∗(|v(ω)|)dµ ≤ 1}.

Equation 2.0.2. |u|Φ = inf{λ > 0 : |
∫

Ω
Φ(|u(ω)|/λ)dµ| ≤ 1}.

The Orlicz norm and the Luxemberg norm on LΦ given above by (2.0.1) and

(2.0.2) respectively are equivalent.[[9], Theorem 3, p.52] and [18]. It is well known

that both the norms on LΦ satisfies the σ-Fatou property and σ-Levy property.[

[6], Theorem 4.3.7]. Also (LΦ)
′

= LΦ∗ and

EΦ = {u ∈ LΦ :

∫
Ω

Φ(λ · |u(ω)|)dµ ≤ ∞, for all λ > 0}.

It is known that EΦ = (LΦ)a where (LΦ)a is an ideal of LΦ consisting of all g ∈ LΦ

such that the seminorm ρLΦ∗ on LΦ∗ defined by

ρLΦ∗ (χAn
g) = sup{

∫
An
|〈f(ω), g(ω)〉|dµ; f ∈ LΦ∗} → 0, for all An ∈ Σ with

An ↘ ϕ.
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WEAK COMPACTNESS 3

The Köthe-Bochner space LΦ(µ,X) = {f ∈ L0(µ,X) : f̃ ∈ LΦ}, where L0(µ,X)

is the equivalence classes of strongly measurable functions f : Ω→ X. The norms

in LΦ(µ,X) corresponding to the Orlicz Norm given by (2.0.1) and the Luxemberg

Norm given by (2.0.2) in LΦ is respectively given by

‖f‖LΦ(µ,X) = ‖f̃‖Φ and |f |LΦ(µ,X) = |f̃ |Φ.

A subset H of LΦ(µ,X) is said to be solid whenever f1 and f2 be two elements

in LΦ(µ,X) such that ‖f1(ω)‖X ≤ ‖f2(ω)‖X for ω-a.e., then f2 ∈ H implies that

f1 ∈ H.
A Young function Ψ is said to be completely weaker than another Φ, in symbol

Ψ C Φ, If for an arbitrary c > 1 there exists d > 1 such that Ψ(ct) ≤ dΦ(t) for

t ≥ 0. It is known that the relation ΨC Φ→ LΦ ⊂ EΨ.[[18], Theorem 5.3.1].

A Young function Φ : [0,∞) → [0,∞) is said to satisfy ∆2 condition (globally),

denoted by Φ ∈ ∆2(globally), if Φ(2x) ≤ KΦ(x) for all x ≥ 0 for some constant

K ≥ 0. It is to be noted that a Young function Φ satisfies ∆2 condition if ΦC Φ.

A Young Function Φ : [0,∞) → [0,∞) is said to satisfy ∇2 condition(globally),

denoted by Φ ∈ ∇2(globally), if Φ(x) ≤ (1/2l)Φ(lx) for all x ≥ 0 for some constant

l ≥ 1. A Young function Φ more rapidly than another Young function Ψ, denoted

by Ψ ← Φ, if for c > 0 there exists a d > 0 such that cΨ(t) ≤ (1/d)Φ(d · t) for all

t ≥ 0. It is to be noted that Φ satisfies ∇2 condition iff Φ← Φ.

It can be verified that for the Young function Φ and Ψ the relation ΨC Φ holds if

Ψ∗ ← Φ∗ holds.[[18], Proposition 2.2.4]. It can be shown that a Young function Φ

satisfies ∇2 condition if Φ← Φ.

If Φ satisfies ∆2 condition then by [[16], Theorem 2, p.2], we have

Equation 2.0.3. LΦ(µ,X)∗ = LΦ∗(X∗, X).

If X∗ has RNP , by [[16], p.2] or by [[17], p.114], we have

Equation 2.0.4. LΦ∗(X∗, X) = LΦ∗(µ,X∗).

An infinite matrix T = (tn,m) of scalars is said to be a regular method of summa-

bility in a Banach space X if, for every convergent sequence {xn} in X, the series

xTn = Σ∞m=1tn,mxm exists for each n ∈ N and the sequence {xTn} is convergent to

the same limit as {xn}. It is to be mentioned further that regular matrix T is

independent of the particular Banach space X. Regular matrices are characterized

by the vectorial version of the classical Silverman-Toeplitz theorem.[4]

Theorem A (Silverman-Toeplitz) A scalar infinite matrix T = (tn,m) is a reg-

ular method of summability in X iff it satisfies the following three conditions:

(a) sup
n

Σ∞m=1|tn,m| <∞.

(b) lim
n→∞

tn,m = 0 for all m ∈ N.
(c) Σ∞m−1tn,m = 1.
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4 CHOUDHURY

3. Main Results

3.1. Relative Weak compactness in LΦ(µ,X) using convex combination

criteria.

Theorem 3.1.1. Let H be a norm bounded solid subset of LΦ(µ,X) where X is

reflexive and Φ satisfies ∆2 condition. Then the following are equivalent:

1) H is relatively weakly compact.

2) {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗) and given any

sequence {fn}n in H, there exists a sequence {gn}n with gn ∈ co{fk; k ≥ n} such

that {gn(ω)} is norm convergent for a.e. ω in Ω.

3){f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗) and given any

sequence {fn} in H, there exists a sequence {gn} with gn ∈ co{fk; k ≥ n} such

that {gn(ω)} is weakly convergent for a.e. ω in Ω.

Proof. 1) =⇒ 2)

Let H is relatively weakly compact.

Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ = LΦ∗(X∗, X)

and since X is reflexive, by [[5], cor.13, p.76], X∗ has RNP , so by the equation

(2.0.4), LΦ∗(X∗, X) = LΦ∗(µ,X∗).

Consider the seminorm ρH(·) defined on LΦ∗(µ,X∗) by

ρH(g) = sup
f∈H

∫
Ω

|〈f(ω), g(ω)〉|dµ.

It is absolutely continuous by [[15], Theorem 2.2, p.79].

Since H is a solid subset of LΦ(µ,X) by [[13], Theorem 1.3, p.199], it follows that,

ρH(g) = sup
f∈H

∫
Ω

|〈f(ω), g(ω)〉|dµ = sup
f∈H

∫
Ω

‖f(ω)‖X · ‖g(ω)‖X∗dµ

Therefore for every h ∈ LΦ∗(µ,X∗) and for every ε > 0 there exists a δ > 0 such

that for A0 ∈ Σ with µ(A0) < ∞ such that ρH(χAh) ≤ ε for all A ∈ Σ such that

µ(A) < δ and ρH(χΩ\A0
g) ≤ ε.

Hence {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗).

Again since H is relatively weakly compact, for any sequence {fn} in H there

exists a subsequence {fnk
} such that {fnk

} converges weakly to some function

f ∈ LΦ(µ,X). Now by Mazur’s Theorem there exists a sequence {gk} with

gk ∈ co{fm; m ≥ k} such that ‖gk − f‖Φ → 0 as k → ∞ i.e. {gk} converges

to f in measure and hence there exists a subsequence {gn} of {gk} which converges

in norm to f a.e. ω ∈ Ω.

The implication 2)⇒ 3) is obvious.

We now prove 3)⇒ 1). For this let us suppose that the condition 3)holds.
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WEAK COMPACTNESS 5

Let {fn} be a sequence in H. Then by the hypothesis there exists a sequence {gk}
with gk ∈ co{fm; m ≥ k} such that {gn(ω)} is weakly convergent for a.e. ω in Ω.

Let E ∈ Σ be the exceptional set with µ(E) = 0 such that {gk} converges weakly

for all ω ∈ Ω \ E. Put f(ω) = weak-limit gk(ω) for all ω ∈ Ω \ E.
Then clearly f , being the weak-limit of a sequence of measurable functions gk, is

measurable.

Since by the hypothesis, {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈
LΦ∗(µ,X∗), it is easy to check that the set {g̃k · h̃; k ∈ N} is uniformly inte-

grable for all h ∈ LΦ∗(µ,X∗).

As H is norm-bounded and solid, by Fatou’s Lemma, Hölder’s inequality and by

[[13], Theorem 1.3, p.199], we have for any h in LΦ∗(µ,X∗),∫
Ω
|〈f(ω), h(ω)〉|dµ =

∫
Ω
‖f(ω)‖X · ‖h(ω)‖X∗dµ

≤
∫

Ω
lim inf ‖gk(ω)‖X · ‖h(ω)‖X∗dµ

≤ lim inf
k

∫
Ω

‖gk(ω)‖X · ‖h(ω)‖X∗dµ ≤ sup
k

∫
Ω

‖gk(ω)‖X · ‖h(ω)‖X∗dµ

≤ sup
k
‖gk‖Φ · ‖h‖Φ∗ <∞.

Therefore f ∈ LΦ(µ,X).

Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ = LΦ∗(X∗, X)

and since X is reflexive, by [[5], cor.13, p.76], X∗ has RNP , so by the equation

(2.0.4), LΦ∗(X∗, X) = LΦ∗(µ,X∗).

Therefore for any h in LΦ∗(µ,X∗),

lim
k→∞

〈h(ω), gk(ω)〉 = 〈h(ω), f(ω)〉 for a.e. ω ∈ Ω.

Also 〈h(·), gk(·)〉 and 〈h(·), f(·)〉 belong to L1 and for all h ∈ LΦ∗(µ,X∗), {g̃k ·
h̃; k ∈ N} is uniformly integrable .

It follows from Vitali Convergence Theorem in L1,

lim
k→∞

∫
Ω

〈h(ω), gk(ω)〉 =

∫
Ω

〈h(ω), f(ω)〉.

Hence {fn} has a subsequence {gk}, with gk ∈ co{fm; m ≥ k}, which converges

weakly to f in LΦ(µ,X) .

Hence by [[8], Corollary 2.2, p.449], H is relatively weakly compact. �

3.2. Relative Weak compactness in LΦ(µ,X) using Regular Method of

Summability.

Theorem 3.2.1. Let H be a norm bounded solid subset in LΦ(µ,X) where X is

reflexive and Φ satisfies ∆2 condition. The the following are equivalent:

1) H is relatively weakly compact.

2) {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗) and given any

sequence {fn}n in H, there exists regular method of summability such that {fTn (ω)}
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6 CHOUDHURY

is weakly convergent for a.e. ω in Ω.

3) {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗) and given any

sequence {fn}n in H, there exists regular method of summability such that {fTn (ω)}
is norm convergent for a.e. ω in Ω.

Proof. 1) =⇒ 2)

Let H is relatively weakly compact.

Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ = LΦ∗(X∗, X)

and since X is reflexive, by [[5], cor.13, p.76], X∗ has RNP , so by the equation

(2.0.4), LΦ∗(X∗, X) = LΦ∗(µ,X∗).

Consider the seminorm ρH(·) defined on LΦ∗(µ,X∗) by

ρH(g) = sup
f∈H

∫
Ω

|〈f(ω), g(ω)〉|dµ.

By [[15], Theorem 2.2, p.79, ], it is absolutely continuous.

Since H is a solid subset of LΦ(µ,X) from [[13], Theorem 1.3, p.199], it follows

that,

ρH(g) = sup
f∈H

∫
Ω

|〈f(ω), g(ω)〉|dµ = sup
f∈H

∫
Ω

‖f(ω)‖X · ‖g(ω)‖X∗dµ

Therefore for every g ∈ LΦ∗(µ,X∗) and ε > 0 there exists a δ > 0 such that for

A0 ∈ Σ with µ(A0) <∞ such that ρH(χAg) ≤ ε for all A ∈ Σ such that µ(A) < δ

and ρH(χΩ\A0
g) ≤ ε. Therefore {f̃ · h̃; f ∈ H} is uniformly integrable for all

h ∈ LΦ∗(µ,X∗).

Let {fn} ⊂ H. By [[4], Theorem 1, p.2686], there exists a regular method of

summability T such that {fTn } converges in norm to some f in LΦ(µ,X). Therefore

a subsequence of {fTn } converges to f pointwise a.e. ω ∈ Ω. Dropping suitable rows

from T , we finally obtain a regular method of summability T
′

such that {fT
′

n }
converges in norm convergent a.e. ω ∈ Ω.

The implication 2)=⇒ 3) is obvious.

we now prove 3)=⇒ 1). For this we assume that condition 3) holds.

Let {fn} be a sequence in H. Then by the hypothesis there exists a regular methods

of summability T such that {fTn } converges a.e.ω in Ω. Let E ∈ Σ be the exceptional

set with µ(E) = 0 such that {fTn } converges weakly for all ω ∈ Ω \ E.
Put f(ω) = weak-limit fTn (ω), ω ∈ Ω \ E.
Since fTn (ω) = Σ∞m=1tn,mfm(ω), each fTn , being the pointwise limit of a sequence

of strongly measurable functions {fm}, is strongly measurable.

Now by[[13], Theorem 1.3, p.199], norm-boundedness of H in LΦ(µ,X), Hölder

inequality and condition (a) of Silvermann-Toeplitz Theorem(A), we have∫
Ω

‖h(ω)‖X∗ · ‖fTn (ω)‖Xdµ =

∫
Ω

|〈h(ω), fTn (ω)〉|dµ =
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WEAK COMPACTNESS 7∫
Ω

|Σ∞m=1tn,m〈h(ω), fm(ω)〉|dµ

≤
∫

Ω

Σ∞m=1|tn,m||〈h(ω), fm(ω)〉|dµ ≤

Σ∞m=1|tn,m|
∫

Ω

|〈h(ω), fm(ω)〉|dµ ≤ ‖h‖Φ∗ · ‖fn‖Φ <∞.

So 〈fTn (·), h(·)〉 ∈ L1(µ) for all h ∈ LΦ∗(µ,X∗) and for all n ∈ N
Moreover, the set {f̃Tn · h̃; n ∈ N} is uniformly integrable for all h ∈ LΦ∗(µ,X∗) as

for all h ∈ LΦ∗(µ,X∗) and n ∈ N, we have

Equation 3.2.2.
∫
A
‖‖fTn (ω) · h(ω)‖X∗‖Xdµ =

∫
A
|〈fTn (ω), h(ω)〉|dµ =∫

A
|Σ∞m=1tn,m〈fm(ω), h(ω)〉|dµ

≤
∫
A

Σ∞m=1|tn,m||〈fm(ω), h(ω)〉|dµ ≤ Σ∞m=1|tn,m|sup
m

∫
A

| 〈fm(ω), h(ω)〉|dµ.

So by condition (a) of Theorem A and by the hypothesis the set {f̃ ·
h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗), it follows that

Σ∞m=1|tn,m|sup
m

∫
A

|〈h(ω), fm(ω)〉|dµ tends to zero as µ(A) tends to zero for all

A ∈ Σ.

We now show that f ∈ LΦ(µ,X).

Let h be any element in LΦ∗(µ,X∗).

Since 〈fTn (ω), h(ω)〉 → 〈f(ω), h(ω)〉 as n→∞, a.e. ω in Ω and the set {f̃Tn · h̃; n ∈
N} is uniformly integrable for all h ∈ LΦ∗(µ,X∗), by Vitali convergence theorem

Equation 3.2.3. lim
n→∞

∫
Ω

〈fTn (ω), h(ω)〉dµ =
∫

Ω
〈f(ω), h(ω)〉dµ.

Also 〈f(ω), h(ω)〉 ∈ L1. Hence f ∈ LΦ(µ,X).

Finally we show that {fTn } converges weakly to f in LΦ(µ,X).

Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ = LΦ∗(X∗, X)

and since X∗ has RNP , by the equation (2.0.4), LΦ∗(X∗, X) = LΦ∗(µ,X∗) and

from 3.2.3, we see that {fTn } converges weakly to f in LΦ(µ,X).

Therefore by [[4], Theorem 1, p.2686], H is relatively weakly compact.

�

3.3. A Convergence Theorem in LΦ(µ,X).

Lemma 3.3.1. Assume that X is reflexive and Φ satisfies ∆2 condition. If {fn}
be a norm bounded sequence in LΦ(µ,X) such that

a) {f̃ · h̃; f ∈ H} is uniformly integrable for all h ∈ LΦ∗(µ,X∗)

b) {fn} be weakly convergent almost surely to a function f ∈ LΦ(µ,X).

Then {fn} converges weakly to f in LΦ(µ,X).
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8 CHOUDHURY

Proof. Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ =

LΦ∗(X∗, X) and since X is reflexive, by [[5], cor.13, p.76], X∗ has RNP , so by

the equation (2.0.4), LΦ∗(X∗, X) = LΦ∗(µ,X∗).

Let h ∈ LΦ∗(µ,X∗) be arbitrary. Therefore by given hypothesis a)of the lemma the

set {f̃n · h̃; n ∈ N} is uniformly integrable and the sequence {〈fn(·), h(·)〉 in L1 con-

verges pointwise almost surely to the function {〈f(·), h(·)〉. By Vitali’s convergence

theorem in L1, we have,

lim
n→∞

∫
Ω

〈fn(ω), h(ω)〉dµ =

∫
Ω

〈f(·), h(·)〉dµ.

Hence {fn} converges weakly to f ∈ LΦ(µ,X). �

Lemma 3.3.2. Let {fn} be a sequence in LΦ(µ,X). If {fn} be weakly convergent

to f ∈ LΦ(µ,X) and {fn(ω)} be weakly Cauchy almost surely a.e. ω in Ω, then

{fn} converges almost surely to f .

Proof. Since Φ satisfies ∆2 condition, by the equation (2.0.3), LΦ(µ,X)∗ =

LΦ∗(X∗, X) and since X∗ has RNP , by the equation (2.0.4), LΦ∗(X∗, X) =

LΦ∗(µ,X∗).

Let E1 be the negligible set in Σ such that µ(E) = 0 and {fn(ω)} is weakly Cauchy

for all ω ∈ Ω \ E. For x∗ ∈ X∗ and ω ∈ Ω \ E1, let

Equation 3.3.3. gx∗(ω) = lim
n→∞

〈x∗, fn(ω)〉.

Since the {fn} converges weakly to f ∈ LΦ(µ,X), by Mazur’s Theorem, there

exists a sequence {f ′n}, with f
′

n ∈ co{fk; k ≥ n}, such that {f ′n} converges in norm

to f in LΦ(µ,X).

Equation 3.3.4. lim
n→∞

‖f
′

n − f‖Φ = 0.

Now every {f ′n} is of the form

f
′

n = Σmn

l=0αlfn+l

, with αl ≥ 0 and Σmn

l=0αl = 1.

Using(3.3.3) and expression of each {f ′n}, it can be easily shown that for each

ω ∈ Ω \ E1 and x∗ ∈ X∗,

Equation 3.3.5. lim
n→∞

〈x∗, f
′

n(ω)〉 = gx∗(ω).

Now by (3.3.4), there exists a set E2 ∈ Σ and integers n1 < n2 · · · < nk < · · ·
such that, for each ω ∈ Ω \ E2, ‖f ′nk

(ω) − f(ω)‖X → 0 as k → ∞ which further

implies that for each ω ∈ Ω \ E2, f
′

nk
(ω) converges weakly to f(ω) in X i.e. for

each ω ∈ Ω \ E2 and for each x∗ ∈ X∗,
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WEAK COMPACTNESS 9

Equation 3.3.6. lim
n→∞

〈x∗, f
′

n(ω)〉 = 〈x∗, f(ω)〉.

Therefore by (3.3.3) and (3.3.5) and (3.3.6), we have for all ω ∈ Ω \ (E1 ∪ E2)

lim
n→∞

〈x∗, fn(ω)〉 = gx∗(ω) = lim
n→∞

〈x∗, f
′

n(ω)〉 = 〈x∗, f(ω)〉.

That is fn(ω) converges weakly to f(ω) in X for all ω ∈ Ω \ (E1 ∪ E2). Again

µ(E1 ∪ E2) = 0. Hence fn(ω) converges weakly to f(ω) in X a.e.ω ∈ Ω. �
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